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Abstract

The asynchronous flows are generated by Boolean funcfions {0,1}" —
{0,1}"™ whosecoordinatesp;,i = 1,n areiterated independently on each other. The
order and the time instants of these iterations are not known. The flows are the models
of the asynchronous circuits from the digital electronics. Time-reversal symmetry is
one of the fundamental symmetries discussed in natural science and our main purpose
is to adapt this concept, by analogy with mechanics, to the asynchronous flows. The
technical condition of proper operation, also known as race-freedom, is a special case
of work in asynchronicity which ’softens’ the non-determinism of the models. We
prove that when it is fulfilled, the flow behaves like a dynamical system. Finally, we
relate the time-reversal symmetry and the fulfilement of the technical condition of
proper operation.

1. Introduction

We denote in the following witfB the Boolean algebra with two elements, i.e. the set
{0,1} endowed with the complemerit—’, theintersection - ’, the union’'U’, and the
modulo 2 sun &' .

The asynchronous flows describe the behavior of the digital devices from electronics.
They are generated by Boolean functiohs: B” — B" that iterate their coordinates
®q, ..., d,, independently on each other.

In order to state the problem, let us consider Figure 1 where the state portrait of the
function® : B2 — B2,

V(1 p2) € B ® (1, p2) = (71 U pa - iz, i1 U g - i)

wasdrawn. We have underlined the coordinates, so-called excited, or enabled, or unstable,
for which ®; (1, u2) # pi,i = 1,2. These coordinates are about to change their values, for
example(1, 1) shaws that®,(1,1) = 0; on the other hand the non-underlined coordinates
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(0,0) (0,1)
(1I0> (1|1>
Figure 1. Example of state portrait.
o
G

Figure 2. A time-reversal symmetry of the functi®ifrom Figure 1 and another function
¥ does not exist.

keep their values, for example; (1, 1) = 1. The arrows show the increase of time. Time is
discrete in this paper, and the request is that the sets of the time instants wicenittiinate
functions®,, ®, are computed are infinite. If the flow is {f, 0), it can go in three different
directions, since both coordinates are excited, depending on whicticatg changes first:
if ®1(0,0) is computed first, the next value of the flow(is 0), if ®2(0, 0) is computed first,
the next value i0, 1) and if (0, 0), ®2(0,0) are computed at the same time, the next
value is(1, 1). If the flow is in (1, 0), it rests there indefinitely long, sind(1,0) = (1,0).
And if the flow is in(1, 1) or (0, 1), it switches infinitely many times between these points

Time-reversal symmetry is one of the fundamental symmetries discussed iial isait
ence. Consequently, it arises in many physically motivated dynamical systepasticular
in classical and quantum mechanics. In the case of the asynchronesgstiloe reversal
symmetry means the inversion of the arrows in the state portraits. Figure 2 shaixthe
function ® from Figure 1 is symmetrical with no other functidn The definition of¥ is
possible in(1,0) and(0,0), but in (1,1) and(0, 1) it is impossible, and we have pointed
this out with the circles surrounding the two points. In fact, two arrows lshstart from
(1,1) in Figure 2; if we underline a coordinate, then one arrow exists, and ifndernline
two coordinates, then three arrows exist, making the definitioh imipossible.

Time-reversal symmetry exists of the functi®from Figure 3 a) and the functiod
from Figure 3 b). The state portraits &f ¥ create the impression that the symmetrical
flows run in opposite senses of time.

The concept of time-reversal symmetry is present in literature in the cootdkie
(real, usual) dynamical systems and the main purpose of this paper is toitaftaghe
asynchronous flows.
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Figure 3. Time-reversal symmetry exists of the functiofrom a) and the functiod from
b).

The model represented by the asynchronous flows presumes that tleg¢twrder of
the iterations of®;,7 = 1,n, nor the time instants when they happen are known, due
to the uncertainties introduced by technology, temperature variations dage/cupply
variations. These uncertainties make the model be non-deterministic, but apebal
case of so-called 'race-freedom’ (when we also say that the tectugadition of proper
operation is satisfied), it works 'deterministic-like’ in the sense that we d&ammw exactly
when the transitions from one state to another state happen, but we knidivethaappen
sometime, see Figure 3 a) and Figure 3 b). The secret of this deterministloeliaaior
is given by the request that each state has at most one exited coordReéding time-
reversal symmetry to the technical condition of proper operation is treatkdtiention in
the paper.

The bibliography consists in the survey [1] on the time-reversal symmetiiyeodly-
namical systems that generated analogies, together with works of ourgnchasnous
flows.

2. Preliminaries

Definition 1. For ® : B* — B" and\ € B", we define the functio®* : B® — B" by
VueB"Vie{l,..,n},

i) = { By(p),if s = 1.

Definition 2. The sequence : {0,1,2,...} — B", whose terms are denoted in gen-
eral with o (instead ofa(k)), is called progressiveif Vi € {1,...,n}, the set{k|k €
{0,1,2,...},a¥ = 1} is infinite. The set of the progressive sequences is denotHg by

Definition 3. The @synchronou$ flow ia(u,-) : {-1,0,1,...} — B" is defined by
Vk > —1,

~ w, ifk=—1,
(ba = . ~
(1, ) { 0" (B, k — 1)), if k > 0.

® is called thegenerator function and is called theinitial (value of the state

Remark 4. Here are the explanations related with the previous definitions. Udlikieat
is computed on all its coordinates (at the same tinde)js computed on these coordinates
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only where); = 1. cf)“(u, -) represents the evolution of a state function starting frarthat

is given by the iterations @b;, made independently on each other, at time instants and in an
order indicated by the terms of The fact that is progressive shows that any coordinate

is computed infinitely many times. And the fact that the processes that dedleadby these
flows are influenced by unspecified parameters (such as techntdogyerature, voltage
supply) included indirectly in the model by is handled under the form: we are interested
in special classes of functioris so that we can study the properties®f (., -) that hold
forall u € Br and alla € II,,.

Notation 5. We denote by’ € B the tuples’ = (0, ..., 1, ...,0),i € {1,...,n}.
7
Remark 6. B" is a linear space over the fieB; the sum of the vectors is made coordi-
natewisevu € B, Vu' € B",
(115 ooy i) © (15 o5 ) = (f11 D pa, ey i © fi,)

and the multiplication with scalars from is made coordinatewise toe’ are the vectors
of the canonical basis dB™. Note that the sum & 1/ shows which are the coordinates
of u, p/ that differ (u; & p; = 1) and which are the coordinates of ;. that are equal

(i ® p; = 0).

3. Predecessors and Successors

Definition 7. Let® : B* — B™ andu € B™. Theny' € B" is called apredecessoof
(via @) if A € B" exists such thab*(y/) = u. The set of the predecessors.ofs denoted
with ¢~ thus

po={| € B", 3N € B", & /) = p}.
Definition 8. The pointy’ € B™ is called asuccessoof . (via ®) if A € B™ exists such
that ®* (1) = 1’. The set of the successors;ofs denoted by, in other words

pt = { |y € B", 3N € B", ®Mp) = p'}.
Remark 9. For any ® and ., 1~ is non-empty, sincg € p— (we haved(©0) (1) = 1).
Obviously,u € ™ andu™ is non-empty too.
Example 10. In Figure 4, we havé1,1,1)~ = {(1,1,0),(1,0,1),(0,1,1),(1,1,1)} and
(1,1,1)* = {(1,1,0),(0,1,1),(0,1,0), (1,1,1)}.
Theorem 11. Lety € B™. The statements

Q) = p, (1)

pt = {u} (2)
are equivalent; for any € {1,...,n} andi; € {1,...,n},..., i, € {1,...,n} distinct the
statements A ‘

P(p)=p®e" @ ... 0", 3)
pt={udN, e"d..oN, e?XeB"} (4)
are also equivalent.
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(1,0,1)
(1,1,0) =———=(1,1,1) ——=(0,1,1)
(0,1,0)
(0,0,0) (0,0,1) (1,0,0)
Figure 4. (1,1,1)~ = {(1,1,0),(1,0,1),(0,1,1),(1,1,1)} and (1,1,1)T =

{(1,1,0),(0,1,1),(0,1,0), (1,1,1)}.

Proof. (1)==(2) Sincev\ € B", ®*(u) = u, we getu™ = {®*(u)|A € B} = {u}.
Q=) If {®* )|\ € B"} = {u}, then for) = (1,...,1) € B" we infer®*(u) =
=P ().
(83)=(4) Letp € {1,..,n} andi; € {1,...,n},..., i € {1,...,n} distinct. We
compute the values @2 (u), wherei € {1,...,n}, A € B"; we obtain:

iy if )\z = 0,
DM p) = iy i N = 1,0 ¢ {in,...,ip},
wi® L if N =1i¢€ {il, ...,ip},

thus ' '
M) =p® N, 1@ ... ® A, - €.

We infer
pt={ (WA eB" = {pod N\, " @ ..o\, 7|\ € B"}.

(4)=(3) We suppose against all reason that (3) is false and we have twibitities.

Casej € {1,...,n} N {i1, ..., ip } exists with®; (u) = p; & 1

Thenu@el € {PMp)|A € B" I\ {ud N, e @...@\;, e[|\ € B"}, contradiction
with (4).

Casej € {i1,...,ip} exists With®; (1) = p;

In this situationu & &7 € {p® X, - B ... N, - e |X € B}~ {0 (w)|A € B"},
contradiction with (4) again.

(3) is proved. O

Remark 12. For any function® and anyu € B™, Theorem 11 shows that the get is a
linear variety (an affine space).

Definition 13. A pointy € B™ is called:
a) isolated fixed pointif = = {u}, u™ = {u};
b) source if = = {u}, it # {u};
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(0,0) (0,1) (1,1) (1,0)

Figure 5. Example of predecessors and successors.

c)sink, if u= # {u}, ut = {u};
d) transient point if u= # {u}, u™ # {u}.

Remark 14. For a function®, any pointu is in one of the previous situations a),...,d).

Example 15. In Figure 5, (0, 0) is source:(0,0)~ = {(0,0)}, (0,0)" = {(0,0),(0,1)};
(0,1) is transient: (0,1)~ = {(0,0),(0,1)},(0,1)* = {(0,1),(1,1)}; (1,1) is sink:
(1,1)- = {(0,1),(1, D)}, (1,1)" = {(1,1)}; and (1,0) is an isolated fixed point:
(1,0)” = (1,0)" = {(1,0)}.

Remark 16. Previously, the functio® was unique and it was kept in mind while using the
notationsy ™, u™. When several function®, ¥, ... will occur and we shall need to specify
to which function we refer, the notations will pg, u3,, ...

4. Definition of Time-Reversal Symmetry
Theorem 17. Let®, ¥ : B® — B™. The conjunction of the statements
Hy = iy, (5)
py = 1g (6)
wherep € B™ is equivalent to the conjunction of the statements
Vv € B", 3\ € B", (& o W) () = p, (7)
YA e B" v e B, (¥ 0 &N (u) = p (8)
wherep € B™ and it is also equivalent to the conjunction of the statements
Vo€ I, Vk € N, 38 € I, 8P (U (u, k), k) = p, 9)
V3 € II,,, vk € N_, Ja € L, U (D° (p, k), k) = p (10)
wherey € B™.

Proof. In order to prove that(5) and(6)) is equivalent ta(7) and(8)) for any . € B",
we fix an arbitrary such. Here is the proof of this equivalence.

(5)=(7). Letv € B" and¥"(u) = p’ € ug. As i/ € pg, A € B™ exists with
® (') = p, thus (7) holds.

(6)=>(8). For\ € B" we haved*(u) = 1/ € ug. As i/ € ug, somev € B™ exists
with ¥ (u') = p, showing the truth of (8).
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(8)=> gy C py. Letan arbitraryu’ € ug; then) € B™ exists such thad* (u/) = pu.
From (8) we have the existence of ¢ B" with (U¥ o ®*)(y/) = ¢/ = ¥¥(u), thus
WE .

(7= uy C ugp. We take an arbitrary/’ € pg, for which v € B™ exists with
@ = W (u). The relation (7) shows the existence)oft B" for which (®* o W) (1) =
w= ®*(u'), meaning that/’ € pg.

(7)=> py C pg. For an arbitrary’ € py, somev € B" exists with” (i) = p.
The relation (7) shows the existence)of= B" with (&* o ¥¥)(/) = p/ = ®*(p), thus
woE ug.

(8)=> uj C uy.Lety € ug arbitrary, thus\ € B™ exists withy' = ®* (). From (8)
we have the existence ofc B" such tha{ " o ®*)(u) = u = ¥¥ (i), giving i/ € fhy -

We prove now thaty € B”,(7) = Vi € B™,(9) and we rewrite for this the hypothesis
with the bounded variables slightly modified.’ € B™,

Vv € B", 3N € B", (0 U) (i) = 4. (11)
Letin Q) u € B, a € I, andk € N_ arbitrary and fixed. We have the following
possibilities.
Casek = —1
We see that

&7 (W (, —1), —1) = T (p, —1) = pu

is true forg3 € II,, arbitrary.
Casek =0
(11) written forv = o, A\ = 89, 1/ = 1 gives

(@ 0 0 (1) = p, (12)

~p o~ 12
&7(F°(11,0),0) = (@ 0 ") () 2 1.

In this case3!, 32, ... € B" are arbitrary such that € i,.
Caset =1
(11) written fory = o', A = 89, i/ = 0" (1) gives

(@7 0 ) (" (1) = ¥ (1) (13)
and (11) written forr = a%, A = 1, i/ = 1 gives
(@7 0 ¥°) () = . (14)
We conclude that
P (T (1, 1),1) = (D' 0 @7 0 T 0 T")(p)
= (@7 0 (@7 0 W) (W () = &7 (@7 0 W) (T" (1))

= o (10" () = (@ 0 0" () 2

In this case we can take?, 53, ... € B" arbitrarily such thaB € IL,,.
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Casek
(11) written fory = o* A = 80, 1/ = ¥

k—1

0.0 W (1) gives

-1 1 0

(@ 0 T ) (" o Lo T () = T 0.0 T (), (15)

k—2

(11) written fory = o1 A = B, i/ = U 7 o ..o U () gives

(@7 o W YT o Lo U (1) = U oo U (p), (16)
(11) written forv = %, A = g%, i/ = u gives
k aO
(@7 0 W) (1) = p. (17)

We infer:

(T)'B(\T/a(u,k),k) = ((IDBk 0d o 0 0T 0T o o \IIO‘O)(M)
= (@ 00 0. 0@ o (7 0 U )) (T oo U (1))
) ((I)Bk 0d oo @*31)(\1/0"#1 0..0 \IIO‘O(,u))

k-2 0

= (@Bk 0o o 00”0 ((IDB1 o \llo‘k_l))(\lla o...oUY (u))

k-2

o..o0 ‘Ifao(u)) =..

17
L= @ 0wy ()

In this case we can take*!, 82, ... € B" arbitrarily such thaB € IL,.
Yu € B™" (8= Vu € B™,(10) is similar with the proof ot/ € B",(7)— Vu €

19 08" 008 o ... 0 &%) (B

B",(9).
For i € B™ arbitrary, (9=(7) is obvious if we take in (9% = 0, a® = v, 3° = X and
the implication (105=-(8) with 1+ € B™ arbitrary also takes place similarly. O

Definition 18. If one of the properties
Vu € B", (5) and(6),
Vu € B™, (7) and(8),
Vu e B™,(9) and(10)
is fulfilled, we say that theme-reversal symmetrgf the functionsb and ¥ holds.

Example 19. We notice the time-reversal symmetrylgf. and 1g~, see Figure 6, where
1p» : B" — B" is the identity function. All. € B™ fulfill u* = = = {u}, i.e. they are
isolated fixed points.
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(0,0) (0,1)

(1,0) (1,1)

Figure 6. The time-reversal symmetrylgi» andlgn.

Figure 7. The time-reversal symmetry®fand .

(U 0,

iQ) \ /( 0)\
(1,0) (1,1) (0,1) (1,0) 1,1) (0,1)
a) b)

Figure 8. The time-reversal symmetry of two constant functions.

Example 20. Let the functionP from Figure 7. We notice the time-reversal symmetrg of
with ®, and also the fact that ajl. € B2 are transient in this examplg0, 0)* = (0,0)” =
(1,0)" = (1,00~ = {(0,0),(1,0)}, (0,1)* = (0,1)" = (1, )" = (1,1)” = {(0, 1),
(1, D}

Example 21. The functionsb, ¥ : B2 — B? from Figure 8 a), b) are constant/y, € B2,
() = (1,1),

W (p) = (0,0).

Notice the existence of the same arrows at a), b), with different sepses/fr, that show
the meaning of time-reversal symmetry. The situation was the same inetieys two
cases, but less obvious, due to the fact that the symmetrical functiomsdenin

Example 22. We see in Figure 9 a), b) the time-reversal symmetry of the funcors
these functions are neither constant, nor equal.
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(0,0)
(0,1)

a)

Figure 9. The time-reversal symmetry of two functions that are neithetaansor equal.

(1,1)

5. Properties

Remark 23. The time-reversal symmetry & ¥ : B" — B" does not imply the satis-
faction of
VYA€ B",3v € B, (®} o U¥)(u) = p (18)

or
Vv € B", 3\ € B", (V" 0 &) (n) = p, (19)

to be compared with (7) and (8). For this, we notice that in Figure 8 witht a) andV at
b) we have0, 1)§, = {(0,0),(0,1)} and for\ = (1,1) we get
N((0,1)3) = ({(0,0), (0, 1)}) = {(1, 1)} # {(0, 1)},

in other words (18) is false. The Theorem that follows shows that thepenies take
place under a different form.

Theorem 24. For &,V : B — B™ andu € B™,

[ = oy (20)
implies
VA€ B, (9Y) (1) # @ = Fv € B", (@Y 0 W) (1) = 1, (21)
and
py = g (22)
implies
Vv € B”, (9") (1) # @ => IA € B", (T 0 &) () = pu. (23)

Proof. (20)=(21). For\ € B" arbitrary we suppose that®*)~'(u) # @ and let
p € (@*)~1(u) be arbitrary too. Ag/ € ug = ug,, somev € B exists withy' = ¥ (u).
We have(®* o U¥) () = &> (/) = p, thus (21) is true.

(22)=-(23). Similar. O

Example 25. We continue the example from Remark 23. Indeed) fer(1, 1) we have in
Figure 8 that®~'(0,1) = @. We can take however = (0, 1) giving (®(1)~1(0,1) =
{(0,0), (0,1)}; then forv = (1,1) andv = (1, 0) we have

(@ 0 wtD)(0,1) = 2V (0,0) = (0,1) = &V (0,1) = (2D 0 w0)(0,1).
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Theorem 26. Let the functiongp, ¥, I" : B® — B™. The time-reversal symmetry of
and WV, together with the time-reversal symmetrydoandI" imply ¥ =T.

Proof. We suppose against all reason the contrary, ¥$hat I', meaning the existence of

w € B™ with ¥(pu) # I'(u). We infer the existence of the setsJ C {1,...,n} with the

property that¥ () = p & e, T(n) = p© @D’ andI # J. Without loss of generality,
i€l ieJ

we can suppose the existence of sangel . J. We infer thatu & &' € ug, p & e’ & uft,

and this represents a contradiction with the hypothesis stating@hat He = MF . Ol

6. The Technical Condition of Proper Operation

Remark 27. In the study of the asynchronous circuits, the situation when multiple coordi-
nates of the flow can change at the same time is called a race. The caeslina..., i,

are 'racing’ to see which one can change first. In Figure 1 we havegmted the case of a
flow that has a race irf0, 0) and we have seen that the outcome of the race affected criti-
cally the work of the circuit (including its stability). To avoid the races thatidaccur, ®

is sometimes specified so that only one coordinajeaEn change; such a circuit is called
race-free and we also say thatfulfills the technical condition of proper operation.

Theorem 28. The following statements are equivalent:
a) Vi € B, one of the following properties is true:

() = p, (24)
Jie{l,...,n},®(n) =p@® e (25)

b) Vi € B, one of the following properties is true:
37 \(u) = o, (26)
7 (p) = {u}, (27)
Jie{l,..,n},d p) = {pde}, (28)
Ji € {1,...,n}, @ (u) = {p,p @'}, (29)
Jie{l,.,n},Fje{l,...n}, o Hu) ={poec, pel, (30)
Jie{l,.,n},Fje{l,..n}, o (u) ={p,p@c, pu®el, (31)

Jiy € {1,...,n},....,Fip € {1,...,n}, o (u) = {u®e™, ..., p®e}, (32)
Jiy € {1,....,n}, ..., Fip € {1,...,n}, 0 Y p) = {pp@ e, . up®en}  (33)

Proof. a)=-b) Let us fix an arbitraryu € B™ and we suppose against all reason that
(26),...,(33) are all false. This means the existence of {2,...,n} andiy,...,i, €
{1,...,n} distinct such that ® et @ ... @ e’» € =1 (p). Then®(u @ et @ ... D e%) =
and (24), (25) are both false faf = 1 @ e & ... @ &'», contradiction.

b)=—-a) We suppose against all reason that a) is false. This means the exisfenc
p€ B pe {2, ..,n}tandi,... i, € {1,...,n} distinct such tha® () = pde @...pe'r.
We infer thaty @ et @ ... @ e’r € @ 1(p), i.e. (26),...,(33) are all falseontradiction. [
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(0,1) (0,0) (1,0)

Figure 10. Function that does not fulfill the technical condition of prayperation.

Definition 29. The function® is said to fulfill thetechnical condition of proper operation
if one of the previous properties a), b) holds.

Remark 30. The technical condition of proper operation states that fopallhen—tuples
wand®(u) differ on at most one coordinate.

Example 31. The identitylg~ : B — B" fulfills the technical condition of proper
operation, since alls € B™ are fixed points ofg~.

Example 32. The functions from Figure 5, Figure 7 and Figure 9 a), b) fulfill the technical
condition of proper operation too.

Example 33. The function® from Figure 10 does not fulfill the technical condition of
proper operation, sinc@(1,1) = (0,0).

7. The Dynamics under the Technical Condition of Proper
Operation

Theorem 34. [4] If @ fulfills the technical condition of proper operation afd' (1, k1) =
1/, then one of the following possibilities is true:
a) ¢(y') = p/ andVk > ki,

O (k) = i = B();
b)i € {1,...,n} exists such thab (') = i/ @ ' and either
(i, by +1) =y @ e’ = (i),
or ko > ki + 2 exists with
O (pky +1) = .. = O (p, kg — 1) = 1,
O (ko) = @ " = (i)
Notation 35. We defineb(*) : B» — B"™ k € N byVu € B”,

_ pif k=0,
200 = { gg0 () oo 1
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Theorem 36. If ¢ fulfills the technical condition of proper operation, thén € B™, Vo €
ﬁn, asequence-1 = jp < ji < ... < jx < ... eXists having the property tha € N,

a) (1, ji) = ®*) (n); ~

b) if jet1 — jk > 2, thenVsj € {ji, ji + L, ..., Jiogr — 1}, @%(p, 5) = W) (p).
Proof. We use the induction ok. Let k¥ = 0, for which we havej, = —1 and the
statement a) is true under the fomf (u, —1) = . = ®(©(4). In order to prove b), we use
the hypothesis thab satisfies the technical condition of proper operation and we have two
possibilities.

Cased(u) = p

AsVj > jo, ia(u,j) = pu = ®(u), from Theorem 34 a), we chooge > j, arbitrarily
and the statement b) takes place trivially;jif— jo > 2, thenVj € {jo,jo + 1,...,51 —
1}, 0% (u, 5) = p = 2O (p).

Cased(u) =p@e,ie{l,..,n}

If (1, 0) = p @ e = ®(u), from Theorem 34 b), we takfg = 0 and the statement
b) is trivially true. Otherwisefrom Theorem 34 b), we takg > jo + 2 such that

(1, 0) = ... = D(p, j1 — 1) = p, (34)

D%, 1) = pd e’ = (p).
The statement b) results from (34).
The proof by induction continues, we suppose that the statements of tbeehinare
true fork and we prove them fak + 1. O

Remark 37. Theorem 34 gives the meaning of the technical condition of proper tipera

In the situation when we do not know the time instants and the order in whicbdndicate
functions®y, ..., ®,, are computed, what we surely know is tha@ff(u, k1) = 1/, then,
iﬂdependently on the valueg € B™, k > k; + 1, someky > k; + 1 exists such that
D, ko) = (1)

Remark 38. Theorem 36 shows that if the technical condition of proper operation is ful-
filled, then&)a(u, -) behaves like a dynamical system.

8. Time-Reversal Symmetry vs. the Technical Condition
of Proper Operation

Theorem 39. If @ fulfills the technical condition of proper operation and the time-reversal
symmetry ofb, U holds, then? fulfills the technical condition of proper operation.

Proof. We suppose against all reason tlatoes not satisfy the technical condition of
proper operation. Some, p > 2 andiy,...,i, € {1,...,n} distinct exist then such that
U(p) =pde @ ... Sincep® e & ... @ e € puf = pg, somel € B exists
such thatd* (@ € @ ... @ e?) = p and, with the notation/ = p @ e @ ... @ €',
we getd* (i) = i © " @ ... @ '». We have obtained the existence of the Batich
that {1, ....ip} C I C {1,....,n} and®(x') = 1/ & (Pe’, wherecard(I) > 2. This last

icl
assertion represents a contradiction with the requestithaffills the technical condition
of proper operation. m



342 Serban E. Vlad

(0.1)

(1,0)

Figure 11. Functiord that fulfills the technical condition of proper operation; the time-
reversal symmetry o and¥ holds for no function?.

Remark 40. Functions® exist that fulfill the technical condition of proper operation and
the time-reversal symmetry @& and ¥ holds for no function?, see Figure 11. A conse-
guence of this remark is that, in order to study the time-reversal symmietigr the tech-
nical condition of proper operation, stronger requests than the fulfillnoérihe technical
condition of proper operation are necessary.

Notation 41. We denote, fop € B"”, with Ag (1), the disjunction of the following four
properties:

d(p) = o, (35)

o (n) = {n}, (36)
Jie{l,...,n}, o Y p) = {p®e}, (37)
Jie{l,..,n}, o (u) = {u, p®e}, (38)

coinciding with (26),...,(29).

Remark 42. If Vi € B”, we haveAg (1), then® fulfills the technical condition of proper
operation, see Theorem 28 and Definition 29.

Theorem 43. We suppose that for all € B™, Ag (1) holds. Thervy € B,
a) @fl(u) = o implies thaty is a source,uy = {u} andJi € {1,...,n},u} =
{w,p®e'y;
b) @1 (n) = {u} implies thaty is an isolated fixed poingg = {u} andug = {u};
c)Ji € {1,...,n}, & (u) = {u @ '} implies thatu is a transient pointug, =
{mp@e'yanddj e {1,..,n}, ug = {p,p o el }; .
d)JFi € {1,...,n}, @ (n) = {p, p & '} implies thaty is a sink,ug = {p, p ® '}
andpug = {u}.

Proof. We fix an arbitraryu, € B™.

a) We suppose against all reason thgt# {u}, i.e. someu’ # p andA € B™ exist
such thatb* (/) = p. As @ fuffills the technical condition of proper operation, we have
the following cases.
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Cased (1) = p/
In this casevA € B", we haved* (i) = i/ # u, contradiction with the supposition
thaty' € ug.

Casedi € {1,..,n},®(i/) = /' P &

For an arbitrary € B", we get the next possibilities. N; = 0, then®* (/) = 1/ # p,
contradiction. And if\; = 1, then®(y/) = ® /) = ' ® &' # p, contradiction with the
supposition thap’ € g (if we would havey’ & &' = yu, theny/ € ®~1(u), representing
another contradiction, with the hypothedis! () = 2).

We have proved that, = {u}.

In order to show the second statement, we know that two possibilities exist tti@wm
fact that® fulfills the technical condition of proper operation: eithef.) = p, which is
not the case, since € ®!(u) and then we get a contradiction with the supposition that
o 1(u) =2, 0rdi € {1,....,n},®(u) = p & e, which proves thap = {u, u & '}

b) Like at a), let us suppose against all reason fljat# {u}, meaning thap' # p
and)\ € B" exist such tha®*(,) = u. Since® fulfills the technical condition of proper
operation, we get the following possibilities.

Cased(u') = p/

For any\ € B™, ®*(u/) = 11/ # p and this contradicts the supposition thate 1.

Casedi € {1,...,n},®(y) = ' © &

Let A € B arbitrary. If\; = 0, then®*(y/) = 1’ # p, contradiction with the request
p € pg. If A; = 1, when®(y') = ®* (/) = i/ @ &' # u, we obtain a contradiction with
the supposition that’ € ug (if 1/ @&’ = p, theny’ € ®~1(1), representing a contradiction
with the hypothesi® ! (1) = {u}).

The conclusion is thgig, = {u}.

The fact thatuf = {®*(u)|A € B"} = {u} is obvious, as far a®(u) = u implies
VYA € B, & pu) = p.

c) Itis obvious thaf, u @ &' € e - We suppose against all reason that p,, exists,
W & {p,p @ e}, implying the existence oh € B™ with ®*(y/) = p. The following
possibilities are a consequence of the fact thdulfills the technical condition of proper
operation.

Cased(y/) = p/

Thenv\ € B, ®(i/) = ®(i') = i’ # p, contradiction with the supposition’ €
M- ‘
Casedj € {1,..,n},®(y) =p/ @&’

If A\; = 0, then®*(y') = i # p, contradiction with the suppositign € p15.

If \; = 1, then®(y') = () = p/ @ &. The supposition that’ @ ¢/ = p implies
p € & 1(u) = {u®e'}, contradiction with the request ¢ {u, u®e’}y. Andif 1/ ©e? # p,
then a contradiction with the requegste p, follows.

We have obtained thaty = {u, u @ £'}.

The satisfaction of the technical condition of proper operation givesakkeaases.

Case®(u) = p

This is impossible, since it impligs € ®~1(u) = {u @ *}.

Casedj € {1,...,n}, ®(u) = p® &’

We infer thatug = {u, u @ €’} holds indeed.
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d) Like at c), the fact thaf, u @ & € itg IS Obvious. Let us suppose against all
reason thay/ € pug exists, i/ ¢ {u,pu @ '}, meaning the existence of € B" with
dMu') = p. But @ fulfills the technical condition of proper operation, wherefrom we
obtain the following cases.

Case®(p') = 1/

We infervA € B", (i) = ®(i/) = i’ # p, contradiction with our demang’ ¢
- v
Casedj € {1,...,n},®(y/)) = ' © &
If A\; = 0, then®*(x/') = i/ # u, giving a contradiction with the requegt € pg.
If \; = 1, then®(y/) = @) = ¢/ @ &’. In case tha/ ® &/ = p we infer
W € @ () = {p, n @ '}, contradiction with the hypothesjg ¢ {u, @ €'}. And in
case that/ @ e/ # y, a contradiction occurs with the requeste 5.

We have proved thaty = {p, u @ e'}.

As p € @7 1(p), we get®(u) = pandug = {u} holds, like at b). O

Theorem 44. We suppose thaty, € B”, we haveAg () and we definel : B” — B"
byvu € B,

o if (I)_l(:u) =2,
_ p, if @ () = {p},
i) = pdet if 3ie{l,...,n}, o (u) = {ude}, (39)
poe, ifdie{l,..,n}, @ N u) = {p,p@e}.

Then
a) the time-reversal symmetry éfand ¥ holds;
b) for anyu € B”, Ay(u) is true.

Proof. We fix an arbitrary, € B™.
a) We have four possibilities. When treating them, we use Theorem 43
Case i)u is a source fob, whenW (u) = p, ®~1(p) = @,

py = {1} = ny,

Fi € {1,....n},uy ={p,ude'}

and we proveug, = {u, pu @ &'}

{p, p @ e} C pg. Inthis case € {1,...,n} exists with®(u) = p @ &' and, because
pe d Hude'), we have thatl (1 & ') = p. It has resulted that, u & &' € pg.

pg C {u, @'}, We suppose against all reason thate g, exists,u’ # p, i’ #
u @ e, in other words:” € B™ andv € B™ exist such thav (/) = p” and¥” (/) = p.
The situationy’ = p” is impossible, as far as it implies the contradictigh= ¥ (u') =
U (') = p, thusy’ # u”. From the definition ofl, see (39), we get the existence of
j € {1,..,n} with u” = p/ @ &7, resulting further that eithe®~!(y/) = {u' @ &'}
or ®1(y) = {i, 1 @&’} holds. We have(¥”(i/)|v € B} = {/,1/ ® &'} and
pe W oell.

But i = p’ is impossible, from the way that we have chogéand the only possibility
becomes: = 1/ @ 7.
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Cased ' (1) = {y/ @&’} ie. o (poel) = {u}

We infer®(u) = u®e/ = u@et,j =iandy’ = p @ &, contradiction.

Cased™'(i) = {y/, 1/ @&’} ie. @ (ndel) = {poe, pu}

Once again the fact tha(u) = p @ e/ = @ &' impliesj = i andy’ = p @ &,
representing a contradiction.

It has resulted that suchyd does not exist.

Case ii)u is an isolated fixed point 6b, whenW (u) = p, @1 (n) = {u},

py = {u} = py,

pg = {1}

and we proveuy, = {u}.

{u} C py- Obvious.

py C {1}. We suppose against all reason that the inclusion does not take platst and
u' # pwith the property that” € B™ andv € B™ exist with¥ (p/) = p” and¥”(1') = p.

The situationy’ = 1 gives the contradictiop’ = ¥ (y') = ¥ (u') = u, therefore
u#

From the way that was defined in (39) somge {1,...,n} exists withy” = 1/ @ &/
and we have that eith@! (/) = {¢/ ®@ 7} or @1 (/) = {i/, i’ © &7} is true. We infer
{O(W)|v € B"} = {p/, 0/ @ e?} andp € {1/, 1’ @ &7}, where the only possibility is
p=p ®el.

Cased' (1) = {y/ @'} ie. d (poe) = {u}

This implies the contradictiof® (1) = p @ €.

Cased ' (p/) = {y/, /@&l ied Y ude)={pdd,u}

Once againb(u) = i @ &7 represents a contradiction.

The conclusion is that suchyd does not exist.

Case iii) 1 is a transient point ofb, somei € {1,...,n} exists such that(u) =

poe, o (u) = {poel,
pg = {mp®e} = pg,

Jj e {L,...n},uy ={p,pee}

and we show thaty, = {u, p e’}

{p,p ® e’} C pg. Sincej € {1,...,n} exists such tha®(u) = u @ &/, we get
U(pdel) = pthusp, p® el € py,.

pg C {u, @ e’} Let us suppose against all reason that sy, exists, having the
property thaty’ # p andy’ # @ 7. Theny” € B™ andv € B™ exist with W (i) = p”
and ¥ (u/) = p. Like before, the situatiop’ = p” is impossible, because it implies
w =) =9"(u) = p, thereforeu' # p”.

From the definition (39) o we get the existence &f< {1,...,n} with p// = u/ © ",
resulting furthermore that one 6f1(;/) = {i/ @ e*}, @~ 1(1/) = {i/, i @ ¥} is true.
On the other hand¥ (1/)|v € B"} = {p/, 1/ © ¥} andp € {u/, i/ © ¥} Butpu = 1/ is
impossible, thug = 1/ @ €*.

Cased '(4/) = {4 @ e*},ie. o7 (p @ e*) = {u}

In this caseb(u) = p @ ¥ = p @ el k = j andp = ' @ &7, contradiction.
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Cased ! (1) = {y/, 1/ ® "}, ie. @ W (p®eh) = {p@eh, u}
The fact thatb(u) = @ ¥ = @ ¢/ impliesk = j andy = i/ @ &7, contradiction.
We have obtained that suchuadoes not exist.
Case iv)u is a sink for®, somei € {1, ...,n} exists such thab (u) = p®e’, & 1(u) =
{w,p®el}, ,
pg = {pmpde't = pg,

ne = {n}

and we prove that,, = {u}.

{u} C py. Obvious.

py C {un}. We suppose against all reason thak 1y, exists,u’ # p, in other words
u” € B" andv € B™ exist such thatt (1/) = p” and¥” (1) = u. The situationy’ = p”
cannot take place, because it implies the contradigtion V(') = U (i) = p. As ' #
u” and taking into account (39), we obtain the existengg®f{1, ...,n} with " = y/®e’.
This fact shows us furthermore that onefof! (1) = {i/®e?}, @1 (1/) = {i/, ' ®eT} is
true. As{U”(u/)|lv € B"} = {i/, i’ ®<’} thus we have: € {i/, i’ ©<’}, and because the
hypothesis has excluded the case: 1/, we infer thaty = 1/ @ €7 is the only possibility.

Cased™'(i) = {y/ @'}, ie. @ (pwel) = {u}

The contradiction: @ e/ = ®(u) = u results.

Cased™'(i) = {u/, )/ @'}, ie. @ (ndel) = {poe, pu}

We inferu @ e/ = ®(u) = u, representing a contradiction.

The conclusion is that such.é does not exist.

In all the Cases i),...,iv) we proved thaf, = ug,, ud = pg hold, thus the time-reversal
symmetry of® and V¥ results

b) At Case i) we hav@ —1(u) = {u, u @ &'}, see (38); at Case ii) we have ! () =
{u}, see (36); at Case iii) we havie ! (1) = {u @ &7}, see (37); and at Case iv) we have
U~!(u) = @, see (35). The conclusion is thAty (u) is true. O

Theorem 45. The following properties are equivalent:

a) @ fulfills the technical condition of proper operation afidexists such that the time-
reversal symmetry ab and ¥ is true;

b)Vu € B", Ag (1) holds.

Proof. a)=—-b) We suppose against all reason that B" exists such thaf\3 (1) is false.
This means, sinc@ fulfills the technical condition of proper operation, the existence of
i, €{1,...,n}with u®e?, u@e? € d~1(u), see Theorem 28, where (26),...,(29) are false
and one of (30),...,(33) is true. We denote withthe unique function such that the time-
reversal symmetry b and¥ holds (Theorem 26) and we hanese’, u@®e’, pde’ @l €

He = M$ (this is the structure of linear variety f},, see Theorem 11) thug fulfills

U(p) = p® Pe*, whereI ¢ {1,...,n} andi,j € I. ¥ does not fulfill the technical

kel
condition of proper operation, contradiction with Theorem 39.

b)—>-a) From b) we get thad fulfills the technical condition of proper operation, and
Theorem 44 shows how can be defined such that the time-reversal symmetsy and ¥
holds. O
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(0,0) (0,1) (1,1) (1,0)

Figure 12. The function? such that the time-reversal symmetry of the functiofirom
Figure 5 andV holds.

Example 46. The identitylg. : B — B" fulfills Vi € B", Ay, (1).
Example 47. In Figure 5 we have a functiof® that fulfillsVu € B™, Ag(p) :
®1(0,0) = @, see (35),
®1(0,1) = {(0,0)}, see (37),
®1(1,1) = {(0,1),(1,1)}, see (38),
®1(1,0) = {(1,0)}, see (36).
The function¥ is defined by (39):
v(0,0) = (0,0), see (35),
v(0,1) = (0,0), see (37),
U(1,0) = (1,0), see (36),
¥(1,1) = (0,1), see (38)
and its state portrait is drawn in Figure 12. The time-reversal symmetdy afid ¥ holds.

)

i

Example 48. To be noticed that the functionB, ¥ from Figure 9 a), b) fulfillvVy <
B", Ag(p) and Vu € B™, Ay(u), for example®=1(0,0) = {(0,1)}, ®7(0,1) =
{(0,0)}, @71(1,1) = @and®~'(1,0) = {(1,0), (1,1)}.

9. Conclusion

Corollary 49. We suppose thai fulfills Vi € B, Ag(r). Then

a) @ fulfills the technical condition of proper operation ah@ € B™, Va € ﬁn, a
sequence-1 = jo < ji < ... < ji < ... exists having the property that € N,

ai) (u, ji) = O (n); _

i) if jry1 — jr > 2, thenvy € {jr, gk + 1, ooy i1 — 1}, @ (p, 5) = ®F)(p).

Let ¥ be defined like at (39).

b) W fulfills V. € B™, Ag(u), it fulfills also the technical condition of proper operation
andVu € B",Va € I, a sequence-1 = Jo < Ji < ... < ji. < ... exists having the
property thatvk € N,

) U (p, ;) = ¥ (n), )

bii) if iy — jj > 2, thenVj € {jg, jj, + 1, o oy — 13, U0 (1, 5) = ¥B) ()

c) we have

Vi € B" Vo € I, Vk € N_, 38 € I, 8P (U™ (1), k), k) = p,

Vi e B" VB € Il,,,Vk € N_, Ja € IL,,, U*(DP (p), k), k) = p.



348 Serban E. Viad

Proof. The fact thatl satisfiesvy, € B”, Ag(p) results from Theorem 449 and &
satisfy the technical condition of proper operation from Remark 42 and the existerce
B",Va € II,, of two sequencesj), (j%) like in the statement of the Corollary results
from Theorem 36.

Theorem 44 shows that the time-reversal symmetr @ind ¥ holds, in other words
the statement c) of the Corollary is true too. O
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