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Abstract

The asynchronous flows are generated by Boolean functionsΦ : {0, 1}n →
{0, 1}n whosecoordinatesΦi, i = 1, n areiterated independently on each other. The
order and the time instants of these iterations are not known. The flows are the models
of the asynchronous circuits from the digital electronics. Time-reversal symmetry is
one of the fundamental symmetries discussed in natural science and our main purpose
is to adapt this concept, by analogy with mechanics, to the asynchronous flows. The
technical condition of proper operation, also known as race-freedom, is a special case
of work in asynchronicity which ’softens’ the non-determinism of the models. We
prove that when it is fulfilled, the flow behaves like a dynamical system. Finally, we
relate the time-reversal symmetry and the fulfillement of the technical condition of
proper operation.

1. Introduction

We denote in the following withB the Boolean algebra with two elements, i.e. the set
{0, 1} endowed with the complement′ ′, the intersection′ · ′, the union′∪′, and the
modulo 2 sum′ ⊕′ .

The asynchronous flows describe the behavior of the digital devices from electronics.
They are generated by Boolean functionsΦ : B

n → B
n that iterate their coordinates

Φ1, ...,Φn independently on each other.
In order to state the problem, let us consider Figure 1 where the state portrait of the

functionΦ : B2 → B
2,

∀(µ1, µ2) ∈ B
2,Φ(µ1, µ2) = (µ1 ∪ µ1 · µ2, µ1 ∪ µ1 · µ2)

wasdrawn. We have underlined the coordinates, so-called excited, or enabled, or unstable,
for whichΦi(µ1, µ2) 6= µi, i = 1, 2. These coordinates are about to change their values, for
example(1, 1) shows thatΦ1(1, 1) = 0; on the other hand the non-underlined coordinates
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Figure 1. Example of state portrait.

Figure 2. A time-reversal symmetry of the functionΦ from Figure 1 and another function
Ψ does not exist.

keep their values, for exampleΦ2(1, 1) = 1. The arrows show the increase of time. Time is
discrete in this paper, and the request is that the sets of the time instants when the coordinate
functionsΦ1,Φ2 are computed are infinite. If the flow is in(0, 0), it can go in three different
directions, since both coordinates are excited, depending on which coordinate changes first:
if Φ1(0, 0) is computed first, the next value of the flow is(1, 0), if Φ2(0, 0) is computed first,
the next value is(0, 1) and if Φ1(0, 0),Φ2(0, 0) are computed at the same time, the next
value is(1, 1). If the flow is in (1, 0), it rests there indefinitely long, sinceΦ(1, 0) = (1, 0).
And if the flow is in(1, 1) or (0, 1), it switches infinitely many times between these points.

Time-reversal symmetry is one of the fundamental symmetries discussed in natural sci-
ence. Consequently, it arises in many physically motivated dynamical systems, in particular
in classical and quantum mechanics. In the case of the asynchronous flows, time reversal
symmetry means the inversion of the arrows in the state portraits. Figure 2 shows that the
functionΦ from Figure 1 is symmetrical with no other functionΨ. The definition ofΨ is
possible in(1, 0) and(0, 0), but in (1, 1) and(0, 1) it is impossible, and we have pointed
this out with the circles surrounding the two points. In fact, two arrows should start from
(1, 1) in Figure 2; if we underline a coordinate, then one arrow exists, and if we underline
two coordinates, then three arrows exist, making the definition ofΨ impossible.

Time-reversal symmetry exists of the functionΦ from Figure 3 a) and the functionΨ
from Figure 3 b). The state portraits ofΦ,Ψ create the impression that the symmetrical
flows run in opposite senses of time.

The concept of time-reversal symmetry is present in literature in the contextof the
(real, usual) dynamical systems and the main purpose of this paper is to adapt it for the
asynchronous flows.
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Figure 3. Time-reversal symmetry exists of the functionΦ from a) and the functionΨ from
b).

The model represented by the asynchronous flows presumes that neither the order of
the iterations ofΦi, i = 1, n, nor the time instants when they happen are known, due
to the uncertainties introduced by technology, temperature variations and voltage supply
variations. These uncertainties make the model be non-deterministic, but in thespecial
case of so-called ’race-freedom’ (when we also say that the technicalcondition of proper
operation is satisfied), it works ’deterministic-like’ in the sense that we do not know exactly
when the transitions from one state to another state happen, but we know that they happen
sometime, see Figure 3 a) and Figure 3 b). The secret of this deterministic-likebehavior
is given by the request that each state has at most one exited coordinate.Relating time-
reversal symmetry to the technical condition of proper operation is treated with attention in
the paper.

The bibliography consists in the survey [1] on the time-reversal symmetry ofthe dy-
namical systems that generated analogies, together with works of ours in asynchronous
flows.

2. Preliminaries

Definition 1. For Φ : Bn −→ B
n andλ ∈ B

n, we define the functionΦλ : Bn −→ B
n by

∀µ ∈ B
n, ∀i ∈ {1, ..., n},

Φλ
i (µ) =

{
µi, if λi = 0,

Φi(µ), if λi = 1.

Definition 2. The sequenceα : {0, 1, 2, ...} −→ B
n, whose terms are denoted in gen-

eral with αk (instead ofα(k)), is calledprogressiveif ∀i ∈ {1, ..., n}, the set{k|k ∈
{0, 1, 2, ...}, αk

i = 1} is infinite. The set of the progressive sequences is denoted byΠ̂n.

Definition 3. The (asynchronous) flow Φ̂α(µ, ·) : {−1, 0, 1, ...} −→ B
n is defined by

∀k ≥ −1,

Φ̂α(µ, k) =

{
µ, if k = −1,

Φαk

(Φ̂α(µ, k − 1)), if k ≥ 0.

Φ is called thegenerator function, andµ is called theinitial (value of the) state.

Remark 4. Here are the explanations related with the previous definitions. UnlikeΦ that
is computed on all its coordinates (at the same time),Φλ is computed on these coordinates
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only whereλi = 1. Φ̂α(µ, ·) represents the evolution of a state function starting fromµ, that
is given by the iterations ofΦi, made independently on each other, at time instants and in an
order indicated by the terms ofα. The fact thatα is progressive shows that any coordinatei
is computed infinitely many times. And the fact that the processes that are modelled by these
flows are influenced by unspecified parameters (such as technology,temperature, voltage
supply) included indirectly in the model byα, is handled under the form: we are interested
in special classes of functionsΦ so that we can study the properties ofΦ̂α(µ, ·) that hold
for all µ ∈ B

n and allα ∈ Π̂n.

Notation 5. We denote byεi ∈ B
n the tupleεi = (0, ..., 1

i
, ..., 0), i ∈ {1, ..., n}.

Remark 6. Bn is a linear space over the fieldB; the sum of the vectors is made coordi-
natewise∀µ ∈ B

n, ∀µ′ ∈ B
n,

(µ1, ..., µn)⊕ (µ′

1, ..., µ
′

n) = (µ1 ⊕ µ′

1, ..., µn ⊕ µ′

n)

and the multiplication with scalars fromB is made coordinatewise too.εi are the vectors
of the canonical basis ofBn. Note that the sumµ ⊕ µ′ shows which are the coordinates
of µ, µ′ that differ (µi ⊕ µ′

i = 1) and which are the coordinates ofµ, µ′ that are equal
(µi ⊕ µ′

i = 0).

3. Predecessors and Successors

Definition 7. LetΦ : Bn −→ B
n andµ ∈ B

n. Thenµ′ ∈ B
n is called apredecessorof µ

(via Φ) if λ ∈ B
n exists such thatΦλ(µ′) = µ. The set of the predecessors ofµ is denoted

with µ−, thus
µ− = {µ′|µ′ ∈ B

n, ∃λ ∈ B
n,Φλ(µ′) = µ}.

Definition 8. The pointµ′ ∈ B
n is called asuccessorof µ (via Φ) if λ ∈ B

n exists such
thatΦλ(µ) = µ′. The set of the successors ofµ is denoted byµ+, in other words

µ+ = {µ′|µ′ ∈ B
n, ∃λ ∈ B

n,Φλ(µ) = µ′}.

Remark 9. For anyΦ andµ, µ− is non-empty, sinceµ ∈ µ− (we haveΦ(0,...,0)(µ) = µ).
Obviously,µ ∈ µ+ andµ+ is non-empty too.

Example 10. In Figure 4, we have(1, 1, 1)− = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} and
(1, 1, 1)+ = {(1, 1, 0), (0, 1, 1), (0, 1, 0), (1, 1, 1)}.

Theorem 11. Letµ ∈ B
n. The statements

Φ(µ) = µ, (1)

µ+ = {µ} (2)

are equivalent; for anyp ∈ {1, ..., n} and i1 ∈ {1, ..., n}, ..., ip ∈ {1, ..., n} distinct, the
statements

Φ(µ) = µ⊕ εi1 ⊕ ...⊕ εip , (3)

µ+ = {µ⊕ λi1 · ε
i1 ⊕ ...⊕ λip · ε

ip |λ ∈ B
n} (4)

are also equivalent.
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Figure 4. (1, 1, 1)− = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} and (1, 1, 1)+ =
{(1, 1, 0), (0, 1, 1), (0, 1, 0), (1, 1, 1)}.

Proof. (1)=⇒(2) Since∀λ ∈ B
n,Φλ(µ) = µ, we getµ+ = {Φλ(µ)|λ ∈ B

n} = {µ}.
(2)=⇒(1) If {Φλ(µ)|λ ∈ B

n} = {µ}, then forλ = (1, ..., 1) ∈ B
n we inferΦλ(µ) =

µ = Φ(µ).
(3)=⇒(4) Let p ∈ {1, ..., n} and i1 ∈ {1, ..., n}, ..., ip ∈ {1, ..., n} distinct. We

compute the values ofΦλ
i (µ), wherei ∈ {1, ..., n}, λ ∈ B

n; we obtain:

Φλ
i (µ) =





µi, if λi = 0,
µi, if λi = 1, i /∈ {i1, ..., ip},

µi ⊕ 1, if λi = 1, i ∈ {i1, ..., ip},

thus
Φλ(µ) = µ⊕ λi1 · ε

i1 ⊕ ...⊕ λip · ε
ip .

We infer

µ+ = {Φλ(µ)|λ ∈ B
n} = {µ⊕ λi1 · ε

i1 ⊕ ...⊕ λip · ε
ip |λ ∈ B

n}.

(4)=⇒(3) We suppose against all reason that (3) is false and we have two possibilities.
Casej ∈ {1, ..., n}r {i1, ..., ip} exists withΦj(µ) = µj ⊕ 1
Thenµ⊕εj ∈ {Φλ(µ)|λ ∈ B

n}r{µ⊕λi1 ·ε
i1 ⊕ ...⊕λip ·ε

ip |λ ∈ B
n}, contradiction

with (4).
Casej ∈ {i1, ..., ip} exists withΦj(µ) = µj

In this situationµ⊕ εj ∈ {µ⊕ λi1 · ε
i1 ⊕ ...⊕ λip · ε

ip |λ ∈ B
n}r {Φλ(µ)|λ ∈ B

n},
contradiction with (4) again.

(3) is proved.

Remark 12. For any functionΦ and anyµ ∈ B
n, Theorem 11 shows that the setµ+ is a

linear variety (an affine space).

Definition 13. A pointµ ∈ B
n is called:

a) isolated fixed point, if µ− = {µ}, µ+ = {µ};
b) source, if µ− = {µ}, µ+ 6= {µ};
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Figure 5. Example of predecessors and successors.

c) sink, if µ− 6= {µ}, µ+ = {µ};
d) transient point, if µ− 6= {µ}, µ+ 6= {µ}.

Remark 14. For a functionΦ, any pointµ is in one of the previous situations a),...,d).

Example 15. In Figure 5,(0, 0) is source:(0, 0)− = {(0, 0)}, (0, 0)+ = {(0, 0), (0, 1)};
(0, 1) is transient: (0, 1)− = {(0, 0), (0, 1)}, (0, 1)+ = {(0, 1), (1, 1)}; (1, 1) is sink:
(1, 1)− = {(0, 1), (1, 1)}, (1, 1)+ = {(1, 1)}; and (1, 0) is an isolated fixed point:
(1, 0)− = (1, 0)+ = {(1, 0)}.

Remark 16. Previously, the functionΦ was unique and it was kept in mind while using the
notationsµ−, µ+. When several functionsΦ,Ψ, ... will occur and we shall need to specify
to which function we refer, the notations will beµ−

Φ , µ
+
Ψ, ...

4. Definition of Time-Reversal Symmetry

Theorem 17. LetΦ,Ψ : Bn −→ B
n. The conjunction of the statements

µ−

Φ = µ+
Ψ, (5)

µ−

Ψ = µ+
Φ (6)

whereµ ∈ B
n is equivalent to the conjunction of the statements

∀ν ∈ B
n, ∃λ ∈ B

n, (Φλ ◦Ψν)(µ) = µ, (7)

∀λ ∈ B
n, ∃ν ∈ B

n, (Ψν ◦ Φλ)(µ) = µ (8)

whereµ ∈ B
n and it is also equivalent to the conjunction of the statements

∀α ∈ Π̂n, ∀k ∈ N , ∃β ∈ Π̂n, Φ̂
β(Ψ̂α(µ, k), k) = µ, (9)

∀β ∈ Π̂n, ∀k ∈ N , ∃α ∈ Π̂n, Ψ̂
α(Φ̂β(µ, k), k) = µ (10)

whereµ ∈ B
n.

Proof. In order to prove that((5) and(6)) is equivalent to((7) and(8)) for anyµ ∈ B
n,

we fix an arbitrary suchµ. Here is the proof of this equivalence.
(5)=⇒(7). Let ν ∈ B

n andΨν(µ) = µ′ ∈ µ+
Ψ. As µ′ ∈ µ−

Φ , λ ∈ B
n exists with

Φλ(µ′) = µ, thus (7) holds.
(6)=⇒(8). Forλ ∈ B

n we haveΦλ(µ) = µ′ ∈ µ+
Φ . As µ′ ∈ µ−

Ψ, someν ∈ B
n exists

with Ψν(µ′) = µ, showing the truth of (8).
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(8)=⇒ µ−

Φ ⊂ µ+
Ψ. Let an arbitraryµ′ ∈ µ−

Φ ; thenλ ∈ B
n exists such thatΦλ(µ′) = µ.

From (8) we have the existence ofν ∈ B
n with (Ψν ◦ Φλ)(µ′) = µ′ = Ψν(µ), thus

µ′ ∈ µ+
Ψ.

(7)=⇒ µ+
Ψ ⊂ µ−

Φ . We take an arbitraryµ′ ∈ µ+
Ψ, for which ν ∈ B

n exists with
µ′ = Ψν(µ). The relation (7) shows the existence ofλ ∈ B

n for which (Φλ ◦ Ψν)(µ) =
µ = Φλ(µ′), meaning thatµ′ ∈ µ−

Φ .
(7)=⇒ µ−

Ψ ⊂ µ+
Φ . For an arbitraryµ′ ∈ µ−

Ψ, someν ∈ B
n exists withΨν(µ′) = µ.

The relation (7) shows the existence ofλ ∈ B
n with (Φλ ◦ Ψν)(µ′) = µ′ = Φλ(µ), thus

µ′ ∈ µ+
Φ .

(8)=⇒ µ+
Φ ⊂ µ−

Ψ. Letµ′ ∈ µ+
Φ arbitrary, thusλ ∈ B

n exists withµ′ = Φλ(µ). From (8)
we have the existence ofν ∈ B

n such that(Ψν ◦ Φλ)(µ) = µ = Ψν(µ′), giving µ′ ∈ µ−

Ψ.
We prove now that∀µ ∈ B

n,(7)=⇒ ∀µ ∈ B
n,(9) and we rewrite for this the hypothesis

with the bounded variables slightly modified:∀µ′ ∈ B
n,

∀ν ∈ B
n, ∃λ ∈ B

n, (Φλ ◦Ψν)(µ′) = µ′. (11)

Let in (9) µ ∈ B
n, α ∈ Π̂n and k ∈ N arbitrary and fixed. We have the following

possibilities.
Casek = −1
We see that

Φ̂β(Ψ̂α(µ,−1),−1) = Ψ̂α(µ,−1) = µ

is true forβ ∈ Π̂n arbitrary.
Casek = 0
(11) written forν = α0, λ = β0, µ′ = µ gives

(Φβ0

◦Ψα0

)(µ) = µ, (12)

Φ̂β(Ψ̂α(µ, 0), 0) = (Φβ0

◦Ψα0

)(µ)
(12)
= µ.

In this caseβ1, β2, ... ∈ B
n are arbitrary such thatβ ∈ Π̂n.

Casek = 1
(11) written forν = α1, λ = β0, µ′ = Ψα0

(µ) gives

(Φβ0

◦Ψα1

)(Ψα0

(µ)) = Ψα0

(µ) (13)

and (11) written forν = α0, λ = β1, µ′ = µ gives

(Φβ1

◦Ψα0

)(µ) = µ. (14)

We conclude that

Φ̂β(Ψ̂α(µ, 1), 1) = (Φβ1

◦ Φβ0

◦Ψα1

◦Ψα0

)(µ)

= (Φβ1

◦ (Φβ0

◦Ψα1

))(Ψα0

(µ)) = Φβ1

((Φβ0

◦Ψα1

)(Ψα0

(µ)))

(13)
= Φβ1

(Ψα0

(µ)) = (Φβ1

◦Ψα0

)(µ)
(14)
= µ.

In this case we can takeβ2, β3, ... ∈ B
n arbitrarily such thatβ ∈ Π̂n.
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...
Casek
(11) written forν = αk, λ = β0, µ′ = Ψαk−1

◦ ... ◦Ψα0

(µ) gives

(Φβ0

◦Ψαk

)(Ψαk−1

◦ ... ◦Ψα0

(µ)) = Ψαk−1

◦ ... ◦Ψα0

(µ), (15)

(11) written forν = αk−1, λ = β1, µ′ = Ψαk−2

◦ ... ◦Ψα0

(µ) gives

(Φβ1

◦Ψαk−1

)(Ψαk−2

◦ ... ◦Ψα0

(µ)) = Ψαk−2

◦ ... ◦Ψα0

(µ), (16)

...
(11) written forν = α0, λ = βk, µ′ = µ gives

(Φβk

◦Ψα0

)(µ) = µ. (17)

We infer:

Φ̂β(Ψ̂α(µ, k), k) = (Φβk

◦ Φβk−1

◦ ... ◦ Φβ0

◦Ψαk

◦Ψαk−1

◦ ... ◦Ψα0

)(µ)

= (Φβk

◦ Φβk−1

◦ ... ◦ Φβ1

◦ (Φβ0

◦Ψαk

))(Ψαk−1

◦ ... ◦Ψα0

(µ))

(15)
= (Φβk

◦ Φβk−1

◦ ... ◦ Φβ1

)(Ψαk−1

◦ ... ◦Ψα0

(µ))

= (Φβk

◦ Φβk−1

◦ ... ◦ Φβ2

◦ (Φβ1

◦Ψαk−1

))(Ψαk−2

◦ ... ◦Ψα0

(µ))

(16)
= (Φβk

◦ Φβk−1

◦ ... ◦ Φβ2

)(Ψαk−2

◦ ... ◦Ψα0

(µ)) = ...

... = (Φβk

◦Ψα0

)(µ)
(17)
= µ.

In this case we can takeβk+1, βk+2, ... ∈ B
n arbitrarily such thatβ ∈ Π̂n.

∀µ ∈ B
n,(8)=⇒ ∀µ ∈ B

n,(10) is similar with the proof of∀µ ∈ B
n,(7)=⇒ ∀µ ∈

B
n,(9).

Forµ ∈ B
n arbitrary, (9)=⇒(7) is obvious if we take in (9)k = 0, α0 = ν, β0 = λ and

the implication (10)=⇒(8) with µ ∈ B
n arbitrary also takes place similarly.

Definition 18. If one of the properties

∀µ ∈ B
n, (5) and(6),

∀µ ∈ B
n, (7) and(8),

∀µ ∈ B
n, (9) and(10)

is fulfilled, we say that thetime-reversal symmetryof the functionsΦ andΨ holds.

Example 19. We notice the time-reversal symmetry of1Bn and1Bn , see Figure 6, where
1Bn : Bn −→ B

n is the identity function. Allµ ∈ B
n fulfill µ+ = µ− = {µ}, i.e. they are

isolated fixed points.
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Figure 6. The time-reversal symmetry of1Bn and1Bn .

Figure 7. The time-reversal symmetry ofΦ andΦ.

Figure 8. The time-reversal symmetry of two constant functions.

Example 20. Let the functionΦ from Figure 7. We notice the time-reversal symmetry ofΦ
withΦ, and also the fact that allµ ∈ B

2 are transient in this example:(0, 0)+ = (0, 0)− =
(1, 0)+ = (1, 0)− = {(0, 0), (1, 0)}, (0, 1)+ = (0, 1)− = (1, 1)+ = (1, 1)− = {(0, 1),
(1, 1)}.

Example 21. The functionsΦ,Ψ : B2 −→ B
2 from Figure 8 a), b) are constant:∀µ ∈ B

2,

Φ(µ) = (1, 1),

Ψ(µ) = (0, 0).

Notice the existence of the same arrows at a), b), with different senses however, that show
the meaning of time-reversal symmetry. The situation was the same in the previous two
cases, but less obvious, due to the fact that the symmetrical functions coincided.

Example 22. We see in Figure 9 a), b) the time-reversal symmetry of the functionsΦ,Ψ;
these functions are neither constant, nor equal.
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Figure 9. The time-reversal symmetry of two functions that are neither constant, nor equal.

5. Properties

Remark 23. The time-reversal symmetry ofΦ,Ψ : Bn −→ B
n does not imply the satis-

faction of
∀λ ∈ B

n, ∃ν ∈ B
n, (Φλ ◦Ψν)(µ) = µ (18)

or
∀ν ∈ B

n, ∃λ ∈ B
n, (Ψν ◦ Φλ)(µ) = µ, (19)

to be compared with (7) and (8). For this, we notice that in Figure 8 withΦ at a) andΨ at
b) we have(0, 1)+Ψ = {(0, 0), (0, 1)} and forλ = (1, 1) we get

Φλ((0, 1)+Ψ) = Φ({(0, 0), (0, 1)}) = {(1, 1)} 6= {(0, 1)},

in other words (18) is false. The Theorem that follows shows that these properties take
place under a different form.

Theorem 24. For Φ,Ψ : Bn −→ B
n andµ ∈ B

n,

µ−

Φ = µ+
Ψ (20)

implies
∀λ ∈ B

n, (Φλ)−1(µ) 6= ∅ =⇒ ∃ν ∈ B
n, (Φλ ◦Ψν)(µ) = µ, (21)

and
µ−

Ψ = µ+
Φ (22)

implies
∀ν ∈ B

n, (Ψν)−1(µ) 6= ∅ =⇒ ∃λ ∈ B
n, (Ψν ◦ Φλ)(µ) = µ. (23)

Proof. (20)=⇒(21). Forλ ∈ B
n arbitrary, we suppose that(Φλ)−1(µ) 6= ∅ and let

µ′ ∈ (Φλ)−1(µ) be arbitrary too. Asµ′ ∈ µ−

Φ = µ+
Ψ, someν ∈ B

n exists withµ′ = Ψν(µ).
We have(Φλ ◦Ψν)(µ) = Φλ(µ′) = µ, thus (21) is true.

(22)=⇒(23). Similar.

Example 25. We continue the example from Remark 23. Indeed, forλ = (1, 1) we have in
Figure 8 thatΦ−1(0, 1) = ∅. We can take howeverλ = (0, 1) giving (Φ(0,1))−1(0, 1) =
{(0, 0), (0, 1)}; then forν = (1, 1) andν = (1, 0) we have

(Φ(0,1) ◦Ψ(1,1))(0, 1) = Φ(0,1)(0, 0) = (0, 1) = Φ(0,1)(0, 1) = (Φ(0,1) ◦Ψ(1,0))(0, 1).
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Theorem 26. Let the functionsΦ,Ψ,Γ : Bn −→ B
n. The time-reversal symmetry ofΦ

andΨ, together with the time-reversal symmetry ofΦ andΓ implyΨ = Γ.

Proof. We suppose against all reason the contrary, thatΨ 6= Γ, meaning the existence of
µ ∈ B

n with Ψ(µ) 6= Γ(µ). We infer the existence of the setsI, J ⊂ {1, ..., n} with the
property thatΨ(µ) = µ⊕

⊕

i∈I

εi, Γ(µ) = µ⊕
⊕

i∈J

εi andI 6= J. Without loss of generality,

we can suppose the existence of somei ∈ I r J . We infer thatµ⊕ εi ∈ µ+
Ψ, µ⊕ εi /∈ µ+

Γ ,
and this represents a contradiction with the hypothesis stating thatµ+

Ψ = µ−

Φ = µ+
Γ .

6. The Technical Condition of Proper Operation

Remark 27. In the study of the asynchronous circuits, the situation when multiple coordi-
nates of the flow can change at the same time is called a race. The coordinatesµ1, ..., µn

are ’racing’ to see which one can change first. In Figure 1 we have presented the case of a
flow that has a race in(0, 0) and we have seen that the outcome of the race affected criti-
cally the work of the circuit (including its stability). To avoid the races that could occur,Φ
is sometimes specified so that only one coordinate ofµ can change; such a circuit is called
race-free and we also say thatΦ fulfills the technical condition of proper operation.

Theorem 28. The following statements are equivalent:
a) ∀µ ∈ B

n, one of the following properties is true:

Φ(µ) = µ, (24)

∃i ∈ {1, ..., n},Φ(µ) = µ⊕ εi. (25)

b) ∀µ ∈ B
n, one of the following properties is true:

Φ−1(µ) = ∅, (26)

Φ−1(µ) = {µ}, (27)

∃i ∈ {1, ..., n},Φ−1(µ) = {µ⊕ εi}, (28)

∃i ∈ {1, ..., n},Φ−1(µ) = {µ, µ⊕ εi}, (29)

∃i ∈ {1, ..., n}, ∃j ∈ {1, ..., n},Φ−1(µ) = {µ⊕ εi, µ⊕ εj}, (30)

∃i ∈ {1, ..., n}, ∃j ∈ {1, ..., n},Φ−1(µ) = {µ, µ⊕ εi, µ⊕ εj}, (31)

...

∃i1 ∈ {1, ..., n}, ..., ∃in ∈ {1, ..., n},Φ−1(µ) = {µ⊕ εi1 , ..., µ⊕ εin}, (32)

∃i1 ∈ {1, ..., n}, ..., ∃in ∈ {1, ..., n},Φ−1(µ) = {µ, µ⊕ εi1 , ..., µ⊕ εin} (33)

Proof. a)=⇒b) Let us fix an arbitraryµ ∈ B
n and we suppose against all reason that

(26),...,(33) are all false. This means the existence ofp ∈ {2, ..., n} and i1, ..., ip ∈
{1, ..., n} distinct such thatµ⊕ εi1 ⊕ ...⊕ εip ∈ Φ−1(µ). ThenΦ(µ⊕ εi1 ⊕ ...⊕ εip) = µ
and (24), (25) are both false forµ′ = µ⊕ εi1 ⊕ ...⊕ εip , contradiction.

b)=⇒a) We suppose against all reason that a) is false. This means the existence of
µ ∈ B

n, p ∈ {2, ..., n} andi1, ..., ip ∈ {1, ..., n} distinct such thatΦ(µ) = µ⊕εi1⊕...⊕εip .
We infer thatµ⊕ εi1 ⊕ ...⊕ εip ∈ Φ−1(µ), i.e. (26),...,(33) are all false, contradiction.
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Figure 10. Function that does not fulfill the technical condition of properoperation.

Definition 29. The functionΦ is said to fulfill thetechnical condition of proper operation
if one of the previous properties a), b) holds.

Remark 30. The technical condition of proper operation states that for allµ, then−tuples
µ andΦ(µ) differ on at most one coordinate.

Example 31. The identity1Bn : B
n −→ B

n fulfills the technical condition of proper
operation, since allµ ∈ B

n are fixed points of1Bn .

Example 32. The functions from Figure 5, Figure 7 and Figure 9 a), b) fulfill the technical
condition of proper operation too.

Example 33. The functionΦ from Figure 10 does not fulfill the technical condition of
proper operation, sinceΦ(1, 1) = (0, 0).

7. The Dynamics under the Technical Condition of Proper
Operation

Theorem 34. [4] If Φ fulfills the technical condition of proper operation and̂Φα(µ, k1) =
µ′, then one of the following possibilities is true:

a)Φ(µ′) = µ′ and∀k ≥ k1,

Φ̂α(µ, k) = µ′ = Φ(µ′);

b) i ∈ {1, ..., n} exists such thatΦ(µ′) = µ′ ⊕ εi and either

Φ̂α(µ, k1 + 1) = µ′ ⊕ εi = Φ(µ′),

or k2 ≥ k1 + 2 exists with

Φ̂α(µ, k1 + 1) = ... = Φ̂α(µ, k2 − 1) = µ′,

Φ̂α(µ, k2) = µ′ ⊕ εi = Φ(µ′).

Notation 35. We defineΦ(k) : Bn −→ B
n, k ∈ N by∀µ ∈ B

n,

Φ(k)(µ) =

{
µ, if k = 0,

Φ(Φ(k−1)(µ)), if k ≥ 1.
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Theorem 36. If Φ fulfills the technical condition of proper operation, then∀µ ∈ B
n, ∀α ∈

Π̂n, a sequence−1 = j0 < j1 < ... < jk < ... exists having the property that∀k ∈ N,
a) Φ̂α(µ, jk) = Φ(k)(µ);
b) if jk+1 − jk ≥ 2, then∀j ∈ {jk, jk + 1, ..., jk+1 − 1}, Φ̂α(µ, j) = Φ(k)(µ).

Proof. We use the induction onk. Let k = 0, for which we havej0 = −1 and the
statement a) is true under the form̂Φα(µ,−1) = µ = Φ(0)(µ). In order to prove b), we use
the hypothesis thatΦ satisfies the technical condition of proper operation and we have two
possibilities.

CaseΦ(µ) = µ
As ∀j ≥ j0, Φ̂

α(µ, j) = µ = Φ(µ), from Theorem 34 a), we choosej1 > j0 arbitrarily
and the statement b) takes place trivially: ifj1 − j0 ≥ 2, then∀j ∈ {j0, j0 + 1, ..., j1 −
1}, Φ̂α(µ, j) = µ = Φ(0)(µ).

CaseΦ(µ) = µ⊕ εi, i ∈ {1, ..., n}
If Φ̂α(µ, 0) = µ ⊕ εi = Φ(µ), from Theorem 34 b), we takej1 = 0 and the statement

b) is trivially true. Otherwise, from Theorem 34 b), we takej1 ≥ j0 + 2 such that

Φ̂α(µ, 0) = ... = Φ̂α(µ, j1 − 1) = µ, (34)

Φ̂α(µ, j1) = µ⊕ εi = Φ(µ).

The statement b) results from (34).
The proof by induction continues, we suppose that the statements of the Theorem are

true fork and we prove them fork + 1.

Remark 37. Theorem 34 gives the meaning of the technical condition of proper operation.
In the situation when we do not know the time instants and the order in which the coordinate
functionsΦ1, ...,Φn are computed, what we surely know is that ifΦ̂α(µ, k1) = µ′, then,
independently on the valuesαk ∈ B

n, k ≥ k1 + 1, somek2 ≥ k1 + 1 exists such that
Φ̂α(µ, k2) = Φ(µ′).

Remark 38. Theorem 36 shows that if the technical condition of proper operation is ful-
filled, thenΦ̂α(µ, ·) behaves like a dynamical system.

8. Time-Reversal Symmetry vs. the Technical Condition
of Proper Operation

Theorem 39. If Φ fulfills the technical condition of proper operation and the time-reversal
symmetry ofΦ,Ψ holds, thenΨ fulfills the technical condition of proper operation.

Proof. We suppose against all reason thatΨ does not satisfy the technical condition of
proper operation. Someµ, p ≥ 2 and i1, ..., ip ∈ {1, ..., n} distinct exist then such that
Ψ(µ) = µ ⊕ εi1 ⊕ ... ⊕ εip . Sinceµ ⊕ εi1 ⊕ ... ⊕ εip ∈ µ+

Ψ = µ−

Φ , someλ ∈ B
n exists

such thatΦλ(µ ⊕ εi1 ⊕ ... ⊕ εip) = µ and, with the notationµ′ = µ ⊕ εi1 ⊕ ... ⊕ εip ,
we getΦλ(µ′) = µ′ ⊕ εi1 ⊕ ... ⊕ εip . We have obtained the existence of the setI such
that{i1, ..., ip} ⊂ I ⊂ {1, ..., n} andΦ(µ′) = µ′ ⊕

⊕

i∈I

εi, wherecard(I) ≥ 2. This last

assertion represents a contradiction with the request thatΦ fulfills the technical condition
of proper operation.
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Figure 11. FunctionΦ that fulfills the technical condition of proper operation; the time-
reversal symmetry ofΦ andΨ holds for no functionΨ.

Remark 40. FunctionsΦ exist that fulfill the technical condition of proper operation and
the time-reversal symmetry ofΦ andΨ holds for no functionΨ, see Figure 11. A conse-
quence of this remark is that, in order to study the time-reversal symmetryunder the tech-
nical condition of proper operation, stronger requests than the fulfillmentof the technical
condition of proper operation are necessary.

Notation 41. We denote, forµ ∈ B
n, with ∆Φ(µ), the disjunction of the following four

properties:
Φ−1(µ) = ∅, (35)

Φ−1(µ) = {µ}, (36)

∃i ∈ {1, ..., n},Φ−1(µ) = {µ⊕ εi}, (37)

∃i ∈ {1, ..., n},Φ−1(µ) = {µ, µ⊕ εi}, (38)

coinciding with (26),...,(29).

Remark 42. If ∀µ ∈ B
n, we have∆Φ(µ), thenΦ fulfills the technical condition of proper

operation, see Theorem 28 and Definition 29.

Theorem 43. We suppose that for allµ ∈ B
n, ∆Φ(µ) holds. Then∀µ ∈ B

n,
a) Φ−1(µ) = ∅ implies thatµ is a source,µ−

Φ = {µ} and ∃i ∈ {1, ..., n}, µ+
Φ =

{µ, µ⊕ εi};
b)Φ−1(µ) = {µ} implies thatµ is an isolated fixed point,µ−

Φ = {µ} andµ+
Φ = {µ};

c) ∃i ∈ {1, ..., n},Φ−1(µ) = {µ ⊕ εi} implies thatµ is a transient point,µ−

Φ =
{µ, µ⊕ εi} and∃j ∈ {1, ..., n}, µ+

Φ = {µ, µ⊕ εj};
d) ∃i ∈ {1, ..., n},Φ−1(µ) = {µ, µ ⊕ εi} implies thatµ is a sink,µ−

Φ = {µ, µ ⊕ εi}
andµ+

Φ = {µ}.

Proof. We fix an arbitraryµ ∈ B
n.

a) We suppose against all reason thatµ−

Φ 6= {µ}, i.e. someµ′ 6= µ andλ ∈ B
n exist

such thatΦλ(µ′) = µ. As Φ fulfills the technical condition of proper operation, we have
the following cases.
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CaseΦ(µ′) = µ′

In this case∀λ ∈ B
n, we haveΦλ(µ′) = µ′ 6= µ, contradiction with the supposition

thatµ′ ∈ µ−

Φ .
Case∃i ∈ {1, ..., n},Φ(µ′) = µ′ ⊕ εi

For an arbitraryλ ∈ B
n, we get the next possibilities. Ifλi = 0, thenΦλ(µ′) = µ′ 6= µ,

contradiction. And ifλi = 1, thenΦ(µ′) = Φλ(µ′) = µ′ ⊕ εi 6= µ, contradiction with the
supposition thatµ′ ∈ µ−

Φ (if we would haveµ′ ⊕ εi = µ, thenµ′ ∈ Φ−1(µ), representing
another contradiction, with the hypothesisΦ−1(µ) = ∅).

We have proved thatµ−

Φ = {µ}.
In order to show the second statement, we know that two possibilities exist, fromthe

fact thatΦ fulfills the technical condition of proper operation: eitherΦ(µ) = µ, which is
not the case, sinceµ ∈ Φ−1(µ) and then we get a contradiction with the supposition that
Φ−1(µ) = ∅, or∃i ∈ {1, ..., n},Φ(µ) = µ⊕ εi, which proves thatµ+

Φ = {µ, µ⊕ εi}.
b) Like at a), let us suppose against all reason thatµ−

Φ 6= {µ}, meaning thatµ′ 6= µ
andλ ∈ B

n exist such thatΦλ(µ′) = µ. SinceΦ fulfills the technical condition of proper
operation, we get the following possibilities.

CaseΦ(µ′) = µ′

For anyλ ∈ B
n, Φλ(µ′) = µ′ 6= µ and this contradicts the supposition thatµ′ ∈ µ−

Φ .
Case∃i ∈ {1, ..., n},Φ(µ′) = µ′ ⊕ εi

Let λ ∈ B
n arbitrary. Ifλi = 0, thenΦλ(µ′) = µ′ 6= µ, contradiction with the request

µ′ ∈ µ−

Φ . If λi = 1, whenΦ(µ′) = Φλ(µ′) = µ′ ⊕ εi 6= µ, we obtain a contradiction with
the supposition thatµ′ ∈ µ−

Φ (if µ′⊕εi = µ, thenµ′ ∈ Φ−1(µ), representing a contradiction
with the hypothesisΦ−1(µ) = {µ}).

The conclusion is thatµ−

Φ = {µ}.
The fact thatµ+

Φ = {Φλ(µ)|λ ∈ B
n} = {µ} is obvious, as far asΦ(µ) = µ implies

∀λ ∈ B
n,Φλ(µ) = µ.

c) It is obvious thatµ, µ⊕ εi ∈ µ−

Φ . We suppose against all reason thatµ′ ∈ µ−

Φ exists,
µ′ /∈ {µ, µ ⊕ εi}, implying the existence ofλ ∈ B

n with Φλ(µ′) = µ. The following
possibilities are a consequence of the fact thatΦ fulfills the technical condition of proper
operation.

CaseΦ(µ′) = µ′

Then∀λ ∈ B
n,Φλ(µ′) = Φ(µ′) = µ′ 6= µ, contradiction with the suppositionµ′ ∈

µ−

Φ .
Case∃j ∈ {1, ..., n},Φ(µ′) = µ′ ⊕ εj

If λj = 0, thenΦλ(µ′) = µ′ 6= µ, contradiction with the suppositionµ′ ∈ µ−

Φ .
If λj = 1, thenΦ(µ′) = Φλ(µ′) = µ′ ⊕ εj . The supposition thatµ′ ⊕ εj = µ implies

µ′ ∈ Φ−1(µ) = {µ⊕εi}, contradiction with the requestµ′ /∈ {µ, µ⊕εi}.And if µ′⊕εj 6= µ,
then a contradiction with the requestµ′ ∈ µ−

Φ follows.
We have obtained thatµ−

Φ = {µ, µ⊕ εi}.
The satisfaction of the technical condition of proper operation gives the next cases.
CaseΦ(µ) = µ
This is impossible, since it impliesµ ∈ Φ−1(µ) = {µ⊕ εi}.
Case∃j ∈ {1, ..., n},Φ(µ) = µ⊕ εj

We infer thatµ+
Φ = {µ, µ⊕ εj} holds indeed.
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d) Like at c), the fact thatµ, µ ⊕ εi ∈ µ−

Φ is obvious. Let us suppose against all
reason thatµ′ ∈ µ−

Φ exists,µ′ /∈ {µ, µ ⊕ εi}, meaning the existence ofλ ∈ B
n with

Φλ(µ′) = µ. But Φ fulfills the technical condition of proper operation, wherefrom we
obtain the following cases.

CaseΦ(µ′) = µ′

We infer∀λ ∈ B
n,Φλ(µ′) = Φ(µ′) = µ′ 6= µ, contradiction with our demandµ′ ∈

µ−

Φ .
Case∃j ∈ {1, ..., n},Φ(µ′) = µ′ ⊕ εj

If λj = 0, thenΦλ(µ′) = µ′ 6= µ, giving a contradiction with the requestµ′ ∈ µ−

Φ .
If λj = 1, thenΦ(µ′) = Φλ(µ′) = µ′ ⊕ εj . In case thatµ′ ⊕ εj = µ we infer

µ′ ∈ Φ−1(µ) = {µ, µ ⊕ εi}, contradiction with the hypothesisµ′ /∈ {µ, µ ⊕ εi}. And in
case thatµ′ ⊕ εj 6= µ, a contradiction occurs with the requestµ′ ∈ µ−

Φ .
We have proved thatµ−

Φ = {µ, µ⊕ εi}.
As µ ∈ Φ−1(µ), we getΦ(µ) = µ andµ+

Φ = {µ} holds, like at b).

Theorem 44. We suppose that∀µ ∈ B
n, we have∆Φ(µ) and we defineΨ : Bn −→ B

n

by∀µ ∈ B
n,

Ψ(µ) =





µ, if Φ−1(µ) = ∅,
µ, if Φ−1(µ) = {µ},

µ⊕ εi, if ∃i ∈ {1, ..., n},Φ−1(µ) = {µ⊕ εi},
µ⊕ εi, if ∃i ∈ {1, ..., n},Φ−1(µ) = {µ, µ⊕ εi}.

(39)

Then
a) the time-reversal symmetry ofΦ andΨ holds;
b) for anyµ ∈ B

n, ∆Ψ(u) is true.

Proof. We fix an arbitraryµ ∈ B
n.

a) We have four possibilities. When treating them, we use Theorem 43.
Case i)µ is a source forΦ, whenΨ(µ) = µ,Φ−1(µ) = ∅,

µ−

Φ = {µ} = µ+
Ψ,

∃i ∈ {1, ..., n}, µ+
Φ = {µ, µ⊕ εi}

and we proveµ−

Ψ = {µ, µ⊕ εi}.
{µ, µ ⊕ εi} ⊂ µ−

Ψ. In this casei ∈ {1, ..., n} exists withΦ(µ) = µ ⊕ εi and, because
µ ∈ Φ−1(µ⊕ εi), we have thatΨ(µ⊕ εi) = µ. It has resulted thatµ, µ⊕ εi ∈ µ−

Ψ.
µ−

Ψ ⊂ {µ, µ ⊕ εi}. We suppose against all reason thatµ′ ∈ µ−

Ψ exists,µ′ 6= µ, µ′ 6=
µ⊕ εi, in other wordsµ′′ ∈ B

n andν ∈ B
n exist such thatΨ(µ′) = µ′′ andΨν(µ′) = µ.

The situationµ′ = µ′′ is impossible, as far as it implies the contradictionµ′ = Ψ(µ′) =
Ψν(µ′) = µ, thusµ′ 6= µ′′. From the definition ofΨ, see (39), we get the existence of
j ∈ {1, ..., n} with µ′′ = µ′ ⊕ εj , resulting further that eitherΦ−1(µ′) = {µ′ ⊕ εj}
or Φ−1(µ′) = {µ′, µ′ ⊕ εj} holds. We have{Ψν(µ′)|ν ∈ B

n} = {µ′, µ′ ⊕ εj} and
µ ∈ {µ′, µ′ ⊕ εj}.

But µ = µ′ is impossible, from the way that we have chosenµ′ and the only possibility
becomesµ = µ′ ⊕ εj .
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CaseΦ−1(µ′) = {µ′ ⊕ εj}, i.e. Φ−1(µ⊕ εj) = {µ}
We inferΦ(µ) = µ⊕ εj = µ⊕ εi, j = i andµ′ = µ⊕ εi, contradiction.
CaseΦ−1(µ′) = {µ′, µ′ ⊕ εj}, i.e. Φ−1(µ⊕ εj) = {µ⊕ εj , µ}
Once again the fact thatΦ(µ) = µ ⊕ εj = µ ⊕ εi implies j = i andµ′ = µ ⊕ εi,

representing a contradiction.
It has resulted that such aµ′ does not exist.
Case ii)µ is an isolated fixed point ofΦ, whenΨ(µ) = µ,Φ−1(µ) = {µ},

µ−

Φ = {µ} = µ+
Ψ,

µ+
Φ = {µ}

and we proveµ−

Ψ = {µ}.
{µ} ⊂ µ−

Ψ. Obvious.
µ−

Ψ ⊂ {µ}. We suppose against all reason that the inclusion does not take place andlet
µ′ 6= µ with the property thatµ′′ ∈ B

n andν ∈ B
n exist withΨ(µ′) = µ′′ andΨν(µ′) = µ.

The situationµ′ = µ′′ gives the contradictionµ′ = Ψ(µ′) = Ψν(µ′) = µ, therefore
µ′ 6= µ′′.

From the way thatΨ was defined in (39) somej ∈ {1, ..., n} exists withµ′′ = µ′ ⊕ εj

and we have that eitherΦ−1(µ′) = {µ′ ⊕ εj} or Φ−1(µ′) = {µ′, µ′ ⊕ εj} is true. We infer
{Ψν(µ′)|ν ∈ B

n} = {µ′, µ′ ⊕ εj} andµ ∈ {µ′, µ′ ⊕ εj}, where the only possibility is
µ = µ′ ⊕ εj .

CaseΦ−1(µ′) = {µ′ ⊕ εj}, i.e. Φ−1(µ⊕ εj) = {µ}
This implies the contradictionΦ(µ) = µ⊕ εj .
CaseΦ−1(µ′) = {µ′, µ′ ⊕ εj}, i.e. Φ−1(µ⊕ εj) = {µ⊕ εj , µ}
Once againΦ(µ) = µ⊕ εj represents a contradiction.
The conclusion is that such aµ′ does not exist.
Case iii)µ is a transient point ofΦ, somei ∈ {1, ..., n} exists such thatΨ(µ) =

µ⊕ εi,Φ−1(µ) = {µ⊕ εi},

µ−

Φ = {µ, µ⊕ εi} = µ+
Ψ,

∃j ∈ {1, ..., n}, µ+
Φ = {µ, µ⊕ εj}

and we show thatµ−

Ψ = {µ, µ⊕ εj}.
{µ, µ ⊕ εj} ⊂ µ−

Ψ. Sincej ∈ {1, ..., n} exists such thatΦ(µ) = µ ⊕ εj , we get
Ψ(µ⊕ εj) = µ thusµ, µ⊕ εj ∈ µ−

Ψ.
µ−

Ψ ⊂ {µ, µ ⊕ εj}. Let us suppose against all reason thatµ′ ∈ µ−

Ψ exists, having the
property thatµ′ 6= µ andµ′ 6= µ ⊕ εj . Thenµ′′ ∈ B

n andν ∈ B
n exist withΨ(µ′) = µ′′

andΨν(µ′) = µ. Like before, the situationµ′ = µ′′ is impossible, because it implies
µ′ = Ψ(µ′) = Ψν(µ′) = µ, thereforeµ′ 6= µ′′.

From the definition (39) ofΨ we get the existence ofk ∈ {1, ..., n} with µ′′ = µ′ ⊕ εk,
resulting furthermore that one ofΦ−1(µ′) = {µ′ ⊕ εk}, Φ−1(µ′) = {µ′, µ′ ⊕ εk} is true.
On the other hand{Ψν(µ′)|ν ∈ B

n} = {µ′, µ′ ⊕ εk} andµ ∈ {µ′, µ′ ⊕ εk}. But µ = µ′ is
impossible, thusµ = µ′ ⊕ εk.

CaseΦ−1(µ′) = {µ′ ⊕ εk}, i.e. Φ−1(µ⊕ εk) = {µ}
In this caseΦ(µ) = µ⊕ εk = µ⊕ εj , k = j andµ = µ′ ⊕ εj , contradiction.
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CaseΦ−1(µ′) = {µ′, µ′ ⊕ εk}, i.e. Φ−1(µ⊕ εk) = {µ⊕ εk, µ}
The fact thatΦ(µ) = µ⊕ εk = µ⊕ εj impliesk = j andµ = µ′ ⊕ εj , contradiction.
We have obtained that such aµ′ does not exist.
Case iv)µ is a sink forΦ, somei ∈ {1, ..., n} exists such thatΨ(µ) = µ⊕εi,Φ−1(µ) =

{µ, µ⊕ εi},
µ−

Φ = {µ, µ⊕ εi} = µ+
Ψ,

µ+
Φ = {µ}

and we prove thatµ−

Ψ = {µ}.
{µ} ⊂ µ−

Ψ. Obvious.
µ−

Ψ ⊂ {µ}. We suppose against all reason thatµ′ ∈ µ−

Ψ exists,µ′ 6= µ, in other words
µ′′ ∈ B

n andν ∈ B
n exist such thatΨ(µ′) = µ′′ andΨν(µ′) = µ. The situationµ′ = µ′′

cannot take place, because it implies the contradictionµ′ = Ψ(µ′) = Ψν(µ′) = µ. As µ′ 6=
µ′′ and taking into account (39), we obtain the existence ofj ∈ {1, ..., n} with µ′′ = µ′⊕εj .
This fact shows us furthermore that one ofΦ−1(µ′) = {µ′⊕εj},Φ−1(µ′) = {µ′, µ′⊕εj} is
true. As{Ψν(µ′)|ν ∈ B

n} = {µ′, µ′⊕εj} thus we haveµ ∈ {µ′, µ′⊕εj}, and because the
hypothesis has excluded the caseµ = µ′, we infer thatµ = µ′ ⊕ εj is the only possibility.

CaseΦ−1(µ′) = {µ′ ⊕ εj}, i.e. Φ−1(µ⊕ εj) = {µ}
The contradictionµ⊕ εj = Φ(µ) = µ results.
CaseΦ−1(µ′) = {µ′, µ′ ⊕ εj}, i.e. Φ−1(µ⊕ εj) = {µ⊕ εj , µ}
We inferµ⊕ εj = Φ(µ) = µ, representing a contradiction.
The conclusion is that such aµ′ does not exist.
In all the Cases i),...,iv) we proved thatµ−

Φ = µ+
Ψ, µ

+
Φ = µ−

Ψ hold, thus the time-reversal
symmetry ofΦ andΨ results.

b) At Case i) we haveΨ−1(µ) = {µ, µ ⊕ εi}, see (38); at Case ii) we haveΨ−1(µ) =
{µ}, see (36); at Case iii) we haveΨ−1(µ) = {µ ⊕ εj}, see (37); and at Case iv) we have
Ψ−1(µ) = ∅, see (35). The conclusion is that∆Ψ(u) is true.

Theorem 45. The following properties are equivalent:
a)Φ fulfills the technical condition of proper operation andΨ exists such that the time-

reversal symmetry ofΦ andΨ is true;
b) ∀µ ∈ B

n,∆Φ(µ) holds.

Proof. a)=⇒b) We suppose against all reason thatµ ∈ B
n exists such that∆Φ(µ) is false.

This means, sinceΦ fulfills the technical condition of proper operation, the existence of
i, j ∈ {1, ..., n} with µ⊕εi, µ⊕εj ∈ Φ−1(µ), see Theorem 28, where (26),...,(29) are false
and one of (30),...,(33) is true. We denote withΨ the unique function such that the time-
reversal symmetry ofΦ andΨ holds (Theorem 26) and we haveµ⊕εi, µ⊕εj , µ⊕εi⊕εj ∈
µ−

Φ = µ+
Ψ (this is the structure of linear variety ofµ+

Ψ, see Theorem 11) thusΨ fulfills

Ψ(µ) = µ ⊕
⊕

k∈I

εk, whereI ⊂ {1, ..., n} and i, j ∈ I. Ψ does not fulfill the technical

condition of proper operation, contradiction with Theorem 39.
b)=⇒a) From b) we get thatΦ fulfills the technical condition of proper operation, and

Theorem 44 shows howΨ can be defined such that the time-reversal symmetry ofΦ andΨ
holds.
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Figure 12. The functionΨ such that the time-reversal symmetry of the functionΦ from
Figure 5 andΨ holds.

Example 46. The identity1Bn : Bn −→ B
n fulfills ∀µ ∈ B

n,∆1Bn (µ).

Example 47. In Figure 5 we have a functionΦ that fulfills∀µ ∈ B
n, ∆Φ(µ) :

Φ−1(0, 0) = ∅, see (35),

Φ−1(0, 1) = {(0, 0)}, see (37),

Φ−1(1, 1) = {(0, 1), (1, 1)}, see (38),

Φ−1(1, 0) = {(1, 0)}, see (36).

The functionΨ is defined by (39):

Ψ(0, 0) = (0, 0), see (35),

Ψ(0, 1) = (0, 0), see (37),

Ψ(1, 0) = (1, 0), see (36),

Ψ(1, 1) = (0, 1), see (38)

and its state portrait is drawn in Figure 12. The time-reversal symmetry afΦ andΨ holds.

Example 48. To be noticed that the functionsΦ,Ψ from Figure 9 a), b) fulfill∀µ ∈
B

n,∆Φ(µ) and ∀µ ∈ B
n,∆Ψ(µ), for exampleΦ−1(0, 0) = {(0, 1)}, Φ−1(0, 1) =

{(0, 0)}, Φ−1(1, 1) = ∅ andΦ−1(1, 0) = {(1, 0), (1, 1)}.

9. Conclusion

Corollary 49. We suppose thatΦ fulfills ∀µ ∈ B
n,∆Φ(µ). Then

a) Φ fulfills the technical condition of proper operation and∀µ ∈ B
n, ∀α ∈ Π̂n, a

sequence−1 = j0 < j1 < ... < jk < ... exists having the property that∀k ∈ N,
a.i) Φ̂α(µ, jk) = Φ(k)(µ);
a.ii) if jk+1 − jk ≥ 2, then∀j ∈ {jk, jk + 1, ..., jk+1 − 1}, Φ̂α(µ, j) = Φ(k)(µ).
LetΨ be defined like at (39).
b)Ψ fulfills ∀µ ∈ B

n,∆Ψ(µ), it fulfills also the technical condition of proper operation
and∀µ ∈ B

n, ∀α ∈ Π̂n, a sequence−1 = j′0 < j′1 < ... < j′k < ... exists having the
property that∀k ∈ N,

b.i) Ψ̂α(µ, j′k) = Ψ(k)(µ),

b.ii) if j′k+1 − j′k ≥ 2, then∀j ∈ {j′k, j
′

k + 1, ..., j′k+1 − 1}, Ψ̂α(µ, j) = Ψ(k)(µ);
c) we have

∀µ ∈ B
n, ∀α ∈ Π̂n, ∀k ∈ N , ∃β ∈ Π̂n, Φ̂

β(Ψ̂α(µ), k), k) = µ,

∀µ ∈ B
n, ∀β ∈ Π̂n, ∀k ∈ N , ∃α ∈ Π̂n, Ψ̂

α(Φ̂β(µ), k), k) = µ.
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Proof. The fact thatΨ satisfies∀µ ∈ B
n,∆Ψ(µ) results from Theorem 44.Φ andΨ

satisfy the technical condition of proper operation from Remark 42 and the existence∀µ ∈
B

n, ∀α ∈ Π̂n, of two sequences(jk), (j′k) like in the statement of the Corollary results
from Theorem 36.

Theorem 44 shows that the time-reversal symmetry ofΦ andΨ holds, in other words
the statement c) of the Corollary is true too.
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