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Abstract We write the relations that characterize the simpliest timed automaton, the inertial
delay buffer, in two versions: the non-deterministic and the deterministic one, by making use
of the derivatives of the R® {0,1} functions.

1. Introduction

The published literature in modeling the digital circuits from electrical engineering is
rich and, facing it, the author proposes the next joke: "Hey, friends, what about modeling the
identity? the inertial delay buffer, the device that makes O be associated with 0 and 1 be
associated with 17" We hope that our answer be not considered trivial, aswell asit differs
from certain answers that we have found. Moreover, because we use a certain language, we
wish that our work shows a natural frame, that of the pseudobool ean differential calculus, in
the analysis of the digital circuits.

The paper is organized as follows. First we define the signals and their derivatives.
Then an informal definition of theinertial delay buffer is given, identical with the usual one,
followed by aformal definition, the main result. Eventually, a comparison is made with
literature.

2. Preliminaries
2.1 Definition B ={0,1} isendowed with the order 0 £ 1, the discrete topology and the usual
laws: the complement ' ', the product ' > *, the reunion 'E ', the modulo 2 sum'A | etc.

2.2 Definition The order and the laws from B induce an order and laws on the set of the
R® B functions. We keep the same names and notations.

2.3 Definition The next numbers are defined for the function x: R® B and Al R:

CiLsxD A x(x) =1
XTUAX(X)_%O,eIse
| x(x):}0'$X| A Xx(X)=0
X A il else
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If Aisaninterva of theform (t- d,t),[t- d,t) where d >0 isaparameter and t runsin R,
then the previous relations associate to x respectively R® B functions.

2.4 Definition The non-negative strictly increasing unbounded sequence 0=ty <t; <t, <...

is called timed sequence.

2.5 Definition We call signal or realizable function afunction x: R® B with the properties:
a"t<0,x(t)=0

b) the timed sequence (t ) existssothat " k1 N X the restriction of x at

tkotk+1)"
theinterval [ty,t,+1), iSconstant.

The set of the signalsis noted with S.

2.6 Remark Several timed sequences (t,) are associated with asigna x1 S sothat 2.5 b) be
true. Asaspecia case, if x isthe null function, any timed sequence makes 2.5 b) be true.

2.7 Remark Itiseasily shown that if (t;) isatimed sequence, then for any t'<t, the set
{k|t'<ty <t} isfinite (possibly empty). This property is related with what is called in the
literature 'non-zeno' signals. Our definition 2.5 makes any signal be non-zeno.
2.8 Definition The left limit x(t - 0) and the left derivative Dx(t) of the arbitrary function
x:R® B inthepoint tT R arethe binary numbers defined like this:

$t'<t, Xty = x(t- 0) (the constant function equal with x(t- 0))

Dx(t) = x(t- 0) A x(t) = x(t - 0)>x(t) E x(t - 0)>x(t)
The numbers x(t - 0) xx(t), x(t - 0) xx(t) are called left semi-derivativesin t. When t runsin

R, the previous numbers associate with x respectively R® B functions, having the same
names and notations: the left limit function of x, x(t- O) etc.

2.9 Remark An arbitrary function x: R® B may have or may have not left [imitin somet.
Thesignals xI S haveleft limitinany t and consequently left derivative in any t, but
generally the functions x(t - 0), Dx(t) are not signals.

2.10 Example The signal
i1if tT [02) U[2,3)
=00 o
iU ese
has the timed sequence (t,) = N so that 2.5 b) istrue. Moreover

X(t- 0) z‘:,Lif tT (0U(2,3]
10, else

i1if t1 {0123

% 0, else

By comparing x(t) with Dx(t), we see how the derivative shows the moment when the

function switches (from 0 to 1 or from 1 to 0). In other words, the support of the derivative
coincides with the set of the (lIeft) discontinuity points.

Dx(t) = x(t- 0) A x(t) =

2.11 Remark The way that we have defined the signals, as right continuous functions having
left discontinuities, makes us use left derivatives (the right derivatives being null) and refer to
non-anticipative systems. The dual situation, of the R® B functions that are constant on
intervals of the form (t,4+1,tk] , isthe one of the anticipative systems.
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2.12 Remark We relate the present formalism with the usual computer science terminology
likethis: for xI S and tT R, x(t- 0) isthe'old value' and x(t) isthe'new value of x int.

3. TheInertial Delay Buffer, Informal Aspects

3.1 Theinformal definition of the non-deterministic inertial delay buffer (NIDB). NIDB
isaname given to two distinct things: an electrical device and atimed automaton, its
mathematical model. In this paper we shall refer only to the latter, with the graphical symbol

in the next figure
i 2 e}

where i,0 are signals called input and output.
We define informally the automaton by its behavior and, in order to make a choice, we
suppose that at the time moment t; 2 O the output is null and the input switches from O to 1.

Therea constants 0<d; min £d; max aregiven so that the behavior of o isindicated in the
next table

The switch of o from0to1
o(t)) =0,i(t; - 0) =0,i(x) =1,x1 [ty,1)
th [ty,ty +dp min) o(t) =0 necessarily
tT [ty +dp min.ty +dr max) | O(t) =0 and o(t) =1 are both possible

t>t +d; max o(t) =1 necessarily

thus the next implication is true
oty)%(ty - )% i) £ Uo(t- 0)>0o(t)
Xl [ty,t1+dy max)  t[t1+dr min.t1+dr max]
Thesenseof d; min, dr max iSthat of 'delay’ and 'raise’, fromOto 1, of 0.

There obviously exists adual table of the previous one, corresponding to the 'fall’ of o
from 1 to 0 and characterized by the real constants 0<d ¢ in £d ¢ max - There also exists the

possibility that i changes its value before succeeding to produce a switch of the output; in
intervals where i(t) = o(t) , the automaton remains indefinitely long (the property of stability).
Another possibility of describing the behavior of NIDB is given in the next figure.

it —0)-i{fy)
/9 (0,0) — (1.0)
i(t; —0)-i(t3)

i(t3—0)-1(¢3)

i(ty - 0)-i(tg)

0.1) {1.1)
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The couples (i(t),0(t)) are called the states of the automaton and they will be

understood as points from B2 (not as functions R® BZ).
The left arrow represents the initialization of the automaton. The fact that the initial
stateis (0,0) issimply achoice that does not affect the generality.

t; <t,,t5 represent three values of the temporal variable t. We ask that in the
intervals [t,t,),[t;,t3) thesignalsi,o are constant.

The arrows represent the transitions of the automaton from one state in another state,
at one of the time moments ty,t,,t3 and the conditions i(t; - 0) % (t),i(ty - 0) %(ty),
i(tg- 0)’i(t3) arethe causes that determine these transitions: the raise of the input from O to

1, thefall of the input from 1 to O, respectively no change in the input value that remains 1.
We have not drawn in the figure the dual situations.
The behavior of the automaton is the following.

We suppose that at the timeinstant t; 3 0 we have o(t;) =0 and i(t; - 0)»(t;) =1 and
this can happen for example if we take t; =0 and the automaton isin theinitial state. The
transition (0,0) ® (1,0) isthus necessary at t; and we have the next possibilities:

a) i(ty - 0)%(ty) =1

-if to1 (tg,t; +dp min) thetransition (1L,0) ® (0,0) isnecessary at t,

-if to1 [ty +d; min,t1 +d; max) thetransitions (1L,0) ® (0,0) and (1,0) ® (0,1)
are both possible at t,

-ifat t; +d; nax - O theautomatonisin (1,0), then the transition (1L0) ® (0,1)
isnecessary at ty =t7 +d; max

b) i(tz3- 0):i(tz) =1 (theinput isconstant, iyt 5] =1)

-if t31 [ty,ty +d; yin) theautomatonisin (1,0) necessarily at t3

-if t31 [ty +d; min,ty +dy max) thetransition (LO)® (11) ispossibleat t3

-if at t; +d; nax - O theautomatonisin (1,0), then the transition (L0) ® (1,1)
isnecessary at t3 =t) +d; max

-if ty >t) +d; na theautomatonisin (1,1) necessarily at t3.
The rest of the situations are obtained by duality.

3.2 Remark Thefact that at NIDB the output follows the input with adelay situated
somewhere in the intervals [dy min,dy max], [d £ min,dt max] Showsthat this automaton is

really related with the computation of the identity function on B. Thisfact suggests the next

3.3 Definition The states (0,0), (1,1) are called stable and the states (1,0), (0,1) are called
unstable.

3.4 Remark In astable state, under a constant input, the automaton remains indefinitely long:
"> (I (t) = O(t) and i|[t,t') :I(t)) b O|[t,t'] = O(t)
The automaton does not have this property in an unstable state.

3.5 Remark The existence in the behavior of NIDB of some situations of the type
Di(t;) = Di(t,) =1and Oty to] = o(t;)

- while the input has switched twice in opposite senses, the output has remained constant- isa
property of inertiality. We say that the output filters the fast switches of the input.

4

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

3.6 Remark The existence in the behavior of NIDB of the word possible is a property of non-
determinism. Related to this, we have the next special case

deterministic inertial delay buffer (DIDB).
3.8 Remark A DIDB is characterized only by necessary transitions in the following manner:

i1, if o(t- 0)=0and ify. g, 1) =1
"t3 0,0(t) :¥0, if o(t- 0) =1and if. di,ty =0
fo(t- 0), dse
Itisclear that
"t<d,,o(t)=0

4. The Inertial Delay Buffer, Formal Aspects
4.1 Theorem Let thesignals i,0 and the numbers 0<d; in £d; max, 0<df min £d§ max-

The next statements, written for t 3 0, are equival ent:
a) o(t- 0)x 1i(xX) £o(t- 0)>(t) £o(t- 0)x 1i(x)

X [t- dr max 1) x [t- dr min.t)
o(t- 0)x 1i(x) £o(t- 0)>0(t) £o(t- 0)x 1i(x)
X [t-df maxt) X [t-df min.t)
b) o(t- 0)x 1i(x) Eo(t- 0)x 1i(x) £Do(t) £
X [t- dy max.t) Xl [t-d§ max.t)
£o(t- 0)x 1i(x) Eo(t- 0)x 1i(x)
« [t- dr min.t) X [t-df min.t)

Proof In the Appendix.

4.2 Definition We cal NIDB the couple (i,0) of signalssothat " t <d, yn,0(t) =0 and one
of the conditions 4.1 a), b) is satisfied.

4.3 Theorem Let thesignals i,0 and the numbers d,,d¢ >0. The next statements are

equivalent for t3 0:
a) o(t- 0)>0(t) =o(t- 0)x  Fi(X)

X [t- dp,t)
o(t- 0)>0(t) =o(t- 0)x  1i(X)
Xl [t-dg,t)
b) Do(t) =o(t- 0)x Bi(X)Eo(t- 0)x [i(x)
Xl [t- dp,t) Xl [t-df,t)
c)o(t- 0)x  Fi(x) £ o(t)
Xl [t- dp,t)
oft- 0)x  Li(x)£o(t)
X [t-dg,t)
o(t- 0)x  Li(x)>o(t- 0)x  [i(x) £o(t- 0)>0(t) E ot - 0)>0(t)
X [t- dp,t) Xl [t-dg,t)

5

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com


http://www.fineprint.com

d) o(t- 0)>o(t)x Bi(X)Eo(t- 0)>0(t)x 1i(X)E
Xl [t-dp,t) Xl [t-dg,t)

Eo(t- 0o(t)x Ti(x)Eo(t- O)»ot)x li(x) =1
X [t- dp,t) Xl [t-df,t)

Proof In the Appendix.

4.4 Remark In Theorem 4.3, a), b) repeat 4.1 a), b) in the special case when d; i =
=d; max =dy and d¢ min =d¢ max =d¢ and c) repeats 3.8. Weread 4.3 d): 'itistrue

(exactly) one of the next statements made at thetime instant t:
- 0 switchesfromOto 1ifitwasOandif if;_ g 1) =1istrue

- 0 switchesfrom1toOifitwaslandif ij;. g, ) =0 istrue
-0 isOifitwasOandif if¢. g, ) =1 isnot true
-oislifitwaslandif ift. g t) =0 isnot true.

4.5 Definition We call DIDB the couple (i,0) of signalsso that " t <d,, o(t) =0 and one of
the conditions 4.3 @), b), ), d) is satisfied.

4.6 LemmaFor t3 0, d > 0thefollowing equations are true
1i(x)=i(t- 0)x UDi(x)
Xl [t- d,t) X (t-d,b)
1i(x) =i(t- 0)x  UDI(x)
X [t-d.t) X (t-d,t)
Proof In the right member of the previous equations we have the property of i of being
constant (=continuous) on (t- d,t) in the sense that
"xI (t- d,t),Di(x)=0
thus, by right continuity of i int- d, assignal, weinfer that it is constant on [t - d,t) and a
value that may be chosen in an arbitrarily point of thisinterval isi(t- 0), respectively

i(t- 0).

4.7 Remark We have written equations of the form 4.3 b), see al'so 4.6
Do(t) =o(t- 0)%(t- 0)x UDi(x)E o(t- 0)%(t- 0)x UDi(x)=
Xl (t-d,t) Xl (t-d,t)

=(o(t- 0)Ai(t- 0))x UDi(x)
Xl (t-d,t)
for examplein [3], under the generic name of the equations of the asynchronous automata. In
that context, the Boolean functions to be computed were arbitrary (not the identity, like here).
On the other hand, the strong condition of determinism d, =d¢ =d wasrelaxed by

accepting arange of valuesfor d1 (0,M], that becomes parameter, M being a given
constant and by the demand that the automaton is stable.

5. Comparison with Literature

5.1 Remark We rewrite the defining conditions of NIDB from [1] Definition 2, [2] Definition
4 in the spirit and with the notations of this paper under the form
a) " t<dr min,0(t) =0

6
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b) " t3 0,0(t- 0)>0(t) £ U i(t-0)x pi(x)

t7 [t- dr, max.t- dr min] X [t',t)
"t3 0,0(t- 0)>0(t) £ U i(t-0)x 1i(x)
t7[t- df max.t-df min] X [t',t)
c) "t30,i(t- 0)%(t) £ Ui(t- 0)%(t) E Uo(t'- 0)>o(t')
tT (tt+dr max) t7 [t+dr min.t+dr max]
"t30,i(t- 0)%(t) £ Ui(t-0)%(t") E Uo(t- 0)>o(t")
tl‘[ (t,t+df’max) t'T [t+dflmin,t+dflmax]

We mention that in the case of b) (like in other similar situations from this paper) the fact that
t runsin [0,¥) does not contradict the sense of these implications because, for example, the

‘event' o(t- 0)>0(t) =1 isnot possibleif t <d; iy €tc.

5.2 Theorem 4.1 @) implies5.1 b).
Proof In the Appendix.

5.3 Counterexample showing that 5.1 b) does not imply 4.1 a):
_ iLift3 0
=054
iU ese
"t,0(t)=0

5.1b)istrue but4.1a)isfaseat t=d; ma -

5.4 Counterexample showing that 4.1 &) does not imply 5.1 ¢). For d; min =dy max =
=df min =df max =2 and
. iLif tT [12)
i(t) =]
10, else
"t,0o(t)=0
4.1 a) issatisfied, but for t =2, 5.1 ¢) isfalse:
i(2- 0)%(2) =1and " tT (2,4),i(t- 0)%(t') =0and o(4- 0)>0(4) =0

5.5 Remark Because the couple i,0 from 5.4 agrees with our intuition, as stated in section 3,
the conclusionisthat 5.1 isincorrect. Our opinion isthat in [1], [2] the definition of NIDB is
incorrect.
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Appendix
A.1The proof of Theorem 4.1.
The two left implications of a):
o(t- 0)x 1i(x) Eo(t- 0)>o(t) =1
XT [t' dr’max,t)
o(t- 0)x 1i(x) Eo(t- 0)0(t) =1
X [t-df max.t)
are equivalent with their product, i.e.

1=(o(t- O)E 1i(xX) Eo(t- 0)>o(t))Xo(t- 0O)E 1i(xX) Eo(t- 0)>0(t)) =
A [t- dr max.t) X [t-df max.t)
=o(t- 0)x 1i(xX) Eo(t- 0)>0(t)E o(t- 0)x 1ix) E
X [t-df max.t) Xl [t- dr max 1)
E 1i(x) x 1i(x) Eo(t- 0)>0(t)x lix) E
X [t-dr max,t) X [t-df max.t) X [t- dr max.t)

E o(t- 0)>0(t) E o(t - 0)>0(t) x 1i(x) =
X [t-df max.t)
=((t-0x 1) Eot-0x 1) E 1 x 1 )E
Xl [t-df maxt) Xl [t-dy max.t) X [t-dr max.t) Xl [t-df max.t)
E (o(t - 0)>0(t) E o(t - 0)>0(t)) =
=(ot-0E  1i() ){ot-OE  1ix ){ 1 E 1K )E
Xl [t-df max.t) Xl [t-dr max.t) X [t-dr max.t) Xl [t-df max.t)
E Do(t) =
=(o(t- 0)x  Bi(x) Eo(t-0)x  Fi() )X li(x) E 1i() )E
X [t- dr maxt) X [t-df max.t) X [t-dr max.t) X [t-df max.t)
E Do(t) =
=(o(t- 0)x 1i(x) Eo(t- 0)x 1i(x) )E Do(t)
X [t- dr max.t) Xl [t-d f max.t)
The proof is similar for the other two right implications of a).
A.2 The proof of Theorem 4.3.
a) U b)ywasprovedat4.1andb) U d),c) U d) areproved by direct computation. We
show b) U d).
1=(o(t- 0)>0(t) E o(t- 0)>0()Eo(t- 0)x Li()Eo(t-0)x [i(x))x
Xl [t- dy,t) X [t-dg,t)
Xo(t- 0)>0(t)Eo(t- 0)0(t) E (ot- )E  Ti(x)Xo(t- OE  1i(x))=
Xl [t- dy,t) Xl [t-dg,t)
= (o(t- 0)>0() Eo(t- 0)>0()Eo(t- 0)x Ti(X)Eo(t-0)x 1i(x))x
Xl [t- dp,t) Xl [t-dg,t)

Xo(t- 0)>0(t)Eo(t- 0)>0(t)Eo(t- 0)x Qi(X)Eo(t- 0)x [Li(X)E
Xl [t-dg,t) Xl [t-dp,t)
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E 1% 1i()
Xl [t-dp,t) X [t-df,t)

=o(t- 0o(t)x Fi(X)Eo(t- Oot)x [Fix)x Hi(x)E
Xl [t-dp,t) X [t-dp,t) X [t-df,t)

Eo(t- 0)0(t)x li(x)Eo(t- 0)o(t)x [Ji(x)x [Bi(X)E
Xl [t-df,t) Xl [t-dp,t) X [t-d¢,t)
Eo(t- 0)>0o(t)x  Bi(X)Eo(t- 0)>0(t)x  [i(X)
Xl [t-dp,t) X [t-dg,t)
=o(t- 0)>0(t)x Bi(X)E o(t- O)o(t)x [i(x)E
Xl [t-dp,t) Xl [t-dg,t)

Eo(t- 0)>o(t)x  Bi(X)Eo(t- 0)>0(t)x  [i(X)
Xl [t-dy,t) X [t-dg,t)

A.3 The proof of Theorem 5.2
We show that if 4.1 @) istrue and 5.1 b) isfalse, we get a contradiction. The hypothesis states:
$t3 0,0(t- 0)>o(t) =1and " tT [t- dy max,t- dr minl,i(t-0)x 1i(x)=0
X [t't)

By taking into account 4.1 a) also

) li(x) =landi(t- d; pip-0)=1

Xl [t-dr min,t)
If (ty) isatimed sequence making 2.5 b) truefor i, afinite number of k's existsfor which
t T [t- dr maxt- dr min] and

i(te) =it - 0)=1
and eventually
i(t- dr max) =i(t- dr max - 0) =1

But the semi-derivative o(t - 0)>0(t) must be null at the left of t (the derivative of asignal

may be 1 only in the discrete points of a timed sequence) and the first inequality 4.1 a) from
the left gives the contradiction

o((t- 0)- 0)x 1i(X) =0o(t- 0)%(t- dy max - 0) % li(x) =1£
XT [t' dr’max-o,t- O) XT [t' dr’max,t)
£0=0((t- 0)- 0)»0o(t- 0) =0o(t- 0)>0(t- 0)
(The last statements contain some unproved 'almost obvious facts that belong rather to

mathematical analysis than to this context, but they are easily accepted by the reader, we
hope).
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