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Abstract
The paper presents the differential equations that characterize an asynchronous

automaton and gives their solution x: R® {0} ". Remarks are made on the

connection between the continuous time and the discrete time of the approach. The
continuos and discrete time, linear and branching temporal logics have the semantics
depending on x and their formulas give the properties of the automaton.

1. Preliminaries

1.1 Wenote B, ={0,1} together with the complement ' ' theproduct *>', the
modulo 2 sum ' A" etc, the order 0£ 1 and the discrete topology.
1.2 Thefunction w: R® B, iscalled realizable, if it may be put under the form:

W(t) =W(Zg) >C[z,z) (1) A w(z) ’Clz,2) (1) AL tTR (1)
where the real family {z, |kl N} isstrictly increasing non-negative locally finite
SINLF,i.e. 0=2z5<7 <7, <... and

"a<b,(ab) U{z |kl N} isfinite

aresatisfied and €[y, 4.,,) : R® By isthe characteristic function of the interval

(2, Zi41) -

1.3 We notewith Real thering of the realizable functions and with Real (" the
linear space { (W (t),..., Wy, (t)) |Wy,...,w,, T Real}.

1.4 For an arbitrary function w(t), theleft limit w(t - 0) and the left derivative

D~ w(t) functions are defined in the following manner: for any t
$t'<t," xI (t',1), w(x) =w(t - 0) (1)
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D™ w(t) =w(t - 0) A w(t) 2
and similar definitions hold for the right duals w(t + 0) and D w(t) .

15I1f wi Real , thenall the previous four functions exist. We shall consider that the
realizable functions are models for the electrical signals of the asynchronous circuits.

2. Delays

2.1 The delays from the asynchronous circuits, occuring on gates and on wires, are
by definition characterized by the next equations:
i) theideal delays

X(€) = f (Ut 1), U (t- 1))>Cpe ) (1) L)
ii) theinertial delays
D x(t) = (x(t- 0)A f(uy(t- 0),...,up(t- 0),t- 0)x
x  UD (U (X),... m(X), X) 2
A (t-1 t)
where |J is the maximum of afunction on aset; uy,...,uy,T Real arethe models of

the input electrical signals; xI Real isthe model of the delayed state (or output)
electrical signal; f : Bg‘ ® B, isthe Boolean function that isimplemented and

f(ul(t),..., Um(t),t) isdefined in the following manner:

(U 0). U (0).8) = F Uy, U () B g (1) 3
t >0 isthe delay parameter.

2.2 The delay parameters t1,...,t ; are not known. They depend (at least) on the

technology, on the temperature and on the sense of the switch, from 0 to 1,
respectively from 1 to 0. The technologist indicates lower bounds and upper bounds
for them; if such bounds are available, t4,...,t , are called bounded and if not, they

are called unbounded.

2.3 Our present purpose isto interpret the inertial delays described by 2.1 (2). We
shall suppose for this the existence of ¢l B, and of t £1, <t, sothat

"t [ty - t.t) Uty ¥), f(uy(t)..... um(t)) =c (@)

"t [t t), f(uy (D), upm() =c 2
i.e.for t3ty - t, f(uy(t),...,un(t)) hasaconstant value equal to c, with the
exception of theinterval [t1,t>) when a perturbation occurs and the function changes

itsvalueto c.
We infer, after afew computations:

UD™ fui(X),-,un)= UD ¢c(x)=0 (3)

xT (1-t,1g) xT (1-t,tg)
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X(tp) =c=f(up(ty - t),...um(ty - 1)) @)
There exist two possibilities.
Casel ty - t; <t gives
t3ty,x()=c (5)
meaning that the perturbation is eliminated (it is filtered).
Casell ty - t1 3 t implies

UD fuX),..unx)= UD c(x)=0 (6)
x1 (tg,tp+t) xT (t,1+t)
X(ty +t) == f (Ug(tg),.., Um(t1)) (7)
UD™ f((.tn())=  UD c(x)=0 ®
x1 (toto+t) x1 (toto+t)
X(ty +1) == (Up(tg) e U (t2)) ©

and finally

_ictl [ty +t) Uty +1,¥)
_%E,tT [ty +1,tp +1)

i.e. the perturbation is delayed with t time units.

The equations (3), (6), (8) represent conditions of balance for the system and
this balance implies the validity of (4), (7), (9).

X(t) (10)

3. Asynchronous Automata

3.1 We call asynchronous automaton, or asynchronous system, a mathematical object
S given by the following data: R isthetimeset and O R istheinitial time; Bg
isthe state space, where n? 2; x1 Real (" isthe stateand x°1 B iscalled the
initial state; B;n isthe input space and ul Real (m) isthe input; the function

f:BJ" BY'® B ,iscalled the generator function; the numbers t; >0,i =1,n

are called the delays; the next equations are called the equations of the asynchronous
automata, shortly EAA:

X (1) = fi ((t- t),ut- 7)) v O A X oy (@),i =1 (1)

D% (t) = (x; (t- 0)A fj(x(t- 0),u(t- 0)))x 2
x UD" £ (x(0),u() <y ) () A X 3y (1),1=ng +1n
A (t-tj,t)

wheret] R and 1£n <n; x° and u are given, t1,...,t, areparametersand X is
the unknown. The coordinates i {1,...,n;} arecalled ideal and the coordinates
il {ny +1,...,n} arecalledinertial.
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3.2 Remark, special casesfor EAA

a) the case when we have only ideal coordinates, respectively only inertia
coordinates may be put under the form 3.1 (1), (2) by adding anull coordinate; thisis
possible because the null function x; (t) =0 isasolution for any of 3.1 (1), (2) when
xio =0 and f; =0, thusEAA with 1£ n; <n isnot restrictive.

Conversely, if the automaton has no ideal coordinates, respectively no inertial
coordinates, then the missing coordinates don't have to be included in EAA as null
coordinates.

b) the case of the autonomous automata, when there does not exist an input; we

suppose that u=01 BJ’

c) the case of the trivial automata, when there does not exist a state; we have that
—NT n

x=0I B;.

3.3 Remark There exist other similar ways of writing EAA, that bring nothing

essentially new, see 2.1. For example, it is possible to initialize the coordinates
Xq,..., X NOt starting with the time instant ty =0 but ending with the time instant tq,

see 2.3 (1) and the consequence 2.3 (4).
3.4 Remark There existsaright dual, anticipative version of EAA.
3.5 Theorem We suppose that in EAA

u(t) =u® c g ny O A Ut e iy O A L)
where u®T BJ",kT N and 0=ng <ny <nj <... is SINLF (see 1.2). We note the
elements of the set {n, + py >ty +...+ p, >ty |K, Prsees P 1 N} under the form of
the SINLF family 0=ty <t; <t, <... Then EAA has a unique solution

X(1) = X0 Xy 1) (1) A xE ey ) (DA . )
where xX1 BJ satisfy forall ki N:

N 0 .
1 L% Jf 1, <t

L= | : ©)
T H (Xt - 1) Ut - t))0F £, 3ty
"il {1...,n} and
: X° it <t
i fi(x(t),u(t,)) Jif t,, %t and
Xt=po totg T [fe = T tia)s i (X(E), UE,) = F(X(t), u(t,)) (4)
: X jif t,,,3t, and
st tg 1 [t - ), fOXE) Ut T F(X(E), u(ty))
"il {n,+1..,n}.
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4, Continuous Time, or Discrete Time ?

4.1 Our answer to the previous question is: both, because they coexist for the
realizable functions. In fact, EAA have been written in continuous time and their
solution was given at 3.5 (3), (4) in discrete time.

4.2 Thefact that tq,...,t , are not known, thus the sampling moments {t, |k N}

are not known, gives another perspective on the discrete time. On the other hand, we
observe that even if {z, |kT N} areknownin 1.2 (1), they are not unique for some
arbitrary realizable function.

4.3 1n[6], Alfaro and Manna put the problem of discrete reasoning in continuous
time. They show that if aformula of the continuous temporal logic has the property
of finite variability FV, then its validity in the discrete semantics implies the onein
the continuous semantics. The condition FV issimilar to the local finiteness

condition that we have put: " a<b, (a,b) U{z, |kl N} isfinite.

5. Propositional Linear Time Temporal Logic
5.1 The Boolean variables xq,..., X, 1 B, areaso called atomic propositions of the

classical logic of the propositions CLP. The Boolean functions h: Bg ® B, areaso
called formulas of CLP".

5.2 The semantic approach of CLP answers the question: in the interpretation | that
gives the variable X = (Xq,..., Xy ) the constant value x0 = (xf,...,xr(]))i BS dowe
have h(x%) =1?1f so, we say that h issatisfied in | or that it holdsin x° and we
note this fact with x° = h. For h=1 (the constant function), we say that it isa
tautology and we note thisfact by |=h.

5.3 Inthe Linear Time Temporal Logic LTL, the atomic propositions are the
functions Xq,..., X T Real and some of the formulas, that are induced by the laws of

B, are obtained by associating to the functions BJ ® B, respectively functions
Real (" ® Real . For example, to X; > X2, X1 A X, where x1,x,1 B, we associate
the functions (X 3> X )(t) = X (1) > X2 (1), (X1 A X2)(t) = X (t) A x5 (t) where

X1, X2T Real .

5.4 It isinteresting the semantic approach of LTL answering the question: in the

interpretation that gives the argument x1 Real (" of h the constant val ue, noted
with the same symbol, representing the solution of EAA and fixesthetimeto t 2 0,
do we have that h(x(t)) =1?If so, we say that h issatisfied at t, or that it holds at t

! This definition identifies the logically equivalent formulas.
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and we note this fact with t |= h. In the discrete version, the equation h(x(t,)) =1is
noted with k [=h. In both versions, instead of O|=h we write |=h.

5.5 Remark The semantics that we use hereis called floating and it differs from the
anchored semantics by the fact that the latter refers only to statements of the type
Fh.

5.6 LTL hasin its discrete version the unary temporal connector X , called Next
(noted sometimes with O) with a semantics defined like this: the equation
h(X(tx+1)) =1 isnoted k |= Xh. Alfaro and Mannajust mention the fact that in their

theory X ismissing. The continuous semantics of this connector is rather given by
the equation h(x(t - 0)) =1, noted t |Eh™ , then by h(x(t +0)) =1, noted t Eh™, as
it would seem to be normal; the realizable functions are right continuous and the
connector h™ =h isof null effect in the non-anticipative reasoning.
5.7 LTL has aso the binary temporal connector Until U , which is present in both
continuous respectively discrete version, for example:
Uax()) x T h(x(x) =1 isnotedwith t|=hU g
st A [t,t)
where ]| isthe minimum of afunction on a set; if this set isempty, for t'=t, then
by definition the minimum is taken to be equal with 1.
5.8 U givesthe possibility of defining the unary connectors Always, Henceforth, or
Necessity G, respectively Sometimes, Eventually, or Possibility F . If in5.7 h=1:
U g(x(t")) =1 isnoted with t |= Fg
t3t
5.9 Alfaro and Manna mention in the syntax of their temporal logic the age function
C: "for aformula h, at any point in time, the term C(h) denotes for how long in the
past h has been continuously true". Let us remark that such an idea occursin EAA
intheterm  |JD~ f; (x(X),u(x)) : if f;(x(x),u(x)) isconstant on the interval
A (t-tj,t)
(t- tj,t),itsderivativeisnull on thisinterval, the reunion is null also and its
complement is unitary; thisis a necessary condition (of inertiality) to have
D~ x; (t) =1. Thus the asynchronous automata make use of age functions G which

replace in their definition 'continuoudly true' with ‘continuously constant' and limit
coordinatewise the memory of the automaton to t; time units.

6. Propositional Branching Time Temporal Logic

6.1 By definition, the trajectory x1 Real () of an asynchronous automaton S may
take after x° any of the values:
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t=ty:
(F1 (X202, X et X2, (K2 oy £ (X, 00D,y XD e, (F2(XO, U0,y £ (X0, U0))
t=ty: (FL(F (X%, u), X,y X2, U(t1)), X ey X

e (FL OO U0y £ ((FL(XO,UD), XD e XD, UE)) s XD)
e (P (1 (X0 U0, 0 (X, U0)),U(t)) s £ ((F1(XO, U0, 0 (X2, U0)), u(t)))

By branching time it is understood the common picture of all these possibilities.

6.2 Remark We can similarly suppose that unlike the previous paragraphs, tq,...,t
are parametric piecewise constant R® (0,¥) functions. Then x isthe solution of an
equation EAA' differing from EAA by this generalization and where {t, |k N} is
the SINLF family that counts the elements of the set

{ni + proty(t) +..+ Pty (1K, P Pa T NtT R}
When tq,...,t, vary, afamily of trgjectories results.

6.3 A path isone of the possible trajectories of the automaton, when t4,...,t , vary
as parameters, i.e. afunction x(t) for the continuous time and a sequence

(xo, xl, x2 ,...) for the discrete time. Let Path be the set of al the paths of the
automaton S.

6.4 The branching temporal logics, for example BT,BT *,UB,UB*,CTL,CTL",CTL’

[7], " CTL, $CTL," CTL , $CTL [5] have common features. In their syntax appear
like at the linear time temporal logics the Boolean connectors, as well as the temporal
connectors F,G, X,U regarded to be state quantifiers. In addition we have the path
quantifiers A, for all pathsand E, for some path.

6.5 The semanticsof A and E isnaturally defined. For example:
| h(x(t)) =1 is noted with t |= Ah
Xl Path
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