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Abstract 
The paper presents the differential equations that characterize an asynchronous 
automaton and gives their solution nx }1,0{: →R . Remarks are made on the 
connection between the continuous time and the discrete time of the approach. The 
continuos and discrete time, linear and branching temporal logics have the semantics 
depending on x  and their formulas give the properties of the automaton. 

1. Preliminaries 

1.1 We note }1,0{2 =B  together with the complement '' , the product '' ⋅ , the 
modulo 2 sum '' ⊕  etc, the order 10 ≤  and the discrete topology. 

1.2 The function 2: BR →w  is called realizable, if it may be put under the form: 
 R∈⊕χ⋅⊕χ⋅= ttzwtzwtw zzzz ,...)()()()()( )2,1[1)1,0[0    (1) 

where the real family }|{ N∈kzk  is strictly increasing non-negative locally finite 
SINLF, i.e. ...0 210 <<<= zzz  and 

}|{),(, N∈∧<∀ kzbaba k  is finite 
are satisfied and 2)1,[ : BR →χ +kzkz  is the characteristic function of the interval 

),[ 1+kk zz . 

1.3 We note with Real  the ring of the realizable functions and with )(nReal  the 
linear space },...,|))(),...,({( 11 Realwwtwtw nn ∈ . 

1.4 For an arbitrary function )(tw , the left limit )0( −tw  and the left derivative 

)(twD−  functions are defined in the following manner: for any t  
   )0()(),,'(,' −=ξ∈ξ∀<∃ twwtttt     (1) 
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   )()0()( twtwtwD ⊕−=−      (2) 

and similar definitions hold for the right duals )0( +tw  and )(twD+ . 

1.5 If Realw∈ , then all the previous four functions exist. We shall consider that the 
realizable functions are models for the electrical signals of the asynchronous circuits. 

2. Delays 
2.1 The delays from the asynchronous circuits, occuring on gates and on wires, are 
by definition characterized by the next equations: 
 i) the ideal delays 
  )())(),...,(()( ),[1 ttutuftx m ∞τχ⋅τ−τ−=     (1) 
 ii) the inertial delays  

⋅−−−⊕−=− ))0),0(),...,0((ē)0(()( 1 ttutuftxtxD m  

U
),(

)),(),...,((ē 1
tt

uufD m
τ−∈ξ

ξξξ⋅ −     (2) 

where U is  the maximum of a function on a set; Realuu m ∈,...,1  are the models of 

the input electrical signals; Realx ∈  is the model of the delayed state (or output) 
electrical signal; 22: BB →mf  is the Boolean function that is implemented and 

)),(),...,((ē 1 ttutuf m  is defined in the following manner: 

  )())(),...,(()),(),...,(( 11 ttutufttutuf mm )∞[0,χ⋅=
)

   (3) 

0>τ  is the delay parameter. 

2.2 The delay parameters nττ ,...,1  are not known. They depend (at least) on the 
technology, on the temperature and on the sense of the switch, from 0  to 1 , 
respectively from 1  to 0 . The technologist indicates  lower bounds and upper bounds 
for them; if such bounds are available, nττ ,...,1  are called bounded and if not, they 
are called unbounded. 

2.3 Our present purpose is to interpret the inertial delays described by 2.1 (2). We 
shall suppose for this the existence of 2B∈c  and of 21 tt <≤τ  so that 
  ctutuftttt m =∞∨τ−∈∀ ))(),...,((),,[),[ 1211    (1) 

  ctutufttt m =∈∀ ))(),...,((),,[ 121      (2) 
i.e. for ))(),...,((, 11 tutuftt mτ−≥  has a constant value equal to c , with the 
exception of the interval ),[ 21 tt  when a perturbation occurs and the function changes 
its value to c . 
 We infer, after a few computations: 
  0)())(),...,((

)1,1()1,1(
1 =ξ=ξξ

τ−∈ξ

−

τ−∈ξ

− UU
tttt

m cDuufD    (3) 
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  ))(),...,(()( 1111 τ−τ−== tutufctx m     (4) 
 There exist two possibilities. 
Case I τ<− 12 tt  gives 
     ctxtt =≥ )(,1      (5) 
meaning that the perturbation is eliminated (it is filtered). 
Case II τ≥− 12 tt  implies 

   0)())(),...,((
)1,1()1,1(

1 =ξ=ξξ
τ+∈ξ

−

τ+∈ξ

− UU
tttt

m cDuufD   (6) 

   ))(),...,(()( 1111 tutufctx m==τ+     (7) 

  0)())(),...,((
)2,2()2,2(

1 =ξ=ξξ
τ+∈ξ

−

τ+∈ξ

− UU
tttt

m cDuufD    (8) 

   ))(),...,(()( 2212 tutufctx m==τ+     (9) 
and finally 

    




τ+τ+∈

∞τ+∨τ+∈
=

),[,

),[),[,
)(

21

211

tttc

ttttc
tx    (10) 

i.e. the perturbation is delayed with τ  time units. 
 The equations (3), (6), (8) represent conditions of balance for the system and 
this balance implies the validity of (4), (7), (9). 

3. Asynchronous Automata 
3.1 We call asynchronous automaton, or asynchronous system, a mathematical object 
Σ  given by the following data: R  is the time set and R∈0  is the initial time; n

2B  

is the state space, where 2≥n ; )(nRealx∈  is the state and nx 2
0 B∈  is called the 

initial state; m
2B  is the input space and )(mRealu ∈  is the input; the function 

nmnf 222: BBB →×  , is called the generator function; the numbers nii ,1,0 =>τ  
are called the delays; the next equations are called the equations of the asynchronous 
automata, shortly EAA: 
 1),0[

0
),[ ,1),()())(),(()( nitxttutxftx iiiiiii =χ⋅⊕χ⋅τ−τ−= τ∞τ   (1) 

 ⋅−−⊕−=− )))0(),0(()0(()( tutxftxtxD iii     (2) 

   nnitxtuxfD ii
tit

i ,1),()())(),(( 1}0{
0

),[
),(

+=χ⋅⊕χ⋅ξξ⋅ ∞τ
τ−∈ξ

−U  

where R∈t  and nn <≤ 11 ; 0x  and u  are given, nττ ,...,1  are parameters and x  is 
the unknown. The coordinates },...,1{ 1ni ∈  are called ideal and the coordinates 

},...,1{ 1 nni +∈  are called inertial. 
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3.2 Remark, special cases for EAA  
a) the case when we have only ideal coordinates, respectively only inertial 
coordinates may be put under the form 3.1 (1), (2) by adding a null coordinate; this is 
possible because the null function 0)( =txi  is a solution for any of 3.1 (1), (2) when 

00 =ix  and 0=if , thus EAA with nn <≤ 11  is not restrictive.  
 Conversely, if the automaton has no ideal coordinates, respectively no inertial 
coordinates, then the missing coordinates don't have to be included in EAA as null 
coordinates. 
b) the case of the autonomous automata, when there does not exist an input; we 
suppose that mu 20 B∈=  
c) the case of the trivial automata, when there does not exist a state; we have that 

nx 20 B∈= . 

3.3 Remark There exist other similar ways of writing EAA, that bring nothing 
essentially new, see 2.1. For example, it is possible to initialize the coordinates 

nxx ,...,1  not starting with the time instant 00 =t  but ending with the time instant 1t , 
see 2.3 (1) and the consequence 2.3 (4). 

3.4 Remark There exists a right dual, anticipative version of EAA. 

3.5 Theorem We suppose that in EAA 
   ...)()()( )2,1[

1
)1,0[

0 ⊕χ⋅⊕χ⋅= νννν tututu    (1) 

where NB ∈∈ ku mk ,2  and ...0 210 <ν<ν<ν=  is SINLF (see 1.2). We note the 
elements of the set },...,,|...{ 111 N∈τ⋅++τ⋅+ν nnnk ppkpp  under the form of 
the SINLF family ...0 210 <<<= ttt  Then EAA has a unique solution 

   ...)()()( )2,1[
1

)1,0[
0 ⊕χ⋅⊕χ⋅= txtxtx tttt    (2) 

where nkx 2B∈  satisfy for all N∈k : 





≥−−
<

=
+++

++

ikikiki

ikik
i tiftutxf

tifx
x

τττ
τ

111

1
0

1

)),(),((
,

    (3) 

},...,1{ 1ni ∈∀  and 















≠−∈∃
≥

=−∈∀
≥
<

=

++

+

++

+

+

+

))(),(())(),((),,[,
,

))(),(())(),((),,[,
,))(),((
,

11

1

11

1

1
0

1

qqissikikqs

ik
k
i

qqissikikqs

ikkki

iki

k
i

tutxftutxftttt
andtifx

tutxftutxftttt
andtiftutxf

tifx

x

τ
τ

τ
τ
τ

  (4) 

},...,1{ 1 nni +∈∀ . 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


4. Continuous Time, or Discrete Time ? 
4.1 Our answer to the previous question is: both, because they coexist for the 
realizable functions. In fact, EAA have been written in continuous time and their 
solution was given at 3.5 (3), (4) in discrete time.  

4.2 The fact that nττ ,...,1  are not known, thus the sampling moments }|{ N∈ktk  
are not known, gives another perspective on the discrete time. On the other hand, we 
observe that even if }|{ N∈kzk  are known in 1.2 (1), they are  not unique for some 
arbitrary realizable function. 

4.3 In [6], Alfaro and Manna put the problem of discrete reasoning in continuous 
time. They show that if a formula of the continuous temporal logic has the property 
of finite variability FV, then its validity in the discrete semantics implies the one in 
the continuous semantics. The condition FV is similar to the local finiteness 
condition that we have put: ,ba <∀  }|{),( N∈∧ kzba k  is finite. 

5. Propositional Linear Time Temporal Logic 

5.1 The Boolean variables 21,..., B∈nxx  are also called atomic propositions of the 

classical logic of the propositions CLP. The Boolean functions 22: BB →nh  are also 
called formulas of CLP1. 

5.2 The semantic approach of CLP answers the question: in the interpretation I  that 
gives the variable ),...,( 1 nxxx =  the constant value n

nxxx 2
00

1
0 ),...,( B∈=  do we 

have 1)( 0 =xh ? If so, we say that h  is satisfied in I  or that it holds in 0x  and we 

note this fact with hx =|0 . For 1=h  (the constant function), we say that it is a 
tautology and we note this fact by h=| . 

5.3 In the Linear Time Temporal Logic LTL, the atomic propositions are the 
functions Realxx n ∈,...,1  and some of the formulas, that are induced by the laws of 

2B , are obtained by associating to the functions 22 BB →n  respectively functions 

RealReal n →)( . For example, to 2121 , xxxx ⊕⋅  where 221, B∈xx  we associate 
the functions )()())(( 2121 txtxtxx ⋅=⋅ , )()())(( 2121 txtxtxx ⊕=⊕  where 

Realxx ∈21, . 

5.4 It is interesting the semantic approach of LTL answering the question: in the 
interpretation that gives the argument )(nRealx ∈  of h  the constant value, noted 
with the same symbol, representing the solution of EAA and fixes the time to 0≥t , 
do we have that 1))(( =txh ? If so, we say that h  is satisfied at t , or that it holds at t  

                                                           
1 This definition identifies the logically equivalent formulas. 
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and we note this fact with ht =| . In the discrete version, the equation 1))(( =ktxh  is 
noted with hk =| . In both versions, instead of h=|0  we write h=| . 

5.5 Remark The semantics that we use here is called floating and it differs from the 
anchored semantics by the fact that the latter refers only to statements of the type 

h=| . 

5.6 LTL has in its discrete version the unary temporal connector X , called Next 
(noted sometimes with O ) with a semantics defined like this: the equation 

1))(( 1 =+ktxh  is noted Xhk =| . Alfaro and Manna just mention the fact that in their 
theory X  is missing. The continuous semantics of this connector is rather given by 
the equation 1))0(( =−txh , noted −= ht | , then by 1))0(( =+txh , noted += ht | , as 
it would seem to be normal; the realizable functions are right continuous and the 
connector hh =+  is of null effect in the non-anticipative reasoning.  

5.7 LTL has also the binary temporal connector Until U , which is present in both 
continuous respectively discrete version, for example: 
   1

)',[
))((

'
))'(( =

∈ξ
ξ⋅

≥
IU

tt
xh

tt
txg  is noted with gUht =|  

where I is the minimum of a function on a set; if this set is empty, for tt =' , then 
by definition the minimum is taken to be equal with 1 . 

5.8 U  gives the possibility of defining the unary connectors Always, Henceforth, or 
Necessity G , respectively Sometimes, Eventually, or Possibility F . If in 5.7 1=h : 

1
'

))'(( =
≥
U

tt
txg  is noted with Fgt =|  

5.9 Alfaro and Manna mention in the syntax of their temporal logic the age function 
Γ : "for a formula h , at any point in time, the term )(hΓ  denotes for how long in the 
past h  has been continuously true". Let us remark that such an idea occurs in EAA 

in the term U
),(

))(),((
tit

i uxfD
τ−∈ξ

− ξξ : if ))(),(( ξξ uxf i  is constant on the interval 

),( tt iτ− , its derivative is null on this interval, the reunion is null also and its 
complement is unitary; this is a necessary condition (of inertiality) to have 

1)( =− txD i . Thus the asynchronous automata make use of age functions iΓ  which 
replace in their definition 'continuously true' with 'continuously constant' and limit 
coordinatewise the memory of the automaton to iτ  time units. 

6. Propositional Branching Time Temporal Logic 

6.1 By definition, the trajectory )(nRealx ∈  of an asynchronous automaton Σ  may 
take after 0x  any of the values: 
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1tt = : 

)),(),...,,((),...,),...,,(,...,(),...,,...,),,(( 0000
1

0000
1

00
2

00
1 uxfuxfxuxfxxxuxf nnin  

:2tt =    ),...,...,)),(),,...,),,((( 00
21

00
2

00
11 nn xxtuxxuxff  

),...)),...,(),,...,),,(((),...,,((..., 0
1

00
2

00
1

00
1 nni xtuxxuxffuxf  

)))()),,(),...,,((()),...,()),,(),...,,((((..., 1
0000

11
0000

11 tuuxfuxfftuuxfuxff nnn  
... 

By branching time it is understood the common picture of all these possibilities. 

6.2 Remark We can similarly suppose that unlike the previous paragraphs, nττ ,...,1  
are parametric piecewise constant ),0( ∞→R  functions. Then x  is the solution of an 
equation EAA' differing from EAA by this generalization and where }|{ N∈ktk  is 
the SINLF family that counts the elements of the set 

},,...,,|)(...)({ 111 RN ∈∈τ⋅++τ⋅+ν tppktptp nnnk  
When nττ ,...,1  vary, a family of trajectories results. 

6.3 A path is one of the possible trajectories of the automaton, when nττ ,...,1  vary 
as parameters, i.e. a function )(tx  for the continuous time and a sequence 

,...),,( 210 xxx  for the discrete time. Let Path  be the set of all the paths of the 
automaton Σ . 

6.4 The branching temporal logics, for example *,,,,,, CTLCTLCTLUBUBBTBT +++  
[7], ** ,,, CTLCTLCTLCTL ∃∀∃∀ [5]  have common features. In their syntax appear 
like at the linear time temporal logics the Boolean connectors, as well as the temporal 
connectors UXGF ,,,  regarded to be state quantifiers. In addition we have the path 
quantifiers A , for all paths and E , for some path. 

6.5 The semantics of A  and E  is naturally defined. For example: 
1))(( =

∈
I
Pathx

txh  is noted with Aht =|  
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