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1 Introduction

Reversible computing is a concept reflecting physical reversibility. Until
now several reversible systems such as reversible Turing machines, re-
versible cellular automata and reversible logic circuits have been inves-
tigated. In a series of papers Kenichi Morita defines the rotary element
RE, that is a reversible logic element. By reversibility, he understands
[2] that ’every computation process can be traced backward uniquely
from the end to the start. In other words, they are backward determin-
istic systems’[2]. He shows [1] that any reversible Turing machine can
be realized as a circuit composed of RE’s only.

Our purpose in this paper is to use the asynchronous systems theory
and the real time for the modeling of the ideal rotary element (the signal
is transmitted from the input to the output without being altered and
without delays, as opposed to the inertial rotary element).

2 Preliminaries

Definition 1 The set B = {0,1} endowed with the usual algebraical
laws —, U, -, @ and with the order 0 < 1 s called the binary Boole
algebra.

Definition 2 The characteristic function x, : R — B of the set
A C R is defined by Vt € A,

1,te A
) ={5r e s

Notation 3 We denote by Seq the set of the sequences ti, € R, k € N
which are strictly increasing to < t; < ty < ... and unbounded from
above. The elements of Seq will be denoted in general by (t).
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Definition 4 The signals (or the n—signals) are by definition the
R — B" functions of the form

T(t) = [ X(—oot) (1) D T(t0) * Xftg 1) (8) D - B T(th) * Xty 001) (E) B oo (1)

where t € R, u € B" and (tx) € Seq. The set of the signals is denoted
by S,

Definition 5 In (1), p is called the initial value of © and its usual
notation is x(—oc + 0).

Definition 6 If = fulfills (1), the R — B™ function
z(t—0)=p- X(—o0,to] (t) ® z(to) - X(to,tl](t) © ... ©x(ty) X(tk,tk+1}(t) D ...
15 called the left limat of x.

Definition 7 For x like previously, the R — B functions x;(t — 0)x;(t),

zi(t — 0)x;(t) are called the left semi-derivatives of x;,i = 1,n.

Definition 8 An asynchronous system is a multi-valued function f :
U — P*(S™),U € P*(S™). U is called the input set and its elements
u € U are called (admissible) inputs, while the functions x € f(u) are
called (possible) states.

3 The informal definition of the rotary element of
Morita

Definition 9 (informal) The rotary element RE, whose symbol is
gwen in Figure 1, has four inputs uy, us, us, uy, a state xo and four out-
puts Ty, xa, T3, 4. Its work has been intuitively explained by the existence
of a ’rotating bar’, see Figures 2 and 3. If (Figure 2) the state xq is
in the horizontal position, symbolized by us with xo(t — 0) = 0, then
ui(t) = 1 -this was indicated with a bullet- makes the state remain hor-
izontal xo(t) = 0 and the bullet be transmitted horizontally to xy, thus
x1(t) = 1. If (Figure 3) x is in the vertical position, symbolized by us
with xo(t—0) = 1 and if uy(t) = 1, then the state zo Totates counterclock-
wise, i.e. it switches from 1 to 0 : zo(t) = 0 and the bullet is transmitted
to x4 : x4(t) = 1. No two distinct inputs may be activated at a time -i.e.
at most one bullet exists- moreover, between the successive activation of
the inputs, some time interval must exist when all the inputs are null.
If all the inputs are null, ui(t) = us(t) = uz(t) = ug(t) = 0 -i.e. if
no bullet exists- then o keeps its previous value, zo(t) = xo(t — 0) and
x1(t) = x2(t) = x3(t) = x4(t) = 0. The definition of the rotary element
is completed by requests of symmetry.
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Remark 10 Morita states the 'reversibility’ of RE. This means that in
Figures 2 and 3 where time passes from the left to the right we may say
looking at the right picture which the left picture is. In other words,
knowing the position of the rotating bar and the values of the outputs
allows us to know the previous position of the rotating bar and the values
of the inputs. In this ‘reversed’ manner of interpreting things the state x
rotates clockwise, 1, ..., x4 become inputs and uq, ..., uy become outputs.

4 Systems of equations

Theorem 11 Let be the functions f', f” : R — B. The following state-
ments a), b) are equivalent:

a) one of a.1),...,a.5) holds

a.1) Vt € R,

a.2) 3, € R,Vt € R,
F(t) = X0y (),

f”(t) :O,
CL:?) dto € R,3Jt; € Rty < t1,Vt € R,

F' (1) = Xy (1),

F () = Xgey (8);
CL4) dJk>1,Jtge R, ...t e Rty < ... <t,VtER,

F1(#) = f'(t0) - Xy (1) @ - & F' (1) - Xga3 (1),
F'(@) = "(t0) - Xqaoy (1) ® - & F" (k) - X a3 (),
VE € {0,...,k},
rieo = (i e = {3
a.5) 3(ty) € Seq,Vt € R,
F'(#) = f'(to) - Xy (1) © - & f(t) - Xuyy () © o)

f(@) = f"(to) - Xy (1) & - & 7 (k) - Xg1y (8) © ...



Vk € N,
, |1,k =even, ,, |0,k =even,
f“’“)—{ 0k =odd '/ “’f)—{ 1k =odd °
b) the system of equations

{w(t —Quw(t) =

t),
w(t — 0)w(t 2)

F(#)

has a solution w € S with w(—oo + 0) = 0.

Remark 12 We have a similar statement with the one of Theorem 11,
which is obtained by the replacement in a) of ’even’ with ’odd’ and the
replacement in b) of w(—oo 4+ 0) = 0 with w(—oo + 0) = 1. This is the
dual of Theorem 11.

Theorem 13 If one of a), b) from Theorem 11 is true, then the solution
of (2) is unique and is given by

w(t) = w(t —0)f() Uw(t —0)f"(t), (3)

where w(—oo+0) = 0. If one of a), b) from the dual of Theorem 11 holds,
then the solution of (2) is unique and is given by (3), where w(—oo+0) =
1.

Theorem 14 For any f', f" € SW, if f'(—co +0) = f"(—o0 +0) = 0,
then Vt € R,

f@ft)=0 (4)
if and only if the system of equations
{w(t —0)w(t) = w(t —0)f(t), (5)
w(t —0)w(t) = w(t —0)f"(t)

has a solution w € S. If (5) has a solution w, this solution is unique and
s given by

w(t) = w(t —0)f(t) Uw(t — 0)f"(t). (6)
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Figure 4: The ideal RE

5 The ideal RE

Remark 15 We get from Section 3 that RE may be described by the

following table

l’o(t — 0) Ui (t) Ug(t) ’Ug(t) U4(t) l’o(t) l’l(t) i) (t) xg(t) l’4(t)

0

0

0

0

0

0

0

0

0

0

1

Table

and by Figure 4. We have asked that all the variables belong to S and

that any switch of the input is transmitted to the state xo and to the

outputs x1, xa, T3, T4 instantly, without being altered and without delays.



This approximation is called by us in the following ’the ideal RE’, as
opposed to ’the inertial RE’.

We shall suppose the way that we always use to that the outputs are
states, thus the state vector in this Chapter will have the coordinates
x = (zg, 11, Ty, 13, 14) € SO,

Notation 16 We denote
0= (0,0,0,0) € B
Notation 17 We denote by D, D* C B* the sets
D ={o0,(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)},
D* ={(1,0,0,0),(0,1,0,0),(0,0,1,0), (0,0,0,1)}.

Definition 18 We define the set of the admaissible inputs U €
P(SW) by

LAY Xt 0) B AT Xftarts) B - B A" X tmisr)|
k€N, to,....top1 € Rytg < ... < tops1, A0, ..., \F € D*}
UL Xiton) @ AT Xtot) @ - B A* + Xjige 00|
k€ N,ty,....tan € Rty < ... < tog, A", ..., \¥ € D*}

UL Xt 1) BA X 19.1) B BN X101 101,y B (t) € Seq, A¥ € D*, k € N}.
Theorem 19 The functions u € U fulfill

a) u(—oo+0) = 0;

b)Vie{l,..,4},Vj € {1,...,4},i # j implies

ui(t)u;(t) =0, (7)

w;i(t — 0)u;(t)u;(t — 0)u;(t) = 0; (8)
c)VueU VdeR, uor? € U.

Remark 20 The set U is the set of the inputs, as given in the infor-
mal Definition 9. Thus, the equation (7) reproduces the request no two
distinct inputs may be activated at a time’ from that Definition. The
equation (8) shows that the end of a 1-pulse on an input u; cannot coin-
cide with the beginning of a 1-puse on another input u;, these two events
must be separated in time. This property corresponds to the statement
from the informal Definition 9 that ’between the successive activation of
the inputs, some time interval must exist when all the inputs are null’.



Definition 21 We define the set of the initial (values of the) states

by
0y = {(0,0,0,0,0),(1,0,0,0,0)}.

Theorem 22 Let u € U be given.
a) The equations

{Zlfo(t — O)I’o(t) Zlfo(t — 0) (Ug(t) U ’U4(t)) <9)

xo(t) = zo(t — 0)(uz(t) Uug(t)) Uzo(t — 0) ui(t) us(t) (10)
that refer to the wvariables from Table 1 and Figure j have the same
unique solution xy € S whenever the initial condition xo(—oo + 0) € B
18 indicated.

b) The equations

l’l(t — 0)1131 (t) = I’Q(t — O)Ul (t — O)Ul (t) U l’o(t — O)Ug(t — O)U2(t<)11)

x1(t) = z1(t — 0) xo(t — 0)(ur(t — 0)ui(t) Uug(t — 0)us(t))U (12)
Uz (t — 0)(xo(t — 0) Uug(t —0) Uuy(t))(zo(t — 0) Uus(t —0) Uus(t))

that refer to the variables from Table 1 and Figure 4 have the same

unique solution x1 € S, whenever xi1(—oo + 0) = 0; similar statements
hold referring to o, x3, 4.

Definition 23 We consider the functions u € U and x € S©® | z(—o0 +
0) € ©g. The equations

o(t) = xo(t — 0)(uz(t) Uua(t)) Uao(t —0) ua(t) us(t),  (13)
o(t— )( ( 0 Ul(t U’Ug t—O)’Ug(t) U (

71(t) = 21t - 0) Jur () U us( ) 14)
Uz (t — 0)(2o(t — 0) Uy (t — 0) Uy (t))(wo(t — 0) Uua(t — 0) Uua(t)),
23(t) = a(t — 0) wo(t — 0)(ua(t — O)ua(t) Uus(t — 0)us(t))U  (15)
Uza(t — 0)(o(t — 0) Uua(t — 0) Uua(t))(wo(t — 0) Uus(t — 0) Uus(t)),
w3(t) = 23t — 0) zo(t — 0)(us(t — 0)us(t) Uug(t — O)ua(t)U  (16)
Uzs(t — 0)(2o(t — 0) Uuz(t — 0) Uus(t))(wo(t — 0) Uuag(t — 0) Uua(t)),
24(t) = 24(t = 0) wo(t = 0)(ua(t — O)us(t) U (t = Qjur(t))U (17

)
Uza(t — 0)(zo(f — 0) U ua(t — 0) Uua(t))(wo(t — 0) Unr(f — 0) Uwua(t))

are called the equations of the ideal RE (of Morita) and the system
f: U — P*(S®) that is defined by them is called the ideal RE (of
Morita); (13),...,(17) are called the state equations of f.
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Remark 24 The system f is finite, since Yu € U, f(u) has two ele-
ments {x,x'} satisfying x(—oo + 0) = (0,0,0,0,0) and z'(—o0 + 0) =
(1,0,0,0,0).

Notation 25 Let be 1 € ©g. We denote by f, : U — SO) the determin-
istic system Yu € U,

fu(u) =T

where x fulfills x(—oo +0) = p and (13),...,(17).

6 The analysis of the ideal RE

Definition 26 We consider the function ® : B5 x B* — B® defined by
v(:u()a oy Hos 3, :u4) S B5a V(Ala >\2a >\3a >\4) S B47

(I)O(IUO’ oy Koy 3,y Hy, )\17 )\27 )\37 )‘4) = ILL_O(A2 U )\4) U ILLOA_l >\_37

Remark 27 The function ® makes true the following Table
fo A1 A2 Az Ag Po(fa, A) Pu (e, A) Pa(pe, A) P3(p, A) Palp, A)

0

— = = O O OO

D1 (fg, o1, Py gy gy A5 A2, Az, Aa) = Tig (A1 U Ag)

(I)Z(IUO? M5 Moy gy Ly, >\1a >\2a >\3a >‘4) = NO(AQ ) )\3)
@3(,“07 oy 5 Hoy Hh3y Hy, )‘17 )‘27 )‘37 )‘4) - ,U/_0<)\3 U )\4)
(I)4(lu07:u17:u2a Mgy Ly, >\1a >‘2a >\3; >\4) = ,UO(A4 U )\1)

0000 0 0 0 0
1000 0 1 0 0
0100 1 1 0 0
0010 0 0 0 1
0001 1 0 0 1
0000 1 0 0 0
1000 0 0 0 0
0100 1 0 1 0
0010 0 0 1 0
0001 1 0 0 0
Table 2

)
)

)

0

_— ook OO O oo

18

(18)
(19)
(20)
(21)
(22)

that this coincides with Table 1, where we have obviously put p, =
Z'()(t - 0)7 )\1 = U1<t),..., )\4 = U4<t>, no= <M07M17M27M37ﬂ’4) € B57

A= (A1, Ao, A3, M) € BY, (0, \) = 2o(t), ..., Pa(pe, A) = 4(2).

Notation 28 For all k € N, \°, ..., \* \*™' € D and for any p € Oy,
the vectors ®(u, AO...Ak)\k+1) € B® are iteratively defined by

B (g1, A NN = @ (D (g, A0 AF), AT,



Remark 29 The iterates ®(p, \°..\*) show how ® acts when a succes-
sion of input values \°, ..., \¥ € D* is applied in the initial state p € ©.
For example we have
®(u,0) = p,
D(p, AOX) = D(p, AX')

for any € ©g and \, \' € D*.

Theorem 30 When p € Oy, \,\°, ..., \* ... € D* and (t,) € Seq, the
following statements are true:

fu(0) = p, (23)
FuA Xitg,00) = 1 X(oorte) B Pt A) * Xtg,00» (24)
fu(AO * Xlto,t1) oA X[ta,ts) D...D A X[t%,t2k+1)) = (25)

= 1 X (—oo,te) DP(1, A%) Xito ) D LK, 200) Nt t2) D P15 A0 “N[ta,ta) P
e ® P, A" AFTO) X @ P, ALY g
FaO%  Xour) DA Xitgg) @ - DX+ X1 00)) = (26)
= 1 X (—oo,te) DP(1, %) Xito 1) D LK, AOO)-X[thtz)@Cb(u, A0 “N[ta ts) D
@B, A A TO) Xt @ P AT AT - X 00
FuO%  Xour) B A Xitog) @ - DN Xyt ® ) = (27)
= 1 X (—out) DL (1 A°) Xty D Pt A°0) - X1, 1) B L1, A°A) - X1y 1) B -
e @B, A AT0) - Xyt @ P AN -y D ...
Theorem 31 Vu € Oy, Vu € U, f,(u) € SV x U.
Theorem 32 a) Vi € ©g, V' € O, Vu € U,
p# = fu(u) # fu(w);
b) Vi € ©g,Vu € U,Vu' € U,
u#u = fu(u) # fu(u');
c)Yue UV €U,
u#u = f(u)N fu) = 0.

Remark 33 The previous Theorem states some injectivity properties of
f. The surjectivity property

Ve e SxU,3pe©y,Fuel,f,(u) ==z
18 not true, since if we take for arbitrary to € R
ZL"(t) = (0’ 0,1,0, 0) " X[to,00) (t)’
we get that YV € Og,Yu € U, f,(u) # x.

tok,tary1)?

tok t2ky1)
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Figure 6: The reversed RE in state vy(t —0) = 0 and 2;(¢) = 1 computes
vo(t) = 0 and vy (t) =1

7 The reversed ideal RE

Remark 34 The symbol of the reversed RE is given in Figure 5, to be
compared with Figure 1 and a clockwise rotation of the rotating bar takes
place. We can reverse Figures 2, 3 and obtain Figures 6, 7. We get
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Figure 7: The reversed RE in state vy(t —0) = 0 and 2z4(¢) = 1 computes
vo(t) =1 and vy (t) =1

Table 3 instead of Table 1

vo(t — 0) 21(¢) 22(t) 23(¢) 24(t) vo(t) v1(t) v2(t) v3(t) va(?)
0 o o o o o o0 o o0 o0
0 1 0 0 0 O 1 0O 0 O
0 0 1 0 O 1 0 O 1 0
0 0 O 1 0 0 0 0 1 0
0 0O 0 0 1 1 1 0O 0 O
1 O 0 0 O 1 O o0 0 O
1 1 0 0 0 0 O 1 0 0
1 0 1 0 0 1 0 1 0 0
1 0 O 1 0 0 0 0 0 1
1 0O 0 0 1 1 0O 0 O 1
Table 3

and Figure 8 instead of Figure 4. The coordinates of the state v € S©®
are v = (vg, V1, U2, U3, Vg).

In the characterization of the reversed RE we can write equations that
are similar with the equations of RE and they obey the same Theorems
11, 13 and 14.

Definition 35 The following equations

vo(t) = vo(t = 0)(22(t) U za(t)) Uwo(t = 0) z1(4) 23(t),  (28)

vi(t) = vit = 0) vo(t = 0)(2a(t — 0)za(t) Uz (t = 0);a(t)U  (29)
Uy (t — 0)(vo(t — 0) U zg(t — 0) U z4(t)) (ot — 0) U 21(t — 0) U 2 (1)),
va(t) = va(t = 0) ot = 0)(21(t — 0)z(t) U za(t — 0)z2(t)U (30)

12
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Figure 8: The ideal reversed RE
Uva(t — 0)(vo(t — 0) U z1(f — 0) U 21(£)) (v (f — 0) U za(f — 0) U 2a(t)),
vs(t) = vs(t — 0) vo(t — 0)(2a(t — 0)22(t) U zs(t — 0)zs(t))U  (31)
Uvg(t — 0)(vo(t — 0) U 25(t — 0) U 2o(t)) (wo(t — 0) U 25(t — 0) U 23(t)),
a(t) = va(t — 0) vo(t — 0)(za(t — 0)z3(t) U za(t — 0)zu(t))U  (32)

U’U4(t — 0)(’00(t — 0) U Zg(t — ) U Zg(t )(’Ug(t — ) U Z4(t — 0) U Z4(t))

where z € U and v € S©®) v(—oco + 0) € Oy are called the equations
of the reversed ideal RE. The system f~' : U — P*(S®) that is
defined by them s called the reversed tdeal RE. We use to say that
(28),...,(32) are the state equations of f~1.

Remark 36 Vz € U, the set f~1(2) has two elements, corresponding to
the two initial values v € O.

Notation 37 For any v € Oy, we denote by £, : U — S©® the deter-
ministic system Yz € U,

fu(z) =
where v fulfills (28),...,(32).
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8 The analysis of the reversed ideal RE

Definition 38 Let be the function ' : B> x B* — B® defined by
V(VO; Vi,V2,V3, V4) < B57 v(617 627 637 64) € B47

q)al<]/0’ Vi,V2,V3, V4761762763764) = V_O((SQ U 54) U VO(S_I 6_37 (33)

O, (vo, V1, V2, v3, 14, 61, 62, 03, 64) = Tg(64 U 61), (34)
O, (vo, V1, V2, V3, 14, 61, 62, 03, 64) = 10(61 U 82), (35)
O3 (vo, V1, va, V3, 14, 01, b9, 03, 64) = (623 U 83), (36)
O, (vo,v1, V9, V3, V4, 01, Oa, 03, 64) = 1o(63 U &4) (37)

Remark 39 The function ®~! makes true the following Table

V001620364 P51 (1v,6) @7 (v, 6) @5 (v, 8) D3t (v, 6) Dt (v, 6)
00000 0 0 0 0 0
01000 O 1 0 0 0
00100 1 0 0 1 0
00010 O 0 0 1 0
00001 1 1 0 0 0
10000 1 0 0 0 0
11000 0 0 1 0 0
10100 1 0 1 0 0
10010 0 0 0 0 1
10001 1 0 0 0 1
Table 4

that coincides with Table 3, in which we have put vy = vo(t — 0), 61 =
Zl<t)7 seey 64 == Z4<t)7 V= <V07V17V27V37V4) c B57 6 = (61762763764) c B47
Dot (v,8) = vo(t), ..., Pyt (v,8) = va(t).

Remark 40 The properties of f~1 coincide with those of f, as described
wn Section 6, by Theorems 30,...,32. For example similarly with Theorem
30 we have that for any v € Oy, 6,8°, ...,6% ... € D* and (t},) € Seq, the
following statements are true

£,10) = v, (38)
FPRCE X[to,00)) = V" X(—oorte) P > (v, 6) - Xto,00)7 (39)
fV_l(éﬂ " Xlto,t1) © & Xlta,ts) ©...D 8* - X[t2kat2k+1)) - (4())

= V.X(foo,to)ggq)_l(yﬂ 50)'X[t0,t1)@¢_1(y7 600).X[t1,t2)@¢_1(y7 6061)'X[t2,t3)@'”

14
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Figure 9: The study of f~'o f

) <I>_1(1/, 50...616*10) X D <I>_1(V, 50...5k) * Xtk tan 1)’
fzjl(éo *Xito,tr) P 5 - Xtz ts) D -+ © & - X[tgk,oo)) = (41)
= V'X(foo,to)@Q_:l(VJ 60)'X[t0,t1)@(b_1<1/7 600).X[t1,t2)®®_1(1/7 6061)'X[t2,t3)®"’

@O (v,80..6510) - X ) D O (v, 8°...6%) - X

tok—1,tok)

tor—1,t2k

fV_l((SO " Xlto,t1) © 8- Xlta,ts) b..0 &* - Xltor tor+1) © ) - (42>
= V'X(—Oo,to)@q)71<l/7 60)'X[t0,t1)@©71<y7 600).X[t1,t2)®©71(1/7 6061)'X[t2,t3)®’”

LB (v,8..6710) - x B P (v, 8°..8%) - ® ...

tok—1,tok tok t2kt1)

We are interested in the following to characterize f~! as ’inverse’
of f. The system f='o f, see Figure 9, is obtained by putting z, =
X1, ey 24 = T4 0 equations (28),...,(32). In order to make a clear distinc-
tion between f and f~1, we have indicated the sense of rotation of the ro-
tating bar, counterclockwise for f and clockwise for f=1. In the following
Definition we make use of the fact that Vu € ©g,Yu € U, f,(u) € S x U,
Theorem 31.

Definition 41 We define the system f~ o f : U — P*(S®)) by Vu € U,
(f_l o f)(U) = {($07U0avla02av37v4)|x € f(U),'U € f_l(l’1,$2,$371’4)}.

Theorem 42 For any p,v € Oy, we suppose that z1 = 1, ...,24 = X4
and that at the time instant t € R, f, and f,' are in equilibrium:

w(t—0) = .. = ug(t — 0) = 21 (t — 0) = ... (43)

e = l’4(t — 0) = ’Ul(t — 0) = ... = ’U4(t — 0) = 0.
a) If o € B exists such that

zo(t —0) =v(t — 0) = « (44)
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and if t 1s a point of continuity of xq,
xo(t) = a,

then t is a point of continuity of vy also,
v(t) = «

and
vi(t) = ui(t), ..., va(t) = ua(t).
b) If a € B exists such that

zo(t — 0) = q,

’U()(t — 0) =a
hold and if t is a point of discontinuity of xy,

l’o(t) = 5,
then t is a point of discontinuity of vy also,
v(t) = «

and
’Ul(t) = Ul(t), ...,'U4(t) = U4(t)

18 true.
c) If a € B exists such that

xo(t —0) =vo(t — 0) = «
holds and if t is a point of discontinuity for x,
xo(t) = @,
then t is a point of continuity for vy
v(t) = «

and

v1(t) = ua(t), va(t) = ug(t), vs(t) = ug(t), va(t) = uq(t).

18 true.
d) If o € B exists such that

zo(t — 0) = a,
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w(t—0)=a (58)

and if t 1s a point of continuity for xy,

xo(t) = a (59)
then either t is a point of continuity for vy also

vo(t) = @, (60)
or t is a point of discontinuity for vy

vo(t) = a; (61)
in both cases we have

v1(t) = ug(t), vo(t) = uy(t), v3(t) = ua(t), va(t) = us(t). (62)

Remark 43 Like at Definition 41, we can define the system f o f=1:
U— P*(S©) byVzeU,

(f o fH(2) = {(vo, w0, 71, T2, T3, 24)|v € f1(2), 2 € f(v1,v2,v3,v4)}.

We can also state a theorem similar with Theorem 42, where zy =
x1,...,24 = x4 are replaced by u; = vy,...,us = v4 conformly with the
replacement of f~1 o f with fo f~1.

The conclusion resulting from the previous theorems is that the prop-
erties Yu € U, ¥(zo, vy, v1, V2, v3,v4) € (f 1o f)(u),

Uy = V1, U2 = VU2,U3 = V3, Uq4 = U4
and Vz € U, ¥Y(vg, g, 71, T2, T3, 74) € (f o f71)(2),
21 = T1,R2 = T2,R3 = X3,24 = T4

are not true, the inverse behavior of f and f~! is restricted to the cases
a) and b) only of Theorem 42.

9 The time invariance and the non-anticipation prop-
erties

Theorem 44 The systems f and f~' are time invariant, i.e. for any
u,z € U and d € R we have

fluor?) ={zorlz € f(u)},
fHzorh) ={vorive f(2)}
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Theorem 45 The system f is non-anticipatory in the sense that for all
u € U and all x € f(u) it satisfies one of the following statements:

a) x is constant;

b) u,z are both variable and we have

min{t|u(t —0) # u(t)} < min{t|z(t —0) # z(t)}. (63)
The same non-anticipation property is fulfilled by f=* too.

Theorem 46 f fulfills the non-anticipation properties: ¥Vt € R,Vu €
UYv eU,

U|(—o0,f] = V)(—o0,t] == {Z|(—o0i]|T € f(U)} = {Y)(—oonly € f(v)}; (64)

vt € R,Vu € U, Vv € U,

U|(—o0 ] = V|(—oot] = {2(t)]7 € f(u)} = {y(t)|ly € f(v)}. (65)

The system f~ fulfills these non-anticipation properties too.

References

[1] Kenichi Morita, A simple universal logic element and cellular au-
tomata for reversible computing, Lecture Notes in Computer Sci-
ence, Springer Berlin/Heidelberg, Vol. 2055/2001, Machines, Com-
putations and Universality, Pages 102-113.

[2] Kenichi Morita, Reversible computing and cellular automata - a sur-
vey, Theoretical Computer Science, Volume 395, Issue 1, 2008, Pages
101-131.

[3] Serban E. Vlad, Teoria sistemelor asincrone, editura Pamantul, 2007.

18



