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Abstract The discrete time and the real time binary signals model the electrical signals from the
digital electrical engineering. Our present purpose is that of studying the eventually
periodic points of the binary signals, i.e. the points µ ∈ {0, 1}n whose periodicity starts
at a time instant called limit of periodicity that is ≥ the initial time instant. The paper
has three results. First, it gives several properties that are equivalent with the eventual
periodicity of a point µ; second, it shows that an eventually periodic point is accessed at
least once in a time interval with the length of a period; third, it characterizes the set of
the limits of periodicity.
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1. INTRODUCTION

The electrical signals from the digital electrical engineering are modelled by dis-
crete time and real time binary functions, called (binary) signals too. Our present
purpose is to introduce the study of the eventual periodicity of the points of the sig-
nals by using a bibliography that consists in general in monographs on (real, usual)
dynamical systems, treating occasionally periodicity. We have used analogies sug-
gested by [1], [2], [4] concerning the periodic points and by [2], [3], [4] concerning
the eventually periodic points, with the remarks:

- we have systems theory in such works and no systems theory here;
- we have real numbers in the cited monographs and the binary numbers 0, 1 here;
- using the binary numbers is not essential in this context, the binary signals may

be considered from the periodicity point of view as functions that take a finite number
of values.

We give several equivalent properties that define the eventual periodicity of a point,
we show that each eventually periodic point is accessed at least once during an ar-
bitrary interval with the length of a period and finally we characterize, in certain
circumstances, the set of the limits of periodicity = time instants wherefrom the peri-
odicity of a point exists.
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2. PRELIMINARIES

Notation 2.1. The binary Boole algebra is denoted by B = {0, 1}. Its laws are the
usual ones: the logical complement ’ ’, the product ’ · ’, the union’ ∪’, the modulo
2 sum ’⊕’ and they induce laws that are denoted with the same symbols on Bn, n ≥ 1.

Definition 2.1. The sets B and Bn are organized as topological spaces by the discrete
topology.

Notation 2.2. We use the notation N = {−1, 0, 1, ...} for the discrete time set.

Notation 2.3. We denote

Ŝ eq = {(k j)|k j ∈ N , j ∈ N and k−1 < k0 < k1 < ...},

S eq = {(tk)|tk ∈ R, k ∈ N and t0 < t1 < t2 < ... superiorly unbounded}.

Notation 2.4. The characteristic function of the set A ⊂ R is denoted by χA : R→ B
: ∀t ∈ R,

χA(t) =
{

1, i f t ∈ A,
0, otherwise.

Definition 2.2. The discrete time signals are by definition the functions x̂ : N → Bn.
Their set is denoted with Ŝ (n).

The continuous time signals are the functions x : R→ Bn of the form ∀t ∈ R,

x(t) = µ · χ(−∞,t0)(t) ⊕ x(t0) · χ[t0,t1)(t) ⊕ ... ⊕ x(tk) · χ[tk ,tk+1)(t) ⊕ ... (1)

where µ ∈ Bn and (tk) ∈ S eq. Their set is denoted by S (n).

Remark 2.1. The signals model the electrical signals of the circuits from the digital
electrical engineering.

Remark 2.2. Throughout the paper the hat ’̂’ (that we have already used several
times) indicates the discrete time.

Remark 2.3. The discrete time signals are sequences. The real time signals are
piecewise constant functions.

Lemma 2.1. For any x ∈ S (n) and any t ∈ R,we have the existence of x(t−0), x(t+0) ∈
Bn with the property

∃ε > 0,∀ξ ∈ (t − ε, t), x(ξ) = x(t − 0), (2)

∃ε > 0,∀ξ ∈ (t, t + ε), x(ξ) = x(t + 0). (3)

Proof. We presume that x, t are arbitrary and fixed and that x fulfills (1) with µ ∈ Bn

and (tk) ∈ S eq. We notice that if t ≤ t0, then ε > 0 arbitrary and x(t − 0) = µ fulfill
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(2); and if t ∈ (tk, tk+1], k ∈ N then ε ∈ (0, t − tk) arbitrary and x(t − 0) = x(tk) fulfill
(2) too.

Similarly, if t < t0, then any ε ∈ (0, t0 − t) and x(t + 0) = µ fulfill (3); and if
t ∈ [tk, tk+1), k ∈ N then ε ∈ (0, tk+1 − t) arbitrary and x(t + 0) = x(tk) fulfill (3) too.

Definition 2.3. The functions R ∋ t → x(t − 0) ∈ Bn, R ∋ t → x(t + 0) ∈ Bn are
called the left limit function of x and the right limit function of x.

Remark 2.4. Lemma 2.1 states that the left limit and the right limit functions of
x ∈ S (n) exist. Moreover, from the proof of the Lemma we infer, see (1): ∀t ∈ R,

x(t − 0) = µ · χ(−∞,t0](t) ⊕ x(t0) · χ(t0,t1](t) ⊕ ... ⊕ x(tk) · χ(tk ,tk+1](t) ⊕ ...

x(t) = x(t + 0).

In particular we notice that x(t − 0) is not a signal.

Remark 2.5. The existence of x(t + 0) is sometimes used under the form: ∀t ∈ R,

∃ε > 0,∀ξ ∈ [t, t + ε), x(ξ) = x(t).

Definition 2.4. The discrete time forgetful function σ̂k′ : Ŝ (n) → Ŝ (n) is defined for
k′ ∈ N by

∀x̂ ∈ Ŝ (n),∀k ∈ N , σ̂k′(x̂)(k) = x̂(k + k′)

and the real time forgetful function σt′ : S (n) → S (n) is defined for t′ ∈ R in the
following manner

∀x ∈ S (n),∀t ∈ R, σt′(x)(t) =
{

x(t), t ≥ t′,
x(t′ − 0), t < t′.

Remark 2.6. Let us give x̂ ∈ Ŝ (n) by its values x̂ = x̂(−1), x̂(0), x̂(1), ... Then σ̂k′(x̂) =
x̂(k′ − 1), x̂(k′), x̂(k′ + 1), ... i.e. x̂ has forgotten its first k′ values. In particular, x̂
forgets no value for k′ = 0.

Similarly, σt′(x) makes x forget its values prior to t′; in particular, no value is
forgotten if ∀t < t′, x(t) = µ.

Definition 2.5. The orbits of x̂ ∈ Ŝ (n), x ∈ S (n) are the sets of the values of these
functions:

Ôr(x̂) = {x̂(k)|k ∈ N },

Or(x) = {x(t)|t ∈ R}.

Definition 2.6. The omega limit set ω̂(x̂) of x̂ is defined as

ω̂(x̂) = {µ|µ ∈ Bn,∃(k j) ∈ Ŝ eq,∀ j ∈ N , x̂(k j) = µ}
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and the omega limit set ω(x) of x is defined by

ω(x) = {µ|µ ∈ Bn,∃(tk) ∈ S eq,∀k ∈ N, x(tk) = µ}.

The points of ω̂(x̂), ω(x) are called omega limit points.

Definition 2.7. For x̂ ∈ Ŝ (n), x ∈ S (n) and µ ∈ Bn, we define the support sets of µ by

T̂x̂
µ = {k|k ∈ N , x̂(k) = µ},

Tx
µ = {t|t ∈ R, x(t) = µ}.

Definition 2.8. By definition, the initial time instant of x̂ ∈ Ŝ (n) is k′ = −1. A point
t′ ∈ R is called initial time instant of x ∈ S (n) if

∀t ≤ t′, x(t) = x(t′).

The set of the initial time instants of x is denoted by Ix.

Definition 2.9. The initial value of x̂ ∈ Ŝ (n) is by definition x̂(−1) ∈ Bn. We denote
by x(−∞ + 0) ∈ Bn the initial value of x ∈ S (n) which is defined this way:

∀t ∈ Ix, x(t) = x(−∞ + 0).

Definition 2.10. Let the signals x̂ ∈ Ŝ (n) and x ∈ S (n). We say that µ ∈ ω̂(x̂) is
periodic with the period p ≥ 1 if

∀k ∈ T̂x̂
µ, {k + zp|z ∈ Z} ∩ N ⊂ T̂x̂

µ (4)

and we also say that µ ∈ ω(x) is periodic with the period T > 0 if t′ ∈ Ix exists such
that

∀t ∈ Tx
µ ∩ [t′,∞), {t + zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ. (5)

Remark 2.7. The general form (1) of x shows that Ix , ∅ and Ix = R ⇐⇒ x is
constant.

Remark 2.8. The finiteness of Ôr(x̂),Or(x) implies the existence of the omega limit
points: ∅ , ω̂(x̂) ⊂ Ôr(x̂),∅ , ω(x) ⊂ Or(x).

Remark 2.9. If we ask that the point µ ∈ Ôr(x̂), µ ∈ Or(x) is periodic, in the sense
that (4), (5) are fulfilled, then µ ∈ ω̂(x̂), µ ∈ ω(x). The supposition from the very
beginning that the periodic point µ is an omega limit point that fulfills a certain
property does not restrict the generality. It is convenient to state the definition of
periodicity for omega limit points only because this way we avoid asking further
requests of nontriviality like T̂x̂

µ∩{k′, k′+1, k′+2, ...} , ∅, k′ ∈ N and Tx
µ∩[t′,∞) , ∅,

t′ ∈ R, which are obviously satisfied by µ ∈ ω̂(x̂), µ ∈ ω(x).
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Remark 2.10. We interpret (4) this way. The periodicity of µ with the period p
means that for any k with x̂(k) = µ, if we go upwards k + p, k + 2p, ... or downwards
k− p, k− 2p, ... with multiples of p, without getting out of the discrete time set N , we
get a time instant where x̂ equals µ.

And we interpret (5) similarly, by replacing the initial time −1 from (4) with the
initial time t′ ∈ Ix. The periodicity of µ with the period T means that for any t ≥ t′

with x(t) = µ, if we go upwards t + T, t + 2T, ... or downwards t − T, t − 2T, ... with
multiples of T without getting out of the set [t′,∞), we get a time instant where x
equals µ.

3. EVENTUALLY PERIODIC POINTS

Theorem 3.1. a) Let x̂ ∈ Ŝ (n), µ ∈ ω̂(x̂), p ≥ 1 and k′ ∈ N . The following statements
are equivalent:  ∀k ∈ T̂x̂

µ ∩ {k′, k′ + 1, k′ + 2, ...},
{k + zp|z ∈ Z} ∩ {k′, k′ + 1, k′ + 2, ...} ⊂ T̂x̂

µ,
(6)

∀k ∈ T̂σ̂k′+1(x̂)
µ , {k + zp|z ∈ Z} ∩ N ⊂ T̂σ̂k′+1(x̂)

µ , (7){
∀k ≥ k′, x̂(k) = µ =⇒

=⇒ (x̂(k) = x̂(k + p) and k − p ≥ k′ =⇒ x̂(k) = x̂(k − p)), (8)
∀k ∈ N , σ̂k′+1(x̂)(k) = µ =⇒

=⇒ (σ̂k′+1(x̂)(k) = σ̂k′+1(x̂)(k + p) and
k − p ≥ −1 =⇒ σ̂k′+1(x̂)(k) = σ̂k′+1(x̂)(k − p)).

(9)

b) Let x ∈ S (n), µ ∈ ω(x), T > 0 and t′ ∈ R. We have the equivalence of the
following statements:

∀t ∈ Tx
µ ∩ [t′,∞), {t + zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ, (10) ∃ε > 0,∀t′′ ∈ (t′, t′ + ε), t′ ∈ Iσ
t′′ (x) and

∀t ∈ Tσt′′ (x)
µ ∩ [t′,∞), {t + zT |z ∈ Z} ∩ [t′,∞) ⊂ Tσt′′ (x)

µ ,
(11)

{
∀t ≥ t′, x(t) = µ =⇒

=⇒ (x(t) = x(t + T ) and t − T ≥ t′ =⇒ x(t) = x(t − T )), (12)
∃ε > 0,∀t′′ ∈ (t′, t′ + ε), t′ ∈ Iσ

t′′ (x) and
∀t ≥ t′, σt′′(x)(t) = µ =⇒ (σt′′(x)(t) = σt′′(x)(t + T ) and

t − T ≥ t′ =⇒ σt′′(x)(t) = σt′′(x)(t − T )).
(13)

Proof. a) The following formula

T̂σ̂k′+1(x̂)
µ = {k|k ∈ N , x̂(k + k′ + 1) = µ} = T̂x̂

µ ∩ {k′, k′ + 1, k′ + 2, ...}
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holds and the supposition that µ ∈ ω̂(x̂) implies, since T̂x̂
µ is infinite, that all the

previous sets are non-empty.

(6)=⇒(7) Let k ∈ T̂σ̂k′+1(x̂)
µ and z ∈ Z arbitrary with k + zp ≥ −1. We have

σ̂k′+1(x̂)(k) = x̂(k + k′ + 1) = µ, k + k′ + 1 ≥ k′ and k + k′ + 1 + zp ≥ k′, thus

k + k′ + 1 + zp
(6)
∈ T̂x̂

µ, wherefrom σ̂k′+1(x̂)(k + zp) = x̂(k + k′ + 1 + zp) = µ and the

conclusion is k + zp ∈ T̂σ̂k′+1(x̂)
µ .

(7)=⇒(8) Let k ≥ k′ arbitrary with x̂(k) = µ. We can see that k − k′ − 1 ≥ −1,
µ = σ̂k′+1(x̂)(k − k′ − 1) and

k − k′ − 1 + p ∈ {k − k′ − 1 + zp|z ∈ Z} ∩ N
(7)
⊂ T̂σ̂k′+1(x̂)

µ

hold. It has resulted that µ = σ̂k′+1(x̂)(k − k′ − 1 + p) = x̂(k + p).
If, in addition, k − p ≥ k′, then k − k′ − 1 − p ≥ −1 and

k − k′ − 1 − p ∈ {k − k′ − 1 + zp|z ∈ Z} ∩ N
(7)
⊂ T̂σ̂k′+1(x̂)

µ ,

in other words µ = σ̂k′+1(x̂)(k − k′ − 1 − p) = x̂(k − p).

(8)=⇒(9) Let k ∈ T̂σ̂k′+1(x̂)
µ arbitrary. We have k ≥ −1, k + k′ + 1 ≥ k′ and we can

apply (8):

σ̂k′+1(x̂)(k) = x̂(k + k′ + 1)
(8)
= x̂(k + k′ + 1 + p) = σ̂k′+1(x̂)(k + p).

If in addition k − p ≥ −1, then k − p + k′ + 1 ≥ k′ and we can apply (8) again:

σ̂k′+1(x̂)(k) = x̂(k + k′ + 1)
(8)
= x̂(k + k′ + 1 − p) = σ̂k′+1(x̂)(k − p).

(9)=⇒(6) Let k ∈ T̂x̂
µ, z ∈ Z arbitrary, having the property that k ≥ k′, k + zp ≥ k′.

We have k − k′ − 1 ≥ −1, k + zp − k′ − 1 ≥ −1 and the following possibilities result.
Case z > 0,

µ = x̂(k) = σ̂k′+1(x̂)(k − k′ − 1)
(9)
= σ̂k′+1(x̂)(k − k′ − 1 + p)

(9)
= ...

...
(9)
= σ̂k′+1(x̂)(k − k′ − 1 + (z − 1)p)

(9)
= σ̂k′+1(x̂)(k − k′ − 1 + zp) = x̂(k + zp);

Case z = 0,
µ = x̂(k) = x̂(k + zp);

Case z < 0,

µ = x̂(k) = σ̂k′+1(x̂)(k − k′ − 1)
(9)
= σ̂k′+1(x̂)(k − k′ − 1 − p)

(9)
= ...

...
(9)
= σ̂k′+1(x̂)(k − k′ − 1 + (z + 1)p)

(9)
= σ̂k′+1(x̂)(k − k′ − 1 + zp) = x̂(k + zp).



Eventually periodic points of the binary signals: definition, accessibility... 219

We have obtained in all the three cases that k + zp ∈ T̂x̂
µ.

b) Let ε > 0 with the property

∀ξ ∈ [t′, t′ + ε), x(ξ) = x(t′) (14)

and we take t′′ ∈ (t′, t′ + ε) arbitrarily. For ε′ ∈ (0, t′′ − t′) we see that ∀ξ ∈ (t′′ −
ε′, t′′), x(ξ) = x(t′), thus x(t′′ − 0) = x(t′) and we have

σt′′(x)(t) =
{

x(t), t ≥ t′′

x(t′′ − 0), t < t′′ =
{

x(t), t ≥ t′

x(t′), t < t′ + ε . (15)

We notice that t′ ∈ Iσ
t′′ (x), since ∀t ≤ t′, σt′′(x)(t) = x(t′) = σt′′(x)(t′) and the

following formula

Tσt′′ (x)
µ ∩ [t′,∞) = {t|t ≥ t′, σt′′(x)(t) = µ} = Tx

µ ∩ [t′,∞)

holds. The request µ ∈ ω(x) implies that all the previous sets are non-empty, since
Tx
µ is superiorly unbounded.

(10)=⇒(11) We take t ∈ Tσt′′ (x)
µ and z ∈ Z arbitrary with the property that t ≥ t′

and t + zT ≥ t′. We have

µ = σt′′(x)(t)
(15)
= x(t)

(10)
= x(t + zT )

(15)
= σt′′(x)(t + zT ).

(11)=⇒(12) Let t ≥ t′ arbitrary with the property x(t) = µ. As

σt′′(x)(t)
(15)
= x(t) = µ,

we can apply (11), thus

t + T ∈ {t + zT |z ∈ Z} ∩ [t′,∞)
(11)
⊂ Tσt′′ (x)

µ

and
µ = σt′′(x)(t + T )

(15)
= x(t + T ).

If in addition t − T ≥ t′, then

t − T ∈ {t + zT |z ∈ Z} ∩ [t′,∞)
(11)
⊂ Tσt′′ (x)

µ

and
µ = σt′′(x)(t − T )

(15)
= x(t − T ).

(12)=⇒(13) We have for t ≥ t′ arbitrary with µ = σt′′(x)(t) = x(t) that

µ = σt′′(x)(t) = x(t)
(12)
= x(t + T ) = σt′′(x)(t + T )
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etc.
(13)=⇒(10) Let t ∈ Tx

µ and z ∈ Z with the property that t ≥ t′ and t + zT ≥ t′. We
have σt′′(x)(t) = x(t) = µ, thus we can apply (13).

Case z > 0,
µ = σt′′(x)(t)

(13)
= σt′′(x)(t + T )

(13)
= ...

...
(13)
= σt′′(x)(t + (z − 1)T )

(13)
= σt′′(x)(t + zT ) = x(t + zT );

Case z = 0,
µ = x(t) = x(t + zT );

Case z < 0,
µ = σt′′(x)(t)

(13)
= σt′′(x)(t − T )

(13)
= ...

...
(13)
= σt′′(x)(t + (z + 1)T )

(13)
= σt′′(x)(t + zT ) = x(t + zT ).

In all the three cases we have inferred t + zT ∈ Tx
µ.

Definition 3.1. We consider the signal x̂ and the point µ ∈ ω̂(x̂). If p ≥ 1 and k′ ∈ N
exist such that one of (6),..., (9) holds, then µ is said to be eventually periodic (an
eventually periodic point of x̂, or of Ôr(x̂)) with the period p and with the limit of
periodicity k′. The least p, k′ are called prime period and prime limit of periodicity.

Let x and µ ∈ ω(x) and we suppose that T > 0 and t′ ∈ R exist such that one of
(10),..., (13) is true. Then µ is said to be eventually periodic (an eventually periodic
point of x, or of Or(x)) with the period T and with the limit of periodicity t′. The
least T, t′ are called prime period and prime limit of periodicity.

Remark 3.1. Theorem 3.1 states that the eventual periodicity of µ ∈ ω̂(x̂), µ ∈ ω(x)
with the period p, T and the limit of periodicity k′, t′ coincides with the periodicity of
µ ∈ ω̂(σ̂k′+1(x̂)), µ ∈ ω(σt′′(x)) with the period p, T.

Remark 3.2. In the real time case, the prime period T and the prime limit of period-
icity might not exist. This happens for example when x is constant.

4. THE ACCESSIBILITY OF THE EVENTUALLY
PERIODIC POINTS

Theorem 4.1. a) Let x̂ and µ ∈ ω̂(x̂) that is eventually periodic, with the period p ≥ 1
and the limit of periodicity k′ ∈ N . For any k ≥ k′ we have T̂x̂

µ∩{k, k+1, ..., k+p−1} ,
∅.

b) Let x and µ ∈ ω(x) that is eventually periodic with the period T > 0 and the
limit of periodicity t′ ∈ R. For any t ≥ t′, we have Tx

µ ∩ [t, t + T ) , ∅.

Proof. a) The hypothesis implies the truth of

T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...} , ∅, (16)
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∀k ∈ T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...},

{k + zp|z ∈ Z} ∩ {k′, k′ + 1, k′ + 2, ...} ⊂ T̂x̂
µ.

(17)

The statement (16) allows us to define k′′ = min T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...} and we

prove that k′′ ∈ T̂x̂
µ ∩ {k′, k′ + 1, ..., k′ + p− 1}. If, against all reason, this would not be

true, then we would have k′′ ≥ k′ + p and

k′′ − p ∈ {k′′ + zp|z ∈ Z} ∩ {k′, k′ + 1, k′ + 2, ...}
(17)
⊂ T̂x̂

µ,

representing a contradiction with the definition of k′′.
From (17) we infer that {k′′, k′′+p, k′′+2p, ...} ⊂ T̂x̂

µ∩{k′, k′+1, k′+2, ...},meaning
that ∀k ≥ k′, T̂x̂

µ ∩ {k, k + 1, ..., k + p − 1} , ∅.
b) We have from the hypothesis that

Tx
µ ∩ [t′,∞) , ∅, (18)

∀t ∈ Tx
µ ∩ [t′,∞), {t + zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ (19)

are fulfilled. From (1) and (18) we get that Tx
µ ∩ [t′,∞) has one of the forms [a, b),

[a,∞), [a1, b1)∪...∪[ak, bk), [a1, b1)∪...∪[ak, bk)∪..., [a1, b1)∪...∪[ak, bk)∪[ak+1,∞)
and this allows defining t′′ = min Tx

µ ∩ [t′,∞). We show that t′′ ∈ Tx
µ ∩ [t′, t′ + T ). If,

against all reason, this would not be true, then we would have t′′ ≥ t′+T. This means
that t′′ − T ≥ t′, thus

t′′ − T ∈ {t′′ + zT |z ∈ Z} ∩ [t′,∞)
(19)
⊂ Tx

µ,

contradiction with the definition of t′′.
By using (19) we get {t′′, t′′ + T, t′′ + 2T, ...} ⊂ Tx

µ ∩ [t′,∞). The statement of the
Theorem holds.

5. THE LIMIT OF PERIODICITY

Lemma 5.1. a) x̂ ∈ Ŝ (n) is given and we suppose that µ ∈ ω̂(x̂) is eventually periodic
with the period p ≥ 1 and with the limit of periodicity k′ ∈ N . If k′′ ≥ k′, then µ is
eventually periodic with the period p and with the limit of periodicity k′′.

b) Let x ∈ S (n) and we suppose that µ ∈ ω(x) is eventually periodic with the period
T > 0 and with the limit of periodicity t′ ∈ R. If t′′ ≥ t′, then µ is eventually periodic
with the period T and with the limit of periodicity t′′.

Proof. b) The hypothesis states that

∀t ∈ Tx
µ ∩ [t′,∞), {t + zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ (20)

is true and we must prove

∀t ∈ Tx
µ ∩ [t′′,∞), {t + zT |z ∈ Z} ∩ [t′′,∞) ⊂ Tx

µ (21)
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for an arbitrary t′′ ≥ t′. Indeed, we take some arbitrary t ∈ Tx
µ ∩ [t′′,∞) and z ∈ Z

such that t + zT ≥ t′′ holds. Then t ∈ Tx
µ ∩ [t′,∞) and t + zT ≥ t′ are true, thus we

can apply (20). We have obtained that t + zT ∈ Tx
µ, i.e. (21) is fulfilled.

Theorem 5.1. a) x̂ ∈ Ŝ (n), µ ∈ ω̂(x̂), p ≥ 1, p′ ≥ 1, k′ ∈ N , k′′ ∈ N are given. If ∀k ∈ T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...},

{k + zp|z ∈ Z} ∩ {k′, k′ + 1, k′ + 2, ...} ⊂ T̂x̂
µ,

(22)

 ∀k ∈ T̂x̂
µ ∩ {k′′, k′′ + 1, k′′ + 2, ...},

{k + zp′|z ∈ Z} ∩ {k′′, k′′ + 1, k′′ + 2, ...} ⊂ T̂x̂
µ

(23)

hold, then  ∀k ∈ T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...},

{k + zp′|z ∈ Z} ∩ {k′, k′ + 1, k′ + 2, ...} ⊂ T̂x̂
µ

(24)

is true.
b) Let x ∈ S (n), µ ∈ ω(x),T > 0, T ′ > 0, t′ ∈ R, t′′ ∈ R. Then

∀t ∈ Tx
µ ∩ [t′,∞), {t + zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ, (25)

∀t ∈ Tx
µ ∩ [t′′,∞), {t + zT ′|z ∈ Z} ∩ [t′′,∞) ⊂ Tx

µ (26)

imply
∀t ∈ Tx

µ ∩ [t′,∞), {t + zT ′|z ∈ Z} ∩ [t′,∞) ⊂ Tx
µ. (27)

Proof. b) Let t ∈ Tx
µ, z ∈ Z arbitrary such that t ≥ t′ and t + zT ′ ≥ t′. Such a t exists

since µ ∈ ω(x). We have the following possibilities.
Case t′ ≥ t′′

Then t ≥ t′′ and t + zT ′ ≥ t′′, thus t + zT ′
(26)
∈ Tx

µ (see also Lemma 5.1).
Case t′ < t′′

k ∈ N exists with t+kT ≥ t′′, t+zT ′+kT ≥ t′′.Obviously t+kT ≥ t′, t+zT ′+kT ≥ t′

and we can write

µ = x(t)
(25)
= x(t + kT )

(26)
= x(t + zT ′ + kT )

(25)
= x(t + zT ′),

in other words t + zT ′ ∈ Tx
µ.

Remark 5.1. The previous Theorem states that the set of the limits of periodicity
does not depend on the period.

Notation 5.1. We denote

L̂x̂
µ = {k′|k′ ∈ N ,∃p ≥ 1, (6) holds},

Lx
µ = {t′|t′ ∈ R,∃T > 0, (10) holds}.
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Example 5.1. Let the signal x ∈ S (1),

x(t) = χ[0,1)(t) ⊕ χ[4,5)(t) ⊕ χ[6,7)(t) ⊕ χ[8,9)(t) ⊕ χ[10,11)(t) ⊕ ...

The point 1 ∈ ω(x) is eventually periodic and 2, 4 are two periods. We might be
tempted to think that the sets of limits of periodicity are different for T = 2 and
T ′ = 4, but this is not the case; in both situations (10) is fulfilled with Lx

1 = [3,∞).

Theorem 5.2. a) Let x̂ ∈ Ŝ (n) and the eventually periodic point µ ∈ ω̂(x̂). Then
k′ ∈ N exists with L̂x̂

µ = {k′, k′ + 1, k′ + 2, ...}.
b) Let x ∈ S (n) non constant and the eventually periodic point µ ∈ ω(x). Then

t′ ∈ R exists such that Lx
µ = [t′,∞).

Proof. a) The hypothesis states L̂x̂
µ , ∅. The statement is a consequence of Lemma

5.1.
b) Because x is not constant, t0 ∈ R exists with Ix = (−∞, t0), i.e.

∀t < t0, x(t) = x(−∞ + 0), (28)

x(t0) , x(−∞ + 0). (29)

We suppose that Lx
µ , ∅ and that µ has the period T > 0.

b.i) We show first that t0−T < Lx
µ and we suppose against all reason that t0−T ∈ Lx

µ.
We have two possibilities.

Case µ = x(−∞ + 0)
The hypothesis t0 − T ∈ Lx

µ implies, as far as t0 − T ∈ Tx
µ,

µ = x(t0 − T ) = x(t0),

representing a contradiction with (29).
Case µ , x(−∞ + 0)
We infer from Theorem 4.1 that Tx

µ ∩ [t0 − T, t0) , ∅, wherefrom µ = x(−∞ + 0),
representing a contradiction.

b.ii) From b.i) and from Lemma 5.1, we draw the conclusion that Lx
µ has one of the

forms Lx
µ = (t′,∞), Lx

µ = [t′,∞), where t′ > t0 − T. We show that the first possibility
cannot take place, thus we suppose against all reason that t′ exists with Lx

µ = (t′,∞).
We have the existence of ε′ > 0, ε′′ > 0 such that

∀t ∈ (t′, t′ + ε′), x(t) = x(t′), (30)

∀t ∈ (t′ + T, t′ + T + ε′′), x(t) = x(t′ + T ) (31)

and let ε ∈ (0,min{ε′, ε′′}). Two possibilities exist.
Case x(t′) = µ
We have t′ < Lx

µ, thus x(t′ + T ) , µ and (t′, t′ + ε) ⊂ Lx
µ means that

∀t ∈ (t′, t′ + ε), x(t) = µ =⇒ x(t) = x(t + T ). (32)
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Let t ∈ (t′, t′ + ε) arbitrary. We can write

µ = x(t′)
(30)
= x(t)

(32)
= x(t + T )

(31)
= x(t′ + T ),

contradiction.
Case x(t′) , µ
In this case two possibilities exist. The case x(t′ + T ) = µ, when (t′, t′ + ε) ⊂ Lx

µ

means the truth of (32). Let t ∈ (t′, t′ + ε) arbitrary. We conclude

µ = x(t′ + T )
(31)
= x(t + T )

(32)
= x(t)

(30)
= x(t′),

representing a contradiction. And the case x(t′ + T ) , µ when ∀k ∈ N, x(t + kT ) , µ.
As for any t ∈ Tx

µ∩ (t′,∞) = Tx
µ∩ [t′,∞), we have {t+ zT |z ∈ Z}∩ (t′,∞) = {t+ zT |z ∈

Z} ∩ [t′,∞), the conclusion is t′ ∈ Lx
µ, contradiction.

It has resulted that the existence of t′ > t0 − T with Lx
µ = [t′,∞) is the only

possibility.
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