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Abstract

The paper studies the relatively inertial delays that represent one of the most
important concepts in the modeling of the asynchronous circuits.

1. Introduction

The delays are the mathematical models of the delay circuits. Delay
theory is the mathematical theory that considers the fundamental circuit in
digital electronics be the delay circuit and modeling is made by using delays
and Boolean functions. The most detailed level of modeling is considered,
starting from the delays that occur in gates and wires.

Relative inertia is the property of the states of having their speed of
variation limited by the persistency of the input and the relatively inertial delays
are these delays the states of which are relatively inertial. Even if the concept
has close connections with the published literature, it has a severe shortcoming:
the serial connection of two relatively inertial delays is not always a relatively
inertial delay.

Some major properties of these delays are presented as well as the
relation with absolute inertia and with zenoness.

2. Preliminaries
Definition 2.1 The binary Boole algebra is the set B ={0,1} endowed with the
discrete topology, with the order 0 <1 and with the usual laws LU,

Definition 2.2 The order and the laws of B induce an order and laws having
the same notations in the set of the R — B functions.

Definition 2.3 Let x: R —» B and Ac R be given. We define
0,if IEe A x(E)=0
Nxo-|
EeA

1, otherwise
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Definition 2.4 The left limit function x(t —0) of x: R — B is defined by
Vte R,3e>0,VE e (t —¢,t),X(§) = x(t—0)

Definition 2.5 The functions x(t—0)-x(t),x(t—0)-x(t) are called the left
semi-derivatives of x.

Definition 2.6 For the function x: R — B, we define lim x(t) € B by
t—ow

dts e R, VE>1t¢,X(E) :tlim X(t)

Definition 2.7 We use the notation y 5 : R — B for the characteristic function

oftheset Ac R:
Lifte A

%A= {O, otherwise
A function x:R — B for which an unbounded sequence ty <t; <t, <... of
real numbers exists so that
X(t) = X(to) - % (o0,t7) (1) @ X(t1) - X[ty 1) (1) @ X(t2) - A [t ,t3) () D ...
is called signal. The set of the signals is denoted by S .

Definition 2.8 A  multi-valued function f:S—)P*(S), where

P*(S) ={X | X < S, X =T} is called system (with 1-dimensional inputs and
1-dimensional states). Any u e S is called input and any xe f(u) is called
state.
Definition 2.9 A delay is a system f satisfying the next property

VYueS,3limu(t)= Vvxe f(u),3 lim x(t) and lim x(t) = lim u(t)

t—o t—o t—o t—o

3. Relative inertia
Definition 3.1 We consider the next inequalities:

x(t —0)- x(t) < u()

Eelt—3y ,t=3r +ur]

S — (1)
x(t —0)- x(t) < (u(E)
Celt-0¢ =8¢ +uf]
where  0<p, <9, O0<ps <d% and u,xeS. The system

pArOTREOT g L p*(S) that is defined by



Or,lLf,0 .
vues, fh T M T () =fx| x e s, xfulfills (0}
is called the relative inertia property.

Definition 3.2 If the systems f and fﬁlr'sr'“f’sf satisfy

vues, fuyc firorrhot )

then f is called relatively inertial. We use to say that f satisfies the relative

o Spouf.d
inertia property f|:|r pREOT

4. Order

Definition 4.1 The order — of the systems f,g:S — P*(S) IS
fcgeVues, f(u)cg(u)

Theorem 4.2 For any numbers 0<p, <8,, 0<p¢s <3¢, OSH} SS},

OSu‘f SS'f :

HrOppf.Of M St S f

O 28r,0f 28¢,0r —Up 28 —Up,0f —Hf 20§ —Ug

Spog.s TR
Proof thlIr r.Uf foFgllr r-Uf f<:>

&S VieR,VueS, ﬂu(&) < ﬂu(é;) and
Eelt=0r t=0r+ur]  ec[t—5y t-5y +uy]

and Nu@ < uE

Eelt-8f t=8f +nf] ce[t-5F t-5¢ +pf]
S VteR [t-8,,t—8; +pr ][t -8, ,t—8, +p,]and
and [t—8¢,t—8¢ +us]D[t—5¢,t—85 +puf]
© 8y 28,8y —piy SO 1y, B¢ 284,01 —py <8¢ —py

Theorem 4.3 If f is a delay, then any system g — f is adelay.
Proof Let u € S be arbitrary s.t. lim u(t) = A . Because the hypothesis states
t—o

Vxe f(u),3 lim x(t) and lim x(t)=x
t—o0 t—>o



g(u) < f(u)
we have
Vx e g(u),3 lim x(t) and lim x(t) =A
t—o t—o0

Or,LfOf . . . .
Remark 4.4 When f c ngllr PREOT sa relatively inertial delay, any system

. . N Hr.Sp.pf.of
g c f isarelatively inertial delay < fp, .

o S Or,pf,0
Definition 4.5 The relative inertia property flslr rREoT generated by the
: : _ Hr.Or.uf.Of RN R I
delay f is defined by: f c fp, and for any fp, with

MR
f fur r-Lf,of

Spof .o IR,
= we have fFP;Ir r-Uf fcfur r.Uf f.

RI
5. Duality

Definition 5.1 The dual system " of the system f is defined like this
vues, fu)={x|xe f(u)}

Bprf.df . S .1y,
Theorem 5.2 The dual of flslr PREOT s thtlf fHror
Proof Let ue S an arbitrary input for which we can write
HrOp i Of \ . HrOr.f.0f
(fR|r ' ) (U)={X|xe fR|r ' ()}

={X|x(t-0)-x(t) < NuE) xt-0)-x() < NuE 3}

Eelt=5yr t=5r +ur] Ge[t-5f t-3¢ +uf]
={x| x(t-0)-x(t) < uE) . xt-0)-x(t) < Nu@E 3
Eeft—-5r t-5r +ur] e[t—5f t-3¢ +pf]

Hf.df.pur,Or

Theorem 5.3 The system f is a delay iff the dual system f isa delay.
Proof
YueS,3limu(t) = Vxe f(u),3lim x(t)and lim x(t) = lim u(t)
t—>owo tow oo t—w

o (VT eS, 3 limu(t)= vxe f(@),3 lim x(t) and lim X(t) = lim T(t))
t—o0 tow oo t—ow



< (VueS,Alimut) = vxe f (u) 3 lim x(t) and lim x(t) = lim u(t))

t—>w t—oo t—>owo t—oo
where we have used the notations YueS=Vvu,ueS and

VX e f(@)=VxXe f(T).

Theorem 5.4 Let f be adelay. Then

161 18 * ,8, ,6
foFtLIr rKf f<:>f chtllf f Ur.Or

Hr.Or,uf.0f Mr Or 1f.0f
f (u)

Proof f c fp, < VYuesS, fu)c

e vueS{x|xe fulc{x|xe 5" Orpf, Sf( )}

o VI eSAX|xe f(@}cix|xe f“r OrREOt oy
evues, fru)c(fy” Srbt Sf) (u)

3 8 * O ,1r,d
<:>‘V’UGSf(u) Hf fabr, r()<:>f CfF:llf f Hr.or

We have use the notatlon YU eS =Vu,u eS and the result from Theorem 5.2.

6. Serial connection

Definition 6.1 The serial connection go f of the systems f,g is defined like
this:
vues,(go H)u) = JoaX

xe f (u)

Remark 6.2 The serial connection of the relative inertia properties is not a
relative inertia property in general and the serial connection of the relatively
inertial delays is not necessarily a relatively inertial delay. We give the example
of the next delays

xt-0)-x(t)= (xE)-u®) |yt-0)-yt)y=[)yE)-x(t)

Ee[t—2,t) Ee[t—4.1)
X(t—0)-x®) = [xE)-u® |yt-0-y®) = [y x®
Ee[t—2,t) Ee[t—4,1)

that are relatively inertial, but their serial connection is not a relatively inertial
delay. The fact that the first system is a delay is shown by supposing that
limu(t)=A,AeB thus t € R existss.t. Vt >t ,u(t) =A and consequently

t—



XE-0)-x(t) = (x(E)-r
Ee[t-2,1)
il — -
Xt-0)-x(t)= []x(€)-2
Ee[t—2,t)
We take A =1, in other words Vt>t¢,x(t) can switch from 0 to 1 exactly
once. If x(ts) =1, then Vt>t;,x(t) =1 and if x(t{) =0, then

Ity ety .ty +2L x4 —-0)-x(t) = [x(E)-1=1
elt1-2.)
V>t x(t) =1

The presumption that A = 0 brings the conclusion that lim x(t) =0.
t—>

Vit

The proof that
yt-0)-y® = [yE-x

Ee[t—4,1)
yt-0)-y®) = [y(E)-x@)
Ee[t—4,1)
is a delay is similar.
The two delays are relatively inertial because

X(t=0)-x(t) <u(t) [y({t-0)-y(t)<x(t)
X(t-0)-x(®) <u(®) [y(t-0)-y(t) <x()

For reasons of symmetry, by supposing against all reason that their serial
connection would be relatively inertial, it would satisfy

y(t-0)-y(@® < (u&)

Ee[t—5,t—3+u]

yt-0)-yO<  u@©

Ee[t—5,t—3+u]

where 0<u<3. We choose u(t) =x[01)u[2,3)u[4,)(t) for which the first

()

delay gives X(t)=y[03)u[5»)(t) and the second delay shows us that
y(t) = X[0,4)U[8,0) (t). We have

(UE) = A[5.1+5—p)U[2+5,3+5—p)U[d+5,0) (V)
Ee[t—5,t—8+u]

UE) =% (co0,5-p)Uf1+6,2+5 ) U[3+5,4+5—1) (1)
Eeft—8,t—5+p]



where the intervals [61+d—-u), [2+06,3+3—p), [1+8,2+d—),
[3+0,4+6—p) can be empty or non-empty in principle. From (2) we obtain
%{0,8} (1) < A[5,1+5—p) U[2+6,3+5—p)U[4+8,00) (1) €)
X443 (1) S A (0,5 ) U[14+8,2+5—p) U[3+5,4+5-p) (1) (4)
(3) implies 6 <0, thus 6 =pu=0. This represents a contradiction with (4) that
becomes
%43 () < X (0,0 Up1,2) 3,4 (1)
impossible. (2) is false.

Theorem 6.3 The serial connection of the delays is a delay.
Proof The hypothesis states that

Yvu eS,H Iim u(t) = vxe f(u),ﬂ Iim x(t) and Iim x(t) = lim u(t) (5)
t— t—o0
VxeS,3 I|m X(t) = Vy e g(x),3 I|m y(t) and I|m y(t) = lim x(t) (6)
t—o0 t—o0 t—o0 t—o0
and let u € S be an arbitrary input s.t. lim u(t)=A,A € B. From (5) we infer
t—oo
Vxe f(u),3 lim x(t) and lim x(t) =X (7
t—ow t—o

We fix an arbitrary x € f (u). From (6) and (7) we draw the conclusion that
vy e g(x),3 lim y(t)and lim y(t)=A
t—>o t—o0

We have just proved that
YueS,limu(t) = Vye(ge f)(u),3 lim y(t) and lim y(t) = lim u(t)

t—o t—o t—o t—o
i.e. go f isadelay.

7. Intersection

Definition 7.1 Let f,g be two systems. If Yue S, f(u) ng(u) #J, then the
intersection f mg of f and g is by definition the next system:
YueS,(f ng)u)=fu)ng(u)

Theorem 7.2 Forany O0<p, <&,,0< g SSf,OSH‘r 38}, OSMIf SBlf the

Or,1f.0f fur@r,ufﬁf ur O 1 f 5f

system fa,"” N o is relatively inertial c fp

Spog.d Spf.Sf .
Proof We observe that f&' " HEST szl,r ot S is described by the

equations



X(t—0)-x(t) < NuE - (u(©)
Selt=8r.t=8r+ur] eeft-5p,t-8p +ur]
X(t-0)-x(t) < NuE - u(©)
Selt=8f t-8f +uf] eeft-5¢ t-5 +ur]
that have always a solution, for example the constant function x(t) =X. In this

moment the theorem is proved, but let us remark also for all te R and all
u e S the truth of the inequalities

uE) - NuE) < (u&)

Eelt=0r t=3r+ur] ge[t—8p,t—6p +up] SElt=0r t=3r+ur]

ue - e = u®

Eelt=0f t-8f +1f] ceft—5¢ t-6f+puf] GELL-0f t=3¢f+uf]

Theorem 7.3 If the delays f,g satisfy Yue S, f(u)mng(u) =3, then f ng

is a delay.
Proof The factthat f ng < f and that f is a delay shows from Theorem 4.3

that f g isadelay.

Theorem 7.4 We suppose that the relatively inertial delays

Bropt,d PRI .
fofy pREor gchtllr PR satisfy VueS, f(u)ng(u) =D .
Ur Op hf.Of . . . .
Then f ngc fg is a relatively inertial delay.

Proof f mg isadelay from Theorem 7.3. We have

Brouf,d PR Brop,d

fmngFtllr rbf fmflslr rbf fcflslr rlUf.of
- Spf.d

Theorem 7.5 If the delay f satisfies VueS, f(u)n fa " M2t Wy 20,

,8 1 16 ,8 1 16 - - - -
then f N f|§|r pRTOT f|§|r CRTOT s a relatively inertial delay.

SpfSf .
Proof f fF';llr PRT2T s a delay because it is a subsystem of f and we

take into account Theorem 4.3. The statement is obvious.

8. Union

Definition 8.1 The union fuw g of the systems f,g is defined in the next
way:
vues, (fug)u)=f)wg()



Remark 8.2 The union of the relative inertia properties is not a relative inertia
property in general and similarly the union of the relatively inertial delays is not
a relatively inertial delay in general. We give the example of the union of the
next relative inertia properties

xt-0)-x@) < [uE) [xt-0)-x@®)< [u(©)

Ee[t—-3,t-2] Ee[t-1,t]
x(t-0)-x@®) < (@) |xt-0)-x®< [uE)
Ee[t-3,t-2] Ee[t-1,t]

that is given by
x(t-0)-x)<  (uEv [uE)

Ee[t-3,t-2] E€[t-1t]
Xt-0)-x() < (u@v [u©)
Ee[t-3,t-2] E&e[t-1t]
and it is not a relative inertia property. By presuming against all reason that it is
a relative inertia property, for reasons of symmetry we must have

u@v (uEs  (uE)

Ee[t-3,t-2] Ee[t-1t] Ee[t—8,t—0+u]
AuEv NuEs  uE
Ee[t-3,t-2]  Ee[t-1t] Ee[t—8,t—0+u]
where 0<pu<3.For u=yg ) we infer that

w2upa® = (uEu uE =< (UE) =xs.2+5-w®) (9

Ee[t-3,t-2] Ee[t-1t] Ee[t—5,t—8+u]

Lo2)upo® = [u@u (u@Es< (10)
Ee[t—3,t—-2] Ee[t-1t]
< [UE) =% (—0,6-p)[2+5,00) ()
Ec[t—5,t—6+u]
The conclusion is the next one:

(10) 9)
2<5-pu<d<1

contradiction from which we get that the inequalities (8) are false.

(8)

Theorem 8.3 The union of the delays is a delay.
Proof The hypothesis states that

YueS,alimu(t) = Vvxe f(u),3lim x(t) and lim x(t) = lim u(t)
t—>owo t—oo t—>o0 t—o0

YueS,3limu(t)= Vxeg(u),3 lim x(t)and lim x(t) = lim u(t)
t—o t—ow t—o t—o0



and let u € S be arbitrary with lim u(t) = A . We infer that
t—>o

VX e f(u)ug(u),EItIim x(t)and lim x(t) =2

— t—ow
thus f U g isadelay.

9. Non-anticipation

Definition 9.1 We denote by uj, the restriction of ue S to Ac R. The system

f is called non-anticipatory if:
VieR,VueS,VveSs,

Ul(=o0,t] = Vi(=o0,t] = ooty [ X € FUF={Y|( 0,7 | Y € TV}

Theorem 9.2 For any parameters 0 <p, <3,,0<pus <3¢ the relative inertia

Spnf.Sf L
property fa' " H1-2T s non-anticipatory.

Proof The property is true because in the inequalities

x(t —0) - x(t) < u(€)

Ee[t=3y,t-8r +ur]

X(t - 0) - x(t) < Mu(@)

Eelt-6¢ ,t-8¢ +ufl

: Srapf.d
we have t—8, +pu, <t,t -3¢ +pys thus the solutions x e thllr PREOT W)

depend only on the values u(_ ] -

Theorem 9.3 Let f be a non-anticipatory delay and we suppose that

Or,nf,0
vues, fuym fy"

HrSppf.of . :
f g, IS non-anticipatory.

f(u);t@. Then the relatively inertial delay

Proof Let te R, u,veS be arbitrary s.t. Uy_q ] = V|(—o0,¢]- From the fact that

18 [l 16 -
f A fslr rHEOT oxists and from

oty | X € FUI={Y( o0ty |V € TV}
or, ,0 or, ,0
Do 1 xe fa T U =g Ly e fad T T )3
we infer
or, ,0
Kooy | x e (F iy T )y =



)
gy X F)A T ()32

Or.1f,0
={nty X € F@IA DYy X T W)=

,Or, ,0
=Yoqg 1Y € FOIO o1V e Tt 0T (W)} =

,0 d
=og Y e fO) AR T T )3 =

,0 )
=oq 1y e (F ot T Ty

10. Time invariance

Definition 10.1 We denote by 19 R R the translation with deR:
Vte R,rd (t)=t—d. The system f istime invariant if

vd eRVueS, fuot?)={xot% |xe f(u)}

rOr.uf.df

Theorem 10.2 The relative inertia property fF\l;L| is time invariant.

Proof We fix d e R and u € S arbitrarily. We can write that
X(t—0)- x(t) < (uE-d)
Bruf, t-8p,t-8
thtlr r“fo(UO‘cd):{X| - Eeft—8p t=8p +ur]
X(t—0) - x(t) < (uE-d)

Eelt-6¢ ,t-8¢ +pnfl

x(t —0) - x(t) < u)
(€'=E-d) g+de[t—8p t-8 +ur]
= _ i
X(t —0) - x(t) < u)
E+de[t-8¢,t-0¢ +uf]
X(t-0)-x(t) < u(©)
_ x| - ?;e[t—d—Sr,t—d—_Srﬂir]
X(t—0) - x(t) < u©)
Eelt-d—0¢ t—-d-0¢ +uf]
X(t+d-0)-x(t+d)< ﬂu(&)
_ x| Ee[t—8y ,t-dp +pr]
X(t+d—-0)-x(t+d)< Mu(©)
Ce[t-8¢.,t-3¢ +uf]




_ Sf,uf,d Sf . uf,d
={X|XO’C defls'lr f.uf f(u)}:{XO’Cd|XEf|§|r f.lf f(u)}
Theorem 10.3 Let f be a time invariant delay. If YueS,

f(u)mfglr’sr’“f’éf(u);t@, then the relatively inertial  delay

,8 ) 78 - - - -
fA thllr rHTOT s time invariant.

Proof Let d e R and u € S be arbitrary.We have:

Of,Lf,0 O f,Lf,0
(fmfls'lr folLf f)(uord):f(uord)mfls'lr folf f(uord):

O f,Lf,0
—{xo1% [xe funfxotd xe fa " TH T W)=

OFf ,Lf,0
—f{xotd | xe fuyn fa "THTOT W=

OFf, ,0
ot [xe(f T g

11.  Absolute inertia
Definition 11.1 We consider the next inequalities where d, >0,d; >0 and

XxeS:

xt-0)-x(t)<  [)x(&)

Eeft,t+d, ]

Xt-0)-x@®)<  [xE)

Eelt,t+d £ ]

11)

df

. . dr, . :
The absolute inertia property is the system f Alr that is defined by

dy,d -
vues, fal " (u)={x|xe S, x satisfies (L)}
Definition 11.2 If the system f fulfills

de,df
YueS, fuyc fy ' ()
then it is called an absolutely inertial system and we use to say that f satisfies
. dyr.d
the absolute inertia property f,| "

Theorem 11.3 Let 0<p, <8,,0< s <&¢ be arbitrary. If 55 26, —p,,

or,uf,0 Of —Op+ur,0r—0f+

&y >8¢ —pu¢ then VUES,thllr Al



Proof We presume that 8¢ >8, —p,,0, 28¢ —pns and let u,xe S have the
property that
Xt-0)-x®<  [u@
Eel[t=3y,t-8r +ur]
X(t—0)-x(t) < Nu©
Ee[t-8¢ ,t-8¢ +pf]
We take t; <t, two time instants where x switches in the next manner:
X(t; —0)- x(t;) =1and x(t, —0)-x(ty) =1
We obtain
NuE = NuE =1
e[ty -8y .ty -8y +pur] &elta—df,t2—df +ut]
=t -8ty =8y +ur N[ty =8¢ ,tp =8¢ +pus] =9
=t -0+ <to—-0f0rty—90¢ +ps <t -9,
=ty -t >0¢f —d,+up0orty—t;<06¢ —pus — 9
=1ty -t >0 -0 + 1y
(the inequality to —t; <&¢ —u¢ — O, is false because the left term is strictly
positive and the right term is non-positive.) The conclusion is that

X(t —0) - x(ty) < Nx@)
Celt1,+8 f —8p +ur]
The other inequality is similarly shown.
Remark 11.4 The fact that the delay f is relatively inertial

,6, ’8 - -
foF;r CEEOT and that 8¢ 28—y, 8, =8f—p; implies from

. - 8§ 8y +up,op =8
Theorem 11.3 that f is absolutely inertial f = fAlf OO T
12. Zeno delays

Definition 12.1 If the system f satisfies one of the properties
i) Ve>0,3te R,3t'e R,Ju e S,Ix e T (u),
X(t—0)-x(t) =1land x(t'—0)-x(t')=1land O<t—t<e
i) Ve> 0,3t e R,3t'e R,Ju € S,3Ix e f(u),
X(t—0)-x(t) =1land x(t-0)-x(t')=1land O<t—t<e
then it is called Zeno.



. . dy,d
Theorem 12.2 The system f isnot Zeno iff 3d, >0,3d¢ >0, f fAlr "

Proof f isnot Zeno <> the next properties are satisfied
3d, >0,Vte R,Vt'e R,Yu e S,Vxe f(u),

(t<t'and x(t—0)-x(t) =1and x(t'-0)- x(t') =1) = t'-t >d,
dd¢ >0,Vte R,Vt'e R,Vu e S,Vxe f(u),

(t<t'and x(t—0)-x(t) =1and x(t'-0)- x(t') =1) = t'-t > d
< the next properties are satisfied
3d, >0,Vte R,Vt'e R,Yu e S,Vxe f (u),

(t<t'and x(t—0)-x(t) =1and x(t'-0) - x(t') =1) = t'-t > d,
dd¢ >0,Vte R,Vt'e R,Vu e S,Vxe f(u),

(t<t'and x(t—0)-x(t) =1and x(t'-0)- x(t') =1) = t'—t > d;

< the next properties are satisfied
3d, >0,Vte R,YueS,Vvxe f(u),

X(t-0)-x(t) < ﬂ X(€)
Eelt,t+dy]
dd¢ >0,Vte R,YueS,vxe f(u),
Xt-0)-x®) < [x(E)
Eeft,t+d ]
< the next properties are satisfied
3d, >0,vues, f(u)c farlu)

0.d
3d; >0,vues, f(uyc f | (u)

dr,0 0,df
< 3d, >0,3d¢ >0,vueS, f(u)yc(fyf " nfy )

dy,d
& 3d, >0,3d¢ >0, f  fuf

Or,uf,0
Corollary 12.3 fF:llr ROt

Proof If d, >0,d; >0 exist, namely d, =8¢ —&, +uy, df =6, -3¢ +u¢

isnot Zeno iff 8¢ > 08, —u;,0p >0 — s .

Or,uf,0 de,d
s.t. thllr PREOT fal " (see Theorem 11.3). We apply Theorem 12.2.



_ ) Sropf,d
Only if The hypothesis states that f,slr RO

is not Zeno. We suppose
against all reason that 8¢ <&, —p, and we take U=y _yq), for which

Or,1Lf,0 . . .
xe fo' " HT2T () is equivalent with

0 x0< (O =Zmsyup)®
ef[t—=dyr t-8p +ur]

X(t—0)- x(t) < Nu®  =x51.00

e[t-8¢ -3¢ +uf]
We observe that Ve>0,3¢'€(0,e) s.t X[Sf_s-,éf)ef(u) thus

Spf.Sf o .
thllr PET2T s Zeno, contradiction. Similarly, the supposition 8, <8¢ —

gives a contradiction.

Sp,uf,of

Corollary 12.4 No Zeno relatively inertial delays f fglr’ ' exist if

Of >Or —pr O >8f —pg.

16 ) 16 -
Proof If 8¢ >8; —py,8; >8¢ —pg then fo ™" HT2T is not Zeno from
76 ) ’8 -
Corollary 12.3. Any system f — szllr rET2T s non-zeno.
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