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1. Introduction

Digital electrical engineering is a non-formalized theory and one of the major causes of this
situation consists in the complexity of Mother Nature, things cannot be completely different
from those in medicine, for example. We are too restricted to finding quick solutions to the
problems that arise in order to take the time to strengthen a sound theoretical foundation of
the reasoning that we do. Obviously, the political, military, economical and technological
importance of digital electrical engineering is itself an obstacle in the spreading of

consolidated theories.

In fact, the reader of such literature can remark the existing distance from the
deductive theories, the way that the mathematicians use them. We reproduce a point of view
that we consider to be representative in this direction belonging to L. Rougier: ‘Reasoning is

deductive or is not at all’.



The consequences of non-formalization are known. Many researchers do not give the
right importance to the scientific language and words like definition, theorem, proof are titles
of descriptive paragraphs rather than having the meaning that is accepted by the logicians. A
fascinating job is, in this context, the translation is a precise mathematical language of what is
intuitively, imprecisely explained with natural language by the engineers and this can be done
in several ways. Our work has many such examples, let’s just mention here the notion of
inertia that is important and confusing at the same time. By reading with a ball-point pen in
our hand, we infer that the inertia’s inertia is not inertia, a paradox that should end the
discussion on the validity of a theory. The theoretical construction continues however,
without visible implications on the subsequent results, by using the methods of the non-
deductive investigations.

The purpose of delay theory is that of writing systems of equations and inequalities
with electrical signals, that model the behavior of the asynchronous circuits.

The (electrical) signals are the functions f:R — {0,1} where R, the set of the real
numbers, is the time set. We ask that they:

- be constant in the interval (—o0,0), with the variant that we have used elsewhere: be
null in the interval (—0,0), in other words 0 is the initial time instant

- be constant on intervals [#',¢") that are left closed and right open

- have a finite number of discontinuity points (i.e. a finite number of switches) in any
bounded interval.

The asynchronous circuits (also called asynchronous systems, or asynchronous
automata or timed automata in literature) are these electrical devices that can be modeled by
using signals.

The fundamental (asynchronous) circuit in delay theory is the delay circuit, also called
delay buffer, the circuit that computes the identity 1y j, and the fundamental notion is that of

delay condition, or shortly delay, the real time model of the delay circuit.

We show the way that the ‘inertia’s paradox’ has been solved. First, the definition of
the delays is given. Second, the pure delays are defined. Third, all the delays different from
the pure delays are considered to be by definition inertial. Fourth, the serial connection of the
delays is their composition, as binary relations. The serial connection of the inertial delays
results in an inertial delay, but the type of inertia is likely to differ. The bounded delays have
the nice property that, under the serial connection, the delays remain bounded and thus the
type of inertia remains the same; the absolute inertial delays are in the same situation. The
relative inertial delays are not closed under the serial connection, the ‘paradox’.

We shall describe now, informally, the work of the delay circuit.

(0,0 # )
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Fig 1

We have noted with u: R — {0,1} its input and with x: R — {0,1} its output. Both u,x are
signals. In Fig 1, the couples of binary numbers, temporarily called states, represent values
(u(?),x(¢)), with te R and a,b,c,d are the labels (= the names) of the transitions

(u(@),x@)) = (u(t"),x(¢")) . In such transitions, we suppose that ¢'<¢" and that ¢"—¢' is a
small infinitesimal. A suitable notation for this is #'=¢"-0.



The real numbers 0<d, iy <d, max are given, the meaning of the index ‘7’ being
that of raise (switch from 0 to 1) of a signal, event symbolized by the validity of the equation
x(t—0)-x(r)=1
Dually the real numbers 0<d ¢ in <d  nax are given, the meaning of the index °f’

being that of fall (switch from 1 to 0) of a signal and that event is symbolized by the validity
of the equation

x(t—0)-x(t)=1
We suppose that at the initial time instant ¢, > 0 the circuit is in the initial state (0,0):
VE e (=0,19),u(5) =0
VEe(=0,19],x(§) =0
This state is stable, meaning that the delay circuit could remain indefinitely long there, if the
input is 0:
Vh>0,VEe(ty,ty +h),u(&)=0=x(ty+h)=0
A switch of the input takes place at ¢
u(ty —0)-u(ty)=1
and the delay circuit follows the trajectory labeled a, i.e. (0,0) — (1,0). The hypothesis states
that both the input and the output remain constant in the interval [¢(,#;)
vEeltg,t),u(8) =1
VEe(tg,11),x(8) =0
and the problem is to describe the behavior of the circuit at # . Three possibilities exist, those
of running one the transitions b, c,d , depending on the values of #; and u(¢).

b: it is necessarily run at 7] if #; —¢g <d, iy and if u switches from I to 0 at the time

instant #;

to <ty <ty +d, min and u(t; —0)-u(t;)=1and x(t; —0)- x(t1) =0

The interpretation is that the circuit’s inertia did not allow a fast switch of x from 0 to 1
happen.

b,c: any of them is possible to be run at #; (x(¢;)=0 for b and x(¢;)=1 for ¢) if
dymin St —tg <d, max and if u switches from 1 to 0 at 7

to +dy min St <ty +d, max and u(t; —0)-u(ty) =land x(t; —0)-x(#1)=0
to +dymin St <to +d, max and u(ty —0)- u(tl)— 1 and x(tl 0)-x(t))=1
if 1] =ty =d, max and if u switches from 1 to 0 at 71, then ¢ is necessary

t =ty +d, max and u(ty = 0)- u(tl) =1land x(tl 0)-x(t) =1

d: if u(t;)=1, then it is possible at ¢ for d, nin <t] —1g <d, pax and it is necessary at
ty for t) —tg =d; max:
to +dymin St <ty +d, max and u(ty —0)- u(tl) 0 and x(t; —0)-x(#;) =1
The intuitive description of the circuit continues by asking that the dual statements
hold also, as resulted by the replacement of ‘7’, 0, 1 with ‘f’,1,0.

The circuit computes the identity on {0,1} because the states (0,0), (1,1) are stable and
these are the only stable states of the circuit.



A possible manner of describing the previous facts is given by the system

(u(©) <x(0)< Yu©)

Eelt~dy maxt) Celt=d  max-t)
x(t-0)-x(<  (u®)

Eelt—dy mint)

x(t—0)-x(£) < (u(€)
&e[t—df,min 1)
and this might seem not quite obvious for the moment.

The chapter is organized in sections, numbered with 1, 2, 3, ... the sections have
several paragraphs: 2.1, 3.2, ... and the paragraphs are usually organized in subparagraphs:
2.1.1, 4.5.2, ... The important equations and inequalities have been numbered, as well as all
the figures and tables. The notation 3.2 (2) refers to equation or inequality (2) of paragraph
3.2 (that has no subparagraphs, in this case) and the notation 4.1.2 (3) refers to equation or
inequality (3) of the subparagraph 2 from the paragraph 4.1.

In Section 2 we give several examples of models for the sake of creating intuition and
this is a presentation of our intentions. The theory starting with section 3 is supposed to be
self-contained.

In Section 3 we fix some fundamental concepts and notations on the R — {01}
functions.

Section 4 defines the signals and gives some useful properties on them.

In Section 5 we present the informal definitions of the delays, with long quotations
from several authors.

The sections that follow represent the core of this chapter. In Section 6 we define the
delays, as well as their determinism, order, time invariance, constancy, symmetry and serial
connection. Section 7 is dedicated to the bounded delays and in Sections 8, 9 we define and
characterize the absolute and the relative inertial conditions and delays. Section 10 shows
some variants of the concepts from Sections 7, 8, 9 and introduces a special form of
deterministic delays. Section 11 closes the chapter with new examples and a generalization.

We thank in advance to all those that will want to bring corrections and improvements
to our results.

2. Motivating Examples

2.1 Example 1 The Delay Circuit

The symbol of the delay circuit is the next one

u ; x
Fig 2

We consider different possibilities of modelation of this circuit, a way to anticipate the facts
that will be presented later. u,x are R — {0,1} functions and moreover they are signals, with

constant values for any ¢ <0.



SC Stability’ (unbounded delays) If u is of the form

u(t) = u() - Y (~oo,z0) (1) D ulto) - A[19,00) ()
then x is of the form

x(1) = X(1) * X (—on,) (D) @ ulto) - A [1,00) (1)
where 79 20,7 20 and y y: R —>{0,1} is the characteristic function.

BDC’ Upper bounded, lower unbounded delays d, >0,d r>0 exist so that the next system

1s satisfied:

Nu@<x) < [Ju®
Eelt—d, t) Eelt—d 70

BDC Bounded delays 0<m, <d,,0<my <d ; exist and the system is the next one

Nu® <x(n< Yu®
Eelt—d, t—d,+my ] &e[t—df,t—df—kmf]

FDC Fixed delays (ideal delays) The relation between u and x is, for d >0
x()y=u(t—d)

AIC Absolute inertia 8, 20,8 » 20 exist so that x satisfies

x(t=0)-x()<  [x(€)
Eelt t+3, ]
x(t=0)-x(t)< () x(©)
Eelt,t+0 f]
This inertia condition is added to one of SC, BDC’, BDC, FDC.

RIC Relative inertia 0<p, <§5,,0< Hyp< Sf are given so that
x(1—0)-x(1) < (u(©)
Ee[t=0; t—=0,+11;-]
x(1—0)-x(1) < (u(©)
ée[z—éf,t—ﬁf +u ]
are satisfied. Similarly with absolute inertia, relative inertia is a request added to one of SC,
BDC’, BDC, FDC.

DBRIDC Deterministic bounded relative inertial delays 1f in BDCRIC p,.,8,,ur,8

coincide with m,.,d,.,m 1o d f the system takes the special deterministic form
x(t=0)-x(t)=x(t-0)- (u(©)
Eelt—d, t—d,+my ]

x(t = 0)- x(t) = x(t - 0)- Nu®
ﬁe[t—df,t—df+mf]

SDBRIDC’ Symmetrical deterministic upper bounded, lower unbounded relative inertial
delays, version of DBRIDC consisting in the next equation

" In the abbreviations that we use: SC, BDC,... the letter ‘C’ comes from ‘condition’: stability (condition),
bounded delay (condition),...



Dx(t) = (x(t =0) @ u(t = 0))- | JDu(&) x40 ()
Ee(t—d )
where
Dx(t)=x(—-0)-x(t) Ux(t—0)-x(¢£)=x(t — 0) ® x(¢)
is the left derivative of x.
All the solutions of BDC’, BDC, FDC, DBRIDC, SDBRIDC’ satisfy
x(0—0)=u(0—-0) and some of the previous systems satisfy also supplementary conditions of

consistency (i.e. the existence of a solution x for any u ).

2.2 Example 2 Circuit with Feedback Using a Delay Circuit

In the circuit from 2.1 Fig 2 we suppose that u = x and this corresponds to the next circuit

™S s

Fig 3

SC The satisfaction of SC does not bring any information on x, as it consists in a tautology
of the form —4 v A4, where the proposition A is the equation

Ftg 2 0,x(2) = X(1) - A (~o0,¢) (1) D X(20) - A [1),00) (¥)
Interpretation: the circuit can be stable or unstable.
BDC’ The system is
Nx@<x®)<  [Jx©
Eelt—d, t) Eelt—d 2 1)
with d,. >0,d r >0. Let ) 20 so that V¢<zy,x(r)=0. Because Ux(c“,) =0, we get
Celto—d £.10)
x(t9) = 0. Similarly, let 7y 20 so that V¢<ty,x(f)=1. Because ﬂx(&) =1, we obtain
Selto—dr-t0)

x(tg)=1. ty was arbitrary previously, so that the only solutions of BDC’ are the constant

functions.
On the other hand, the constant functions satisfy any supplementary inertial condition

AIC, RIC because m -x(t)=x(-0)- % =0.
BDC We have the system
x©) <x(@)< Ux©
Eelt—d, t—d,+m; ] &_,E[t—df,t—df‘f-mf]
where 0<m, <d,,0<my <dy. Let us suppose in the beginning, when solving it, that
x(0—0)=0. The solutions are the next ones.
Case d fomyp> 0
We can show analogously with BDC’ that the only solution is x(#)=0.
Casedp—myp=0,d,>0
As the inequality x(¢) < Ux(c‘,) is satisfied by all x, BDC has in this case the same
Eelt—d 7]
solutions like (in other words: is equivalent with)



x©)  <x() (1
Eelt—d, t—dy+my ]
and any solution can be written under one of the forms

X(1)=0 2)
x(1) = (19,00 (1) 3)
X =X119.1) O @ A[19.13) D D O A (13, 42,41) ) 4)
X =A29.) D P X[12,63) D D O A [19,1.19,01) O B A[19,14.9.00) (D) ()
X = A9.) (D D X[12.,3) D) D . O A [19,1.19,051) ) D .. (6)

(2),...,(6) represent all the signals x with x(0—-0)=0, where 0<¢y) <t <ty <... is

unbounded, arbitrary. (2), (3) satisfy (1) without supplementary requests. Because if the term
Xltogt2k41) satisfies ¢5;,; — o5 >m, we have that

(Vi) @ = Lragerdy tafess vy -me)
Eelt—dy t—d-+my. ]
is not null, in order that (4),...,(6) be solutions of (1), the next property should be true for all
k>0:
Log+1 —tog >my = [ty +dy,tops) +d, —m,) Csupp x
We have noted supp x ={t|x(¢t) =1} the support set of x.
A special case of (1) is the one when m,. =0:
x(t—d,)<x(t) (7)
and then for all £ >0 the next inclusion
[tk +dystops1 +d)) < supp x
is fulfilled. For example, the ‘periodical’ functions
X0 = Ag.) O D@ Atg+dy .y +dy) O @ @ Ao +n-dy sy +0:dy) (O © o
where 0<t, <t} <t( +d, satisfy (7) because

x(t=d;) =g +dy 1 +d ) O @Ay +2d, 11 +2d,) O @ @ A1 +(nt1)dy 1y +(n41)-dy ) (D Do
An interesting situation in BDC+AIC is the special case 8, 2m,.,8 =0 when the
inclusion
[t2k +dystog sy +dy —my.) C supp x
is true for all £ >0 and all solutions x, the hypothesis 75,1 — > >0, =m, being satisfied

due to AIC.
Adding RIC in the case df —my = 0,d, >0 of BDC, under the form

x(t—0)-x(r) < x(©) (8)
Ee[t—0, ,t=0, +1;-]
x(t—0)-x(r) < Nx(©) (9)

&e[t—Sf,t—&f +url
implies if o&,>0 that x(#)=0. For §,=0, inequality (8) becomes trivial:
m-x(t)Sx(t) and then, if 8, >0, the restrictions corresponding to RIC on the
solutions x of BDC are expressed under the form, see (4),...,(6)
Lty 3. () =3( =0)-x(1) <



< ﬂ xE) = X(—oo,t0+6f “H VI £,12+8 £~ fIVIEZ+E £,84+8 £ £ V.. O]
ée[z—éf,t—ﬁf +ur]
i.e. equivalently
{t],t3,...} < (-0, ¢ +8f —uf)v[tl +8f,l2 +8f —},lf)\/[l‘?, +8f,l4 +8f —},lf)\/...

8, =8 =0 means triviality for RIC.
Case dp—my=0,d, =0

BDC consists in

x<x@< | Jx©)
&e[t—df,t]

and all the signals x satisfy it.

By duality, the possibility x(0—0)=1 is analyzed. We observe for example that if

dy—myg>0,d. —m, >0 then the only solutions of BDC are the constant functions.

FDC The equation to be solved is

x(t)y=x(t-d),d >0
If d >0, then the solutions are the two constant functions and if d =0 then the solutions are
all the signals.

DBRIDC The system is

x(t—0) - x(t) = x(t — 0) - Nx© (10)
Eelt—d, t—d,+my.]
x(t—0) - x(1) = x(t - 0)- Nx(©) (11)

&e[t—df,t—dwamf]

and we suppose like before that x(0—0)=0.
Case d, >0

The only solution is x(¢)=0.
Case d,. =0,dy=my >0

The switch from 0 to 1 is possible, because (10) takes the trivial form
x(t—0)-x(¢) =x(t — 0) - x(¢) . From this moment ﬂ@ is null, thus the solutions have

Eelt—d 2 i]

one of the forms (2), (3).
@ dr :O,df :mf =0

All the signals x satisfy the system, (10), (11) being both trivial.
Case d, :O,df >my >0

The switch from 0 to 1 seems possible and let 7, be the moment of the first such

switch, thus x(¢5 —0)-x(¢y) =1. At the time instant #; > ¢, characterized by [t(,?;) < supp x,
(11) becomes
x(t)) = (&) (12)
Eelty—d p.y—dp+my]
Forall t) —d r +my <tg, 1e. if 0<ty —tg <d y —m, the right member of (12) is 1 and the

switch of x from 1 to 0 necessary. We have reached a contradiction showing that DBRIDC
has no solution x(¢)#0.



The analysis of the situation when x(0 —0)=1 is similar.

SDBRIDC’ The solutions of the equation
Dx(t)=0
are the constant functions.
2.3 The Logical Gate NOT
The logical gate NOT that computes the complement in the set {0,1} is symbolized like in the

next figure

Fig 4

where the gate and the two wires are characterized by delays. It is modeled by one of the next
circuits

v : ¥ ;}’ i ::v ::x i :v :x :J"
a) b) c)
Fig 5

In Fig 5 the logical gate is ideal

x() = x(0 = 0) - X (—00,0) (1) D V(2) - X [0,00) () (D
as well as the wires and the delays are localized in the delay circuits. Writing the relations
between u, v, respectively between x, y follows, like at 2.1. The last step is the elimination

(if possible) of the intermediary variables: x at a), v at b), v and x at ¢). We give some
examples.

SC Fig 5 ¢)
The fact that u is of the form

u(t) = u(t) L (o 1) () D 1) A9 0) () 2)
implies that v is of the form

V(1) = V() X (—on,e) () D ultg) - X[ ,00) (1) 3)
thus, from (1), x is given by

x(t) = x(t) Y (—o0,1) () @ u(tp) - A[1,00) () 4
and by using SC again for the second delay circuit we get

V(&) = Y(0) A (=o0,19) (1) D ulto) - A[15 00) (1) (5)

In (2),...,(5) ) ZO,II ZO,IZ >0.

BDC’ Fig 5 a)
Nx@<yn<  [Jx©) (6)
Eelt—d, 1) Edt—d 70

[0 = 0) % (-o0,0) (&) © V() - X[0,00 (€)) < ¥(1) <
Eelt—d, 1)



< JG0-0) 10,0y (&) ®VE) X0, (©)) (from (1), (6)) (7)
Eelt—d 2 )
BDC’ Fig 5 b)
Nu@=<vs  Ju© (8)
Eclt—d, 1) Eeli—d 1 .1)

Nu@<vios  Ju@© (from (8)) )
Eelt—d g 1) Edlt—d, 1)
(0-0) %00y (V®  [u(€) 1[0.) (1) < x(1) <
Eclt—d 1)
<x(0-0) % (00) D (Ju(®) 1[0 (1) (from (1), (9)) (10)
Eelt—d, 1)

SDBRIDC’ Fig 5a) Some of the next equations are better understood if we take into account
the fact that Va € {0,1}, a=a®l:

x(t = 0) = x(0 = 0) - % (—o0,01 () D (£ = 0) - X (0,00 (©) (from (1)) (11)
V(£ = 0) = (0= 0) - X (—o0,07 (1) ® V(t = 0) - % (0.0 (¥) (12)
v(t = 0) = (0= 0) - % (0,01 (1) ® V(t = 0) - 7,(0,00) (©) (from (12)) (13)
x(t—-0)=(x(0-0)®v(0-0))- X (—20,0] (H®v(E-0) (from (11),(13)) (14)
Dix(t) = x(0 = 0) 700,01 (1) ® (0= 0) - (o0, 0y (1) @

D v(t = 0) - % (0,00) () © V(1) %[0,00) (1) (from (1),(11))

= (0= 0)- %401 (6) @ V(t = 0) % 0,00 (1) ®V(0) - % 10 (1) @ V(1) - % (0,00 (1)
= (x(0 = 0) ®v(0)) - %403 () ® (V(t = 0) B V(1)) - X (0,00 (©)

= (x(0 = 0) ® v(0)) - % {0y (1) ® DV(1) - % 0,00) (1) (15)
Dv(1) = (v(0—0) ®v(0)) - % 10y (1) © DV(1) - % (0,00) (1) (16)
Dx(t) = (x(0 — 0) ® v(0) ® v(0 — 0) ® v(0)) - 01 (1) ® DV(¥) (from (15),(16))

=X(0—0)®v(0—0)-7 0y (1) ® Dv(r) (17)
Dy(t) = (Wt —0)®x(t—0))- | JDx(E)- Y[g)(r) (the hypothesis SDBRIDC")

Ee(t—d 1)

=t =0)® x(0=0) % (—o0,01 () D V(= 0) - % (0,00) (1)) -
U&O0-0) @ v(0-0)-%0, (&) ® DUE)) - A[a.00) (@) (from (11),(17))

Ee(t—d 1)
=t =0)®v(r=0))%(0,0) () (y(0-0)=x(0-0))
U&(0—0) ®v(0~0)- 7405 (&) ® DV(E)) - L d ) (©)
Ee(t—d.1)
=y(t=0)@v(t=0)- | JDVE) % 0) () (13)

Ee(t—d.t)



SDBRIDC’ Fig 5b)
Dv(t)= (Wt =0)®u(t—0))- | JDu(&)- 1[4, () (the hypothesis SDBRIDC") (19)

Ee(t—d )
(1t —0)=x(1 —0) ® x(0— 0) ®v(0 - 0) - Y (s 07 (8) (from (14)) (20)
u(t = 0)=u(0=0) - ¥ (~00,01 (1) D u(t = 0) - % (0,00 (*) 21)
Dx(t) = (x( = 0) ® x(0 = 0) ® V(0 — 0) - % (0,0 (V) @ u(t = 0))- | JDu(&) - %1 ,00) (¥)
Ee(t—d 1)
® x(0-0) ®v(0—0)- 403 (1) (from (17),(19),(20))

= (x(0=0) - % (00,01 (1) @ x(2 = 0) - % (0,00 (1) D
D (x(0-0) @ v(0=10)) % (—e0,01 (1) @ u(0 = 0) - % (0,07 () D u(t = 0) - % (0,00 (1)) -
U Du(@) %[00y (1) @ (0= 0) ® w(0 - 0) - 10 (1) (from (21)

Ee(t—d,t)
=(x(1=0)® u(t = 0) - % (0,0) ) |JDu(E) %[ 0) (1) ® x(0—0) D (0 —0) - 140 (1)
Ee(t—d. 1)
(u(0-0)=v(0-0))
=x(t=0)@u(t=0)- | JDu(®) % 0)() ® x(0—0) ®u(0—0)-y 40 (¢) (22)

Ee(t—d 1)
A comparison between the forms of (18) and (22) is interesting.

2.4 Circuit With Feedback Using a Logical Gate NOT

Let the next circuit, where the logical gate and the wires have delays

>t

Fig 6

and the circuits to be analyzed are the next ones

Fig 7



Fig 7 a), respectively Fig 7 b) result from and keep the notations of Fig 5 a), b) (the modeling
coincides), respectively of Fig 5 c). In Fig 7 the logical gate is supposed to be ideal

x(1) = x(0=0) X (~00,0) () © V(1) - X[ 0,00) (£) (1)
as well as the wires and the delays are localized in the delay circuits. We shall write the
relations between u,v,x,y and we shall try to eliminate three of the four variables.

SC Fig 7 a)
We suppose that x is of the form
x(t) = X(1) - Y (~o0,19) (1) D x(10)  X[10),00) (*) (2)
and from SC this implies that v is of the form
V(8) = V(1) A (=a0,17 ) O @ V(L)) A (17 ,00) (1) 3)
where
x(tg) =v(t;) 4)
and #( 20,#; 2 0. On the other hand (1), (2) and (3) show that
x(tg) = v(t) ®)

(4) and (5) are contradictory, meaning the falsity of the hypothesis (2). A major difference
exists between the facts from 2.2 and the present ones: SC did not bring there information on
x , that circuit could be stable or unstable, unlike here where (2) is false, the circuit is unstable
and instead of (2) we can write

x(t) = 3(0-0) 1 (_op 1) (DD X(O—0)- g1 1) (D
® x(0—0)- gy 1) () D X(0—0) 71y 1) (D) @ .. ©)
where 0<1, <t} <t, <... is unbounded.

BDC’ Fig 7 a)
The system is the next one

Nx@=<v<  [JxE) (7)
Eelt—d, 1) Eelt-d 1.0)
thus from (1): o
(0= 0) % (—o0,0) (&) @ V(E) - 70,00 () < V(1) <
Eelt—d, 1)
< JGE0-0) 70,0y (&) ®V(E) %0.00) () (8)
&e[l—df ,1)

Case x(0-0)=0
The functions ﬂ@-x[o’w) (&), v(2), Ur@-x[o’w) (&) are all null for #<0.
Eelt—d, t) Eelt—d g 1)
At the right of 0, because m =1, U@‘X[O,w) (€) becomes 1 and if v continues to
Eelt—d s .1)
remain 0, in the point # =d,., ﬂ@ “X[0,00)(E) becomes 1, thus 0 <7y <d, exists so that
Eelt—d,t)
v(tp) =1. At the right of 7, because v(z() =0, ﬂ@ “%[0,0) () 1s 0 and if v continues to
Eelt—d,.1)



be 1, in the point 79 +d , U@ “%[0,0)(§) becomes 0, in other words 7y <ty <ty +dy
&e[l—df,t)
exists so that v(z;) =0 etc. The conclusion is that the unbounded family ¢(,¢,t5,... exists so
that
0<ty<d, 9)

to <ty <ty + df

H<thy<h+ dr

1H <ty <t +df

and
V(D) =X[19.1) (D O A1 ,13) (DD ... (10)
Case x(0-0)=1
In similar conditions with the previous ones, the solutions v of (8) are of the form
v(t) = X(—oo,t())(t) ® X[tl,tz)(t) ® X[t3,t4)(t) ®.. (11)
where
0<ty<dy (12)
to<t| <to+d,
h<tyst+dy
ty <t3 <ty +d,

Adding AIC to BDC’ gives the minimal length of the 0-pulses, respectively of the 1-
pulses

in (10): 8 <lyp41 —l2k (13)
O p <tog42 ~ 12441
in (11): 8f <lrpy1 — ok (14)
O <lofs2 —l24+1
forall £>0.
RIC is the next one:
v(t=0)-v(t) < HX(E) (15)
Ee[t—08,,t=08, +1, ]
v(t—0)-v(t) < (x(©) (16)

&e[t—é}f,t—Sf +pf]
(10) gives (case x(0—-0)=0):

v(t=0)-v() =%i19,1,14,..1 @) (17)
V) %[0, (&) = (10,101 (&) @ Af11,10) (&) B U[13,14)(E) D) =
Ee[t—0, ,t=0,+1, ] Ee[t—0,,t=8,+1,]
= X5, ,t0+8, —1 ) D P A 48,19 +8, —1, ) D P A[1348, 14 +8, -, ) (D Do (18)
and inequality (15)

X{to,tz,z4,...}(f) S A8 ,-.10 +5, —ur)(f) @ [t +8, 7+, —ur)(f) ® K[t3+8,,t4+8, —ur)(f) ...
is equivalent with



{t0.12,t4,...} C[0,,tg +8, =, ) V[t; +8,,t0 +O, =, ) V[t3 +0,,t4 +0, —1,) V...
Similarly, from (10) and (16):

{ti,03.85,..} S (0,8 p —pu p)VI[tg +8 11 +8 p —U ) VI +8 .13 +8 p —pp) V.o
Equation (11) (case x(0—0)=1) combined with RIC gives restrictions of the same nature.

FDC Fig 7b)
(1) is true together with

u(t)=x(-d) (19)
v(t)=u(t—d,) (20)

where d; >0,d, >0 and by eliminating u,v we obtain
X(#) = X(0=0) % (=00,0) () @ X(t =y =d3) A[0,00) (1) 21)

Case dl +d2 =0

Equation (21) is incompatible.
Case dl +d2 >0

The solution of (21) is

x(1) = x(0=0) - % (—o0,0) (DD X(0=0) %[0, 0+ ) () D

D x(0—0) X[y +dy ,2(dq +d2 ) DD X(O0=0) X2y +d)3(dy +dr ) DD (22)

DBRIDC Fig 7 a)
(1) is true together with
v(t=0)-v(t) =v(t-0)- (x©) (23)
Eelt—d, t—d, +m;. ]
(1 —0)-v(t) = v(t —0)- MNx(©) (24)

&e[t—df ,t—df +mf]
where 0<m, <d,,0<my <d,v(0-0)=x(0-0) and by eliminating x we get

v(t—0)-v(t) =v(t - 0)- [ (x(0=0)%(—0,0)(E) @ V(&) %[0,00) (€)) (25)
telt—dy t—dy+m,.]
v(t = 0)-v(t) =w(t - 0)- (X0 =0) - % (e0,0) (&) ® V(E) - X[0,0) (E)) (26)

&e[t—df,t—df +mf]

We suppose that x(0—0)=0.
Case d. —m, >0,dyp —mys >0

Because in (25) we have V& e[0,d,),v(E) =0, the implication is v(d,)=1. Because
in (26) we have VEeld,.d, +df),v(§) =1, the implication is v(d, +df) =0 etc. The
solution is

VO =A1d, dy+d ) D OPU2d, +d r 2d, +2d ) (DB U3d, +2d £ 3d,+3d ) O P (27)
Case d,. —m, =0o0rdy—my =0

We suppose that d,. =m,. >0 is true. (25) is in this situation

v(t=0) v(O)=v(t=0)-  [VE) A[oe0)E)=v(t=0)- [ V() A[0.00)(E) (1) (28)
Eet—d, 1] Elt—d, 1)



For t<d,,v(t)=0 and at t=d, we get the contradiction v(d,)=v(d,). The system is
incompatible. ~ The possibilities d, =m, =0,dyp=my >0,dy=my =0 result in
incompatible systems too.

The situation when x(0—0) =1 is to be treated similarly.

SDBRIDC’ Fig 7b)
(1) is true together with

Dy()=(y(t-0)®x(t-0))- | JDx(E) A[dy00) (D) (29)
&E(f—dl,l‘)

Dvt)=((t=0)® y(1=0))- | JDy(E) A[dy0)(¥) (30)
&E(f_dZ ’t)

where d; >0,d, >0. We have x(0—-0)=y(0-0)=v(0-0).
We suppose that x(0—0) =0 and (30) used under the form Dv(0)=0 gives v(0)=0.
From (1), x(0)=1. From (29), y becomes 1 at the time instant d;. From (30), v
becomes 1 at the time instant d; + d,, when in (1) x becomes 0. The conclusion is:

xX(1) = %[0,dy +d2) (D @ X[2d) +2d7 3d) +3d7) (D D .. (1)
V() = A[dy 2d+d2) O P A[3dy +2d5 4d) +3d2) () D .. (32)
V(1) = A[dy +dy.,2d) +2d2 ) (D) @ A[3dy +3dy 4dy +4d ) (D) © .. (33)

The situation when x(0—0)=1 is similar.
The solutions are in this case the same like at FDC.

2.5 First Conclusions

Some of the facts that were presented in this section have been studied by us some
time ago and they have brought a direction of research called pseudo-Boolean differential and
integral calculus that is interesting by itself, being related with mathematical analysis ([22]
and others). We can define for the functions R — {0,1} derivatives, integrals, convolution

products, distributions etc and many notions and results from the real mathematical analysis
have analogues of this type. It is interesting also the study of the equations and of the
inequalities written with such functions, in no direct relation with digital electrical
engineering.

Another direction of research is the present one, related with the asynchronous
circuits. Starting from the known models as well as using the intuition suggested by the
literature, modeling is abstracted by defining the delay conditions, shortly the delays, as real
time models of the delay circuits. From this moment, the construction of new models is
natural. On the other hand, the way that the delay circuit is generalized by the C-element of
Muller, the delays are generalized by the 2-delays and generally by the n-delays, that are the
models of the C-elements of Muller. An example of this nature is sketched at 11.3.

3. Preliminaries

3.1 The Boole Algebra with Two Elements

3.1.1 Definition The set B ={0,1} is called the binary Boole algebra, or the Boole algebra

with two elements. It is endowed with:
- the order 0 <1



- the laws:

., the complement

una
binary: "U' the reunion, '-' the intersection, '®' the modulo 2 sum

defined in the next table:

_01u01-01@01
~‘ﬁ001000 010 1
l1j1 1 1]j0 1 1|10

We give the usual meaning to the binary relations on B: >, <, >.

3.1.2 Remarks (B,_,u,o) is a Boole algebra indeed and (B,®,-) is a field, where the

inverse of a relative to @ is a itself: a® a =0. The relation between the order and the laws
of B is expressed by:

Va,beB,aSb@EZl_)
Ya,be B,a ub=max(a,b),a-b=min(a,b)
Va,b,ce B,b<c=>(aub<auc),b<c=(a-b<a-c)

3.1.3 Definition Let the binary generalized sequence (x ;) jc; . We define

Lif Yedx;=1
UXJZ{JfJE T Uy =0

0, otherwise je?

jeJ

~ O,ifEIjeJ,szo ~
ﬂ%—lth : =1
jed , otherwise e

3.1.4 Definition The functions f:B" — B"™ n,m>1 and as a special case the functions

f:B" — B are called Boolean functions.

3.2 Generalities on the R — B Functions

3.2.1 Definition The next order and laws are induced on BR by those of B:
fsgevt f(H)<g(n)
Ve, f(t) = f (1)
ViL,(fugin=f()vgh)
vi,(f -0 = f(1)-g(1)
VEL(f @ g)t) = f(1)® g(r)
where f,g:R— B and ¢ R. The fact that we have abusively used the same notations for
different orders and laws will cause no misunderstanding.

3.2.2 Definition We note with y 4 : R — B, where 4 c R, the characteristic function of the
set 4:
l,te 4

XAU):{OteA

3.2.3 Definition The support of the function f: R — B is the set supp f < R defined by
supp f={t|[teR, f(t)=1}



3.2.4 Remarks The next properties are true forall fe R andall f,g:R— B:
Xz () =0,%g(?)=1
SO =Lsupp (0
fsg<osupp fcsupp g

supp f =R —supp f

supp (f\V g)=supp [V supp g

supp (f - &) =supp [ Asupp g

supp (f © g)=supp [ Asupp g

In fact we can identify BR and 2% from the point of view of the order and of the algebraical
properties.

3.2.5 Definition We say that f : R — B has a limit when t tends to infinite if
e vezt, f(@) =)

The number f(¢') that does not depend on ¢' is noted with lim f(¢).
1—>0

3.3 Limits and Derivatives. The Continuity and the Differentiability of the R — B
Functions

3.3.1 Definition Let /' : R — B. If the function /'~ : R — B exists so that
VieR,3e>0,VEe(1-5,0), f(E)=f (1)
i.e. if for any ¢ and any & <t sufficiently close to ¢, f(&) depends on ¢ only and not on &,

we say that f has left limit or that the left limit of f exists. Similarly if f:R— B exists
having the property that

VteRAe>0,VEe(t,t+¢), (&)= fT (1)
is true, we say that f has right limit or that the right limit of f exists. In the hypothesis that

both previous properties are satisfied, we use to say that f is differentiable. f(t), f*(¢) are
sometimes noted with f(z—0), f(¢+0) and are called the left limit, respectively the right
limit (function) of f .
3.3.2 Definition The functions

Do f ()= f(t=0)- f(2), Dyof ()= f(t=0)- f(2)

Dyo.f(t)=f(t) [(t+0), Doy f () = f(1)- f(1+0)
are called the left and the right semi-derivatives of f and the functions

Df@)=f(t=0)® f(1)=f(t=0)- f()V f(t=0)- f(?)
D*f()=f(t+0)® f()= f(+0)- f() f(t+0)- f(2)

are called the left, respectively the right derivative of f .

3.3.3 Definition [ is left continuous, respectively right continuous, if
Ve, f(1)= f(1-0)
Ve, f(1)= f(1+0)
3.3.4 Remark We can prove [22] that the only differentiable R — B functions that are both

left continuous and right continuous (on an interval) are the two constant functions (on that
interval). If the differentiable function f is right continuous, then it is constant (on an



interval) iff Df'(r)=0 (on that interval) and a dual property holds for the differentiable left
continuous functions.

3.3.5 Examples a) f(H)= X[O,l](f) @ %2} (?)
is a differentiable function, that is neither left, nor right continuous. More precisely
S (=0)=%0,11(0), f(£+0)=x[0,1)(?)
Df (1) = %10y () D x2y(1), D* f(1) = 1.1 () D123 (2)
b) The function
f(O)= UX( 1 L](f)

> 2n+1'2n
is left continuous, as it has the property that f'(z—0) exists and it is equal with f(z). f(z+0)
does not exist however, because for 1 =0, we have

Ve>0,38,8'€(0,2), f(8) # f(&)

3.4 The Properties of the Limits and of the Derivatives

3.4.1 Theorem If f, g have left limit, respectively right limit, then the next properties hold
a) Df =Df
b) D(f®g)=Df ®Dg

¢) D(f-g)=/f-Dg®g-Df ®Df -Dg
respectively the dual properties.

Proof a) Df(t)=f(t-0)® f(t)= [(1-0)® f(1)=1® f(t-0)®1D f(t)=
=f(E-0)® f(1)=Df (1)

3.4.2 Theorem a) If f has left limit, then f has left limit and
) =r
b) If f is differentiable, then /" has right limit and
S =7

the dual statements of a), b) being also true.

Proof a) Let ¢ arbitrary and fixed, #'<¢ and f~ with the property

vee(®.n, f(&)=f (1)
We fix the numbers &, arbitrary with #'<&<w<t. We have f(§)= f(®w) and, as f(§)

depends only on ® -not on &-we get f(§)=f (®).On the other hand f (0)= f (¢) thus
/() is independent on ® -it depends only on #-and we get f~ (0)=(f" ) (¢). We have
obtained (f ) (t)=f (@)=f (¢).
3.4.3 Corollary a) For f with left limit, Df has left limit and
DDf = Df
b) If f is differentiable, then
D*Df =Df

Proof a) DDf (1) =D(f(t-0)® f(1))= f(1-0)® f(1-0)® f(1-0)® f(1)=Df (1)

b) D*Df (1) =D*(f(t-0)® f(1) = f(t+0)® f(t+0)® f(1-0)® f(¢) = Df (1)



3.4.4 Remark The way that the left, respectively the right limits are iterated shows that we do
not need to work with derivatives of the second or higher order.
3.4.5 Notation We note with t? : R — R the translation with d € R :

W ()=t-d

3.4.6 Theorem Let d € R arbitrary. f has left limit iff f ot? has left limit. Similar

properties hold for the left continuity, the differentiability etc.
Proof Obvious.

3.4.7 Remark The compatibility between the Boolean laws and the translation is given by
7 ) 'cd = f o '[d

(fug)et! = for Uger
etc and the compatibility between the limits, the derivatives and respectively the translation is
expressed by the equations

oot =(for)™, frot? =(for)*
Dfot? =D(fot?), D* for? =D*(fo1?)

d

3.5 Conventions Concerning the Drawings of the Graphics of the R — B Functions

3.5.1 Conventions In order to make easier the understanding of the R — B functions, we
make the next conventions concerning the drawing of their graphics:

a) the two values 0,1 are not written on the vertical axis. They are supposed to be
known, the only necessary convention is that the low value be associated with 0 and the high
value be associated with 1

b) we draw vertical lines in these points where the function switches (the discontinuity
points), even if the vertical lines do not belong to the graphic

c) we put bullets on the vertical lines that are drawn like at b), underlining this way the
points that actually belong to the graphic (the value of the function in the switching point)

J@) | |
I S
o B
— ¢
fit+0) I I I
| | |
! ! ! £
Dr@) s | T | |
| | |
i | i i £
D* f(t) T T I I
IR N S

Fig 8



d) we avoid writing values on the time axis, i.e. the horizontal one, whenever this
causes no misunderstanding.

3.5.2 Example We give the example of Fig 8, where we have drawn the graphics of the
functions from 3.3.5 a).

4. Signals

4.1 The Definition of the Signals

4.1.1 Definition A function f: R — B is called (electrical) signal’, if

1) it is differentiable

ii) it is right continuous

iii) supp Df [0, 0)
The set of the signals is noted with S and the set of the non-empty subsets of S is noted
P*(S).

4.1.2 Remark We give an interpretation to the previous definition. The next property, that
can be inferred from 1)

Vi',t"e R, t'< "= (t',t") Asupp Df is a finite set
is the finite variability, a signal switches finitely many times in any bounded time interval and
it is an inertia request. The right continuity of f is a property of causality, or non-

anticipation and it is related to the fact that the present depends on the past and maybe on the
present itself, but not on the future. The request iii) is related to the initial time that is 0 -but
this condition is also one of non-anticipation. The anticipative systems having an evolution
with the time axis reversed and where the present depends on the future and maybe on the
present itself, are modeled by differentiable left continuous functions f with

supp D* f < (-0,0]

We have just indicated how the dual notion to that of signal is to be defined.
4.1.3 Theorem The next conditions are equivalent for the function f: R — B:

a) f is signal

b) the unbounded family 0<7, <#; <¢, <... exists so that

SO = FED A (00,0) O @ F ) Afzg,6) O B S 1) A[11,19) () D ..

Sketch of proof a)=5b) 4.1.1 i) implies the existence of an upper and lower unbounded
family ..<t_| <ty <f <... where f; can be taken >0 without loosing the generality,
satisfying the property that V¢,

f0)=.. @fﬁl)Xglﬂﬂ@f(_ ) Aty (O

® £(10) L1t} (O ® S G X9y (DD F (1) 2y (DO
4.1.1ii), 4.1.1 iii) and the previous equatlon imply b).
b) = a) It is shown that V¢, three possibilities exist:

i) t<tg;then f(t—0)= f(t+0)= f(F)

? These functions, or similar functions with the same role in modeling, have also been called in literature (see
[11, [14], [16]) Boolean signals, piecewise constant signals, piecewise continuous signals, non-zeno signals and
respectively finite variability signals.



i) r210 and 3t = s then £ —0) =17 F a0y 2 p
=10 e f=D), k=0 ¢

iii) t>ty and 3kt e(t;,t;41); then f(t1=0)=f(t+0)=f(t)
4.1.4 Theorem Let f €S an arbitrary signal and d € R. The following statements are true:
a) fo t? is differentiable and right continuous
b) ford eS@supprord c[0,00)
)if d>0,then fo1? .
Proof a) results from 4.1.3 b), because f ot has the same form like f except the request

0<ty.b) results from Df o ¥ = D(f o rd) (see Remark 3.4.7) and from a). For c), we take in
consideration the fact that
suppD(ford)z {t|Df(t—d)=1}={t+d | Df(¢t) =1} =d + supp Df
and b) also, implication «:
d 20 and supp Df c[0,0)= d +supp Df c[0,0) =

:>suppD(ford)c[O,oo):ford eS

4.1.5 Remarks (S,<) is an ordered set, with < induced from B R and the constant functions

0, 1 are the null and respectively the universal element of S. (S V) -) is a Boolean algebra
and (5,9, -) is a commutative ring.

In §, the next equivalence holds, see Remark 3.3.4:

a) f is constant (on certain intervals)

b) Df =0 (on certain intervals).

4.1.6 Definition Let f €S . By l-pulse, respectively O-pulse of the signal f we mean the
existence of the numbers ¢'< " with the property that

veelr,t"), f(&)=land f(t'-0)= f(1")=0

veelr,t"), f(&)=0and f(r'-0)=f(t")=1

is true. In this case we say that f has a 1-pulse, respectively a O-pulse of length t"—t'.

4.2 Useful Lemmas
4.2.1 Theorem Let f some differentiable function and the numbers 0 <m <d . The functions
O(t) = /©
Eelt—d,t—d+m]
Y() = Ur®

Eelt—d,t—d+m]
are differentiable and they satisfy

O(-0)=f(t-d-0) /©) )]
Ee[t—d t—d+m)
O(t+0) = (fE©) - ft—d+m+0) )
Ee(t—d t—d+m]
Y(@e-0)=f(t-d-0)u Ure© 3)

telt—d,t—d+m)



Ye+0)= | JSE@ uft-d+m+0) (4)
Ee(t—d t—d+m]
Proof If m =0, then ®(¢r)=Y(¢)= f(¢t—d) is differentiable and we use Definition 3.1.3
(Nr®=1Jre=o).
%] Eed
We suppose now that m >0. Let ¢ arbitrary and fixed. The left limit of f in 1—d
shows the existence of € >0 with
Vee(t-d—g,t=d),[(§)=f(t-d -0)
and the left limit of /" in # —d + m shows the existence of &, >0 so that
VEe(t—-d+m—gey,t—d+m), f(E)=f(t—d+m-0)
For any 0 < & <min(eq,&,,m) we infer
O(r-¢) = Nf© = AUGE Nre =
Ee[t—d—¢e,t—d+m—e] E€[t—d—¢e,t—d) E€[t—d,t—d+m—¢]
=f(t-d-0)- Nre© =
Eelt—d,t—d+m—¢]
= ft=d=0)-  (f® -fl-d+m=0)=
Eelt—d,t—d+m—g]
=f(t-d-0)- Nse© - Nre =
Eelt—d,t—d+m—¢] Ee(t—d+m—¢e,t—d+m)
=f(t-d=0)- M/©
Eelt—d, t—d+m)
Because the value of ®(z—¢) does not depend on ¢, we get (¢t —¢) = ®(¢r—0) and because
¢t was arbitrary, (1) is proved.
The right limit of f in #—d shows the existence of €3 >0 so that
VEe(t—d,t—d+e3), [(&)=[f(t—d+0)
and on the other hand the right limit of f in #—d +m shows the existence of ¢4 >0 with
Vée(t—d+mit—d+m+ey), f(E)=f(t—d+m+0)
We take some 0 < &'<min(ez,e4,m) for which we have
Ot +e')= /@ = Nre@ - Nr@ =
Eelt—d+e',t—d+m+e'l Ee[t—d+e't—d+m] Ee(t—d+m,t—d+m+e']
= /© -ft-d+m+0)=
Eelt—d+e',t—d+m]
=f(t-d+0)- f© -fl-d+m+0)=
Eelt—d+e',t—d+m]
= (/& /@ f-d+m+0)=
Ee(t—d,t—d+e") Ee[t—d+e't—d+m]
= (/f©) -ft—d+m+0)
Ee(t—d,t—d+m]
The fact that d(z+¢') does not depend on €' shows that ®(¢+¢') = @(¢ + 0) and because ¢

was arbitrary, (2) is true. @ is differentiable.
The proof for ¥ is similar.

4.2.2 Theorem In the previous conditions and with the previous notations, we have:



O(-0)- @)= f(1-d—-0)- (/©
Eelt—d t—d+m]

DE-0)- @) =f(t-d-0)  (fE) -flt—d+m)

Eelt—d t—d+m)

Y(-0)-¥(@)=f(t-d-0) Us@© -ra-d+m)

Eelt—d,t—d+m)

P(-0)F(N)=ft-d-0)-  |Jr©)
Ee[t—d,t—d+m]

Proof O —-0)- @)= f(t—d - 0)- N/ - N/© =

Eelt—-d,t—-d+m) Eelt—d,t—d+m]

=(ft-d-0)u /) /) =f-d-0)- /©
Eelt—d,t—d+m) Ee[t—d,t—d+m] Eelt—d,t—d+m]
Y(-0)-Y()=f(1-d-0)u Ure - Ure =

Eelt—d,t—d+m) Ee[t—d,t—d+m]

=f(t-d-0)- Ur®-c Ur©uvse-d+m)=

Eclt—d t—d+m) &dt—d t—d+m)

=f(t-d-0)- Usr© - ra-d+m

Eelt—d t—d+m)

4.2.3 Theorem If f is signal, then @,V are signals.
Proof If m=0 and ®(¢r) =Y (¢)= f(t—d), then the differentiable function f(z—d) is signal,

from Theorem 4.1.4 ¢). We consider from this moment that m > 0.
We know from Theorem 4.2.1 that @ is differentiable and we must show that it

satisfies 4.1.1 ii) and 4.1.1 iii). The right continuity of f in #—d shows that g; >0 exists
with
Veelt—d,t—d+g),f(8)=f(1-d)
and the right continuity of f* in #—d +m shows the existence of €5 > 0 so that
Vée(t—-d+mit—d+m+ey), f(E)=f(t—d+m)
Let 0 <& <min(ey,e,,m) and we conclude

O(r+¢) = Nr© = Nre© - Nre =
Eelt—d+e,t—d+m+e] Ee[t—-d+e,t—d+m] Ee(t—d+m,t—d+m+e]
= V© fu-d+m=  fE© =
Eelt—d+e,t—d+m] Eelt—d+e,t—d+m]

/=) /O =

Eelt—d+e,t—d+m]
= (Ve (e =  [/fE =00
Eelt—d,t—d+e) Eet—d+e,t—d+m] Eel[t—d,t—d+m]
Thus ®(t+¢) =D(¢ +0) =D(¢). O is right continuous.
Moreover, the property 4.1.1 iii) is fulfilled since from 4.2.2:
DDO(1) = D(t - 0)- D) U D(t —0)- D(¢) =
=f({t-d=0)- (/© v fit—d-0)- /© -ft—d+m)<
Eelt—d,t—d+m] Ee[t—d t—d+m)
<f-d-0)-ft-d)yvf(t—-d+m—-0)- f(t—d+m)<



< f(t—-d—0)-f(t—-d)U f(t—d—0)- f(t—d)U
Uf(t—d+m—0)- f(t—d+m)U f(t—d+m—0)- f(t—d +m) =
=D(f ot ) UD(f ot )1

and, because fo1?, fo1?™™ are signals

supp D(f %) <[0,00), supp D(f o9 ~™) =[0,0)
we have

supp DO  supp D(f o 4 ) v supp D(f o 4= ) [0,)
@ is signal.
The proof for ¥ is dual.

5. An Overview of the Delays: Informal Definitions
5.1 We present now some of the intuitive knowledge that has generated the efforts represented
by the present work.

At least two things are understood by the word delay: a real non-negative number d
see 5.2, 5.3 and a logical condition see 5.4 and the following. These two occur usually
together in definitions, since a complete separation is very difficult.

5.2 Informal definitions As real non-negative number, the word delay is a short form for one
of the following 1), ii).

1) propagation delay, or transport delay [10] representing the 'time interval between a
transition in an input to the gate and a corresponding output transition. If the output
transition changes from 0 to 1, the delay is rising, otherwise falling’. The same notion is
called in [12], [13] transmission delay for transitions.

il) inertial delay representing [10] the 'minimum amount of time during which an input
signal must persist to affect a change at the output". In [12], [13] the same notion is called
threshold for cancellation and in [14] latency delay.

5.3 Convention The distinct numbers 5.2 i) and 5.2 ii) are generally taken to be equal [14]
when the last exists, i.e. in the presence of inertia. We quote the next opinion:[12], [13]: '4
common form of implementation of the inertial delay model is the one in which the
transmission delay d for transitions is the same as the threshold for cancellation. In other
words, when a transition appears at the input, the transition will appear at the output after d
unless a second transition occurs within that period'.

5.4 Classification of delays The logical condition called delay condition defines a model and
idioms like 'fixed delay' will often be used as a short form for 'fixed delay condition' or 'fixed
delay model' etc. The ‘delays’ to follow are all logical conditions defined informally.

Thus, from the timing properties point of view, we have

a) unbounded delays

b) bounded delays

¢) fixed delays
and from the memory properties point of view, the delays are:

1) pure delays, i.e. delays without memory

il) inertial delays, i.e. delays with memory.

5.5 Informal definition The unbounded delays are defined

a) [7]: 'a delay may take on any finite value'

b) [11]: 'mo bound on the magnitude is known a priori, except that it is positive and
finite'.



5.6 Remark The unbounded delay model is evaluated in [5] to be 'robust to delay variations',
but 'unrealistically conservative'.

5.7 Informal definition The bounded delays are defined in the next manner:

a) [7]: 'a delay may have any value in a given time interval'

b) [11]: a delay is bounded 'if an upper and lower bound on its magnitude are known
before the synthesis or analysis of the circuit is begun'

c) [5] 'every component is assumed to have an uncertain delay, that lies between given
upper and lower bounds. The delay bounds take into account potential delay variations due to
statistical fluctuations in the fabrication process, variations in ambient temperature, power
supply etc'.

d) [10]: “In practice, manufactured circuits of the same design may have different gate
delays due to manufacturing fluctuations in delay related parameters such as capacitance,
resistivity and transistors sizes. To be practical, we need to provide an analysis for not just a
manufactured instance of a design but the entire family of manufactured circuits of the same
design. To model manufacturing uncertainties, we assume the gate delays to be variable
within closed intervals. Therefore a complete delay analysis determines the delays of circuits
with variable gate delays...’

5.8 Remarks The bounded delay model is considered to be the most realistic one from the
three: unbounded, bounded and fixed delays.

To be remarked in this context the necessary supplementary conditions (of speed-
independence, or delay insensitiveness for example) of invariance relative to the variation of
the delays, required in the synthesis procedure of the circuits.

On the other hand, non-conflicting differences occur in the approaches when defining
and using the unbounded and the bounded delays: from having no lower bounds or upper
bounds, the poorest case of the delay model, to having four such bounds d, nin <d; max

d ¢ min <d f max, the richest case of bounded delay that makes use of the distinction between

the rising and the falling delays. The more detailed the model is, the more difficult is its
handling and the more realistic are its results.

5.9 Informal definition The fixed delays are a special case of bounded delays, when 'a delay
is assumed to have a fixed value', [7] and the lower bounds of the delays are equal with the
upper bounds of the delays making the delay be fixed, known.

5.10 Remark The fixed delay model is considered to be very unrealistic, in the sense that
small variations of the delays due to variations in the ambient temperature, power supply,...
cause great, unacceptable differences between the model and the modeled circuit. [5]: ‘Since
it is almost impossible to obtain a precise delay of a component in a chip, this is not a
realistic model for timing verification purpose’.

5.11 Informal definition The pure delays, or ideal delays are defined like this.

a) [11]: a delay is considered to be pure 'if it transmits each event on its input to its
output, i.e. it corresponds to a pure translation in time of the input waveform'.

b) [5]: ‘a pure delay simply shifts a waveform in time without altering its shape’.

The same idea is found in [10], where the pure delay timed Boolean functions are
defined.

5.12 Remark [13] refers to the pure delays, by considering that ‘This model is unrealistic in
the sense that practical gates will not transit a pulse caused by two transitions very close
together whereas the model guarantees that every transition will be at the output irrespective
of the proximity of the successive pulses’.



5.13 Informal definition The inertial delays (or latency delays) have generated the most
controversies, see also [5], [10]. The next opinions are generally accepted.

a) [12], [13] The inertial delays 'model the fact that the practical circuits will not
respond to two transitions which are very close together. The inertial delay model is one in
which input transitions are replicated at the output after some period of time unless two
transitions occur at the input within some defined period, in which case neither transition is
transmitted.'.

b) [11]: 'pulses shorter than or equal to the delay magnitude are not transmitted', see
also Convention 5.3.

¢) [7] ‘an inertial delay has a threshold period d . Pulses of duration less than d are
filtered out’, compatible with Convention 5.3 again.

5.14 Alternative definition In [1], [14] the authors show intuitively, like above, what inertia
is and then two variants of fixed, respectively bounded inertial delays are mentioned. We
reproduce only the second variant from [1], called there non-deterministic inertial delay, for
making the exposure as simple as possible and for the same reason we have changed the

language and the notations. x’ € B and the real numbers 0 < d min < dmax are given and the
requests are

i) V1 e[0,d ), x(¢) = x° initialization

i)  Vtxdyn, Dx(t) =1= 3t'e supp Du N[t —d x>t —d min such  that
x(@®)=u(t") and (t',t) A supp Du =2

iil) V¢ € supp Du,(t,t + d o ] A supp Du # D or [t +d it + dpax ] A Supp Dx # &

5.15 Remark In [1] we can find the next observation relative to definition 5.14: 'one could
assume that changes should persist for at least 1} time units but propagated after 1,,l, >1;

time', in other words one could abandon for the sake of accuracy the ‘common form of
implementation of the inertial delay model’ from Convention 5.3.

5.16 Alternative definition We refer now to the approach from [4], where two variants of
fixed, respectively of bounded inertial delays are given also, from which we reproduce the
second one under the form:
1) Dx(t) =1= VE e[t = dpin,1),u(8) = x(7)
i) Vae B,(VEe([t,t +d a5 ) u(E) =a)=
= (Ftelt,t +dpax ), VEE[T, 1+ dpay ), X(8) = a))

5.17 Remark We make brief comments and a comparison between 5.14 and 5.16:

- terminological differences with our work occur, that the reader is asked to pay not
very much attention at his first reading of this text.

- in the second definition, initialization is missing. If we start by definition from null
initial conditions, then initialization is not necessary and if we reason for any possible initial
value, then initialization is missing too. The possibility that initialization is missing at 5.14
also is given by the value d,;, =0.

- 5.14 ii) and 5.16 i) essentially express the same idea, the first condition being
stronger.

- 5.14 iii) is a negligent way of expressing the idea 5.16 ii). This negligence is
symptomatic in the sense that in the non-formalized theories that we refer to, it produces no
effects (we quote in this context with amusement one of our mentors, professor A. C. Albu
from Timisoara that is specialized in the Foundations of Mathematics who called our attention
once that ‘all the research is made in a non-formalized manner’).



6. Delays

6.1 Stability. Rising and Falling Transmission Delays for Transitions

6.1.1 Definition Let u,x two signals, called input (or control) and respectively state (or
output). The next property
VaeB, (3t ,Vt2tj,u(t)=a)= (3t,,Vt 2ty,x(t) = a)
is called the stability condition (SC). We say that the couple (u,x) satisfies SC.
We also call stability condition the function Solg- :S — P *(S) defined by:

Solgeo(u) = {x | (u, x) satisfies SC}

6.1.2 Remark SC states the next cause-effect relation between u and x:if lim u(¢) does not

t—o0
exist, then Sol/gc-(u)=S and if lim u(¢) exists then, whichever it might be, lim x(¢) exists
t—o [—0

and lim x(¢) = lim u(#) . On the other hand, the next ‘non-anticipative’ statement
t—o t—>o0

VaeB,(3t,Vtztj,u(t)=a)= 3ty 211,V 2ty,x(t)=a)
is equivalent with SC.

6.1.3 Definition We suppose that (u,x) satisfies SC, that lim u(r) exists and that
t—>0

supp Du# @, supp Dx #3°. We note
t; = max supp Du, ty = max supp Dx
The transmission delay for transitions (of x relative to ) is the number d >0 given by
d =max(0,t, —1])

If

u(ty —0)-u(n) = x(t, —0)-x() =1
then d is called rising and if

u(ty =0)-u(t)) = x(t, =0)-x(r3) =1
then it is called falling . If supp Du, respectively supp Dx is empty, then ¢, respectively ¢,

is by definition 0 and if lim u(#) does not exist, then d is not defined.
t—0

6.2 Delays
6.2.1 Definition A delay condition (DC) or shortly a delay is a function i: S — P *(S) with
Yu,i(u) < Solgc (1)

6.2.1 Remark The delays are the models of the delay circuits, i.e. of the circuits that compute
the identity 1p . In practice, we usually work with systems of equations or inequalities in u,x
and for each u, i(u) represents the set of solutions of these systems. Definition 6.2.1 asks
that such solutions always exist and that the systems be stable.

6.2.3 Examples of DC’s. a) i(u)={u} is usually noted with /. More general, the equation
i(u)y={uo ‘Cd} defines a DC when d >0 (see Theorem 4.1.4 c)) noted with 7.
b) i(u)={x|3d 2 0,x(t) = u(t) - Y[d,00) ()} and

* supp Dx, supp Dy are finite, non-empty in this case.



i) = {x13d 2 0,5(1) = L (oo, (1) D U(D) L[ o) (1)}
are DC’s.
¢) i(u) = Solgc (u) is a DC called the unbounded delay.

6.2.4 Theorem Let U — §, the DC’s i, j and the arbitrary function ¢:S — P*(S).
a) If Vu,i(u) AU # D, then the next equation defines a DC:
AU uw)=i(u) AU
b) If i, j satisfy Vu,i(u) A j(u)#,then i A j is a DC defined by:
(i~ ) =i(u) A j(u)
c) Items a), b) are generalized by: if Vu,i(u) A o(u) =, then i A ¢ is a DC
(i A Q)(u) = i(u) A @(u)
g) The function 7 v j that is defined in the next manner is a DC:
(v ) =i(u) v j(u)
Proof ¢) The fact that i A ¢ takes values in P *(S) is assured by the hypothesis
Yu,i(u) A o(u) # < . Furthermore, for all # we have

(i A Q)u) = i(u) A @(u) < i) < Solsc (u)

6.3 Determinism

6.3.1 Definition Let the DC i. If Vu,i(u) has a single element, then it is called deterministic
and otherwise it is called non-deterministic.

6.3.2 Remark By interpreting i as the set of the solutions of a system, its determinism
indicates that the solution is unique for all u and this allows identifying a deterministic DC
with a function i:S§ — §. The meaning of the non-deterministic delays consists in the fact
that in an electrical circuit to one input u there correspond several possible outputs x € i(u)
depending on the variations in ambient temperature, power supply, on the technology etc.

6.3.3 Examples At 6.2.3 /,1; are deterministic and the other DC’s are non-deterministic.
Let Uc S and the DC’s i,j. At 6.2.4 a) and respectively at 6.2.4 b), if i is
deterministic then i A U(=i) is deterministic and respectively i A j(=i) is deterministic.

6.3.4 Theorem For 0 <m <d , the next functions are deterministic DC’s

xn= [u®©
Eelt—d, t—d+m]
x(t) = Uu(é)

Eelt—d,t—d+m]
Proof They are signals from Theorem 4.2.3. If 3d',V¢>d',u(t)=0 and this is equivalent
with u(?) < X (—o0,d) (1) then
x(t) = (u(@) < (N (<0, (&) = A (—oo,d-+d—m) (©)
Eclt—d t—d+m] E&€t—d t—d+m]
ie. Vt>d+d'-m,x(¢t)=0. Similarly, if 3d',Vt>d',u(t)=1 and this is equivalent with
I/l(t) > X[d',oo) (t) , then
0= (Nu@ 2 (V) ©) =Aarde) O
Eelt—d t—d+m]  Eelt—d t—d+m]
in other words V¢ >d +d',x(t) =1. We have shown that x € Solg¢- (1)



The proof for x(¢) = Uu(&) is dual.
Eelt—d,t—d+m]

6.4 Order

6.4.1 Definition For the DC’s i, j we define i — j by

Vu,i(u) < j(u)
6.4.2 Remarks The inclusion < defines an order —that is not total- in the set of the DC’s.
Sol g is the unit of this ordered set: any DC i satisfies i < Solgc.

We interpret the inclusion i j by the fact that the first system contains more
restrictive conditions than the second and modeling in the first case is more precise than in the
second case. In particular, a deterministic DC i contains the maximal information and the DC
Solgc contains the minimal information about the modeled delay circuit.

6.4.3 Theorem Any DC ; includes a deterministic DC i.

Proof For any u, the axiom of choice allows choosing from the set j(u) a point x and we
define i(u)={x}. i(u) is non-empty and satisfies i(u) < j(u) < Solgc (1), in other words i is
a deterministic DC.

6.4.4 Corollary In the inclusion i = j of DC’s, if j is deterministic, then i= .

Proof In the previous proof, the only possibility of choosing i is

Vu,i(u) = j(u)
6.4.5 Examples Let U c S and the DC’s i, ;. If Vu,i(u) AU #O, then i AU ci and if
Vu,ilu) A jlu)=D,thenin jcicivj.

6.5 Time Invariance
6.5.1 Definition The DC i is called time invariant if
Yu,Vx,Vd e R,(u o les andxei(u)):(xord eSand xot? ei(uo rd))
and if the previous property is not true, then i is called time variable.
6.5.2 Remarks We mention also a weaker version of time invariance, that we shall not use:
Yu,vx,vd € R,(u o ¥ eSand x e i(u) and xot¥ € S)= (xo = i(uo rd))
Let us suppose now that the signals f:R—> B would have been defined more

generally by any of the next equivalent conditions, see Theorem 4.1.3:
a) f is differentiable, right continuous and 3¢, supp Df < [t(, )

b) the unbounded family ¢y, <¢#; <t, <... exists so that
S @)= f(to=0) X (o0,0) DD f(10) Af1,01) D) @ S 1) X [11,19) () D ..

i.e. we relax the condition supp Df —[0,00) at a) and respectively we omit the condition
0<t, at b). We keep the conditions of lower boundness of supp Df and respectively of
(t,)), that both mean the existence of some initial time instant 7, and let us note with S the
set of these signals. Obviously § S . In such conditions, a time invariant DC i is a
function 7 :§ — P*(S) (P*(S)={A|Ac S, A+ D} ) satisfying

i) YueS,Vxei(u),VaeB,(3t,Vt2t;,u(t)=a)= 3y, Vi >ty,x(t) = a)

i) Vue S,vxeS,Vd e R,



(uord eSandxe?(u)):(xord eSand xot? e?(uord))
i.e. ii) reproduces 6.5.1 written with S not with S . We note with i = ES the restriction of 7

at S'. We have the next

6.5.3 Theorem a) Vu e S,7 (u)c S

b) i is a time invariant DC
Proof a) We suppose against all reason the existence of some ueS and xei(u) so that
xe S, thus supp Dx# < and fy = min supp Dx satisfies ¢y <0. Then for any d (#y,0) we

have that uot ¢ €S and x e i (u) are both true, but xo 1 S is false because, see also the
proof of Theorem 4.1.4 c)

min supp D(x o r_d) =—d +min supp Dx =—d +1t; <0
This is in contradiction with the fact that i satisfies the time invariance condition 6.5.2 ii).

b) We take into account a). The three properties that must be fulfilled, i.e. the fact that
VuesS,i(u)#<, that Vu e §,i(u) < Solgo (1) and the condition of time invariance 6.5.1 are

satisfied by i because they are satisfied by 7 .

6.5.4 Remark If we try to replace 6.5.2 ii) with 6.5.1 written with S instead of S , then this

time invariance condition becomes, see also Theorem 6.5.6 for something similar:
VuEE,VXEE,VdER,XET(L{)DXO‘EGI e?(uord)

The property is reasonable and it constitutes an alternative definition of time invariance for

the DC’s 7 :S — P* (§ ), but it is too weak to produce the validity of the statement 6.5.3 a).

On the other hand, all the important delay conditions that we are interested in are time
invariant. Theorem 6.5.3 allows choosing for them the initial time instant be 0 and this was
already anticipated by Definition 4.1.1. We shall always use from this moment S in our

work, not S .

6.5.5 Examples a) We show that /; is time invariant, where d >0: for d'e R arbitrary,

uot? €S and xely;(u),ie. x=uort? imply

xot? =(uord)ord' =uogdtd =(uord')ord )
from Theorem 4.1.4 c), resulting the fact that x o P er qo rd') too.

b) We show that Solg- is time variable and we give the next counterexample. For

u=ld=-1 and x=y[g), the prerequisites of 6.5.1 is fulfilled under the form

1=lot'eS and X[0,00) € S0lgc(l), but the conclusion is false, since

-1

X[0) °T = X[-10) £S5 -

c) Let the time invariant DC’s i,j. Then iv j is time invariant and if
Yu,i(u) A j(u)# D, then i A j is time invariant too.
6.5.6 Theorem Let i a time invariant DC. We have the next equivalence:

Vu,Vx,VdZO,xei(u)@xotd Ei(MO’td)

Proof = uot? eS and xe i(u) are both true, taking into account Theorem 4.1.4 c). We
apply the time invariance of i.



= (uord)or_deS and xordei(uord) are true. By using 6.5.1 we get

(xord)or_d ei((uord)or_d).

6.6 Constancy

6.6.1 Definition A DC i is called constant, if d,. >20,d y 20 exist so that for any u and any

x€i(u) we have

x(t—0)-x()<u(t—d,) (1)
x(t=0)-x()<u(t—d ) )

If the previous property is not satisfied then i is called non-constant.

6.6.2 Examples a) /; is constant, d >0 because from x(¢) =u(¢f —d) we infer
x(t—0)-x(t)=u(t—d —0)-u(t —d)<u(t —d)
x(t=0)-x(t)=u(t—d —0)-u(t —d)<u(t — d)

b) Let U — S and the DE’s i, j from which i is constant. If defined, i AU and i A j

are constant and in general a DC included in a constant DC is constant. If j is constant, then
the property Vu,i(u) A j(u) =< makes i v j be not constant in general due to the possibility

d£ ¢drj, respectively di, ¢d;, but if Ju,i(u) A j(u) =, then d,,d ; uniquely exist so
that Vxei(u) A j(u) 6.6.1 (1), 6.6.1 (2) are fulfilled and in such circumstances iv j is
constant.

6.6.3 Theorem The deterministic DC’s (see Theorem 6.3.4) defined by the next equations

)= (u@) (1)
Eelt—d t—d+m]
xy= Ju®) )

Eelt—d t—d+m]
where 0 <m <d are time invariant and constant.
Proof We give the proof for (1) and the proof for (2) is similar.

The time invariance Let d'e R arbitrary so that u o ¥ €. Then

(xot?)(t)=x(t—d') = Nu@ = Nu@ =
Eelt—d—d'i—d—d'+m] E+d'd[t—d t—d+m)]
= NuE-d)=  N@t")E 3)
Eelt—d t—d+m] Eelt—d t—d+m]

shows that xot¢ €S and xo1? € i(uo rd'), i.e. i defined by (1) is time invariant.
The constancy From 4.2.2 we get
x(t=0)-x(t)=u(t—-d -0)- ﬂu(é) Su(t—d)
Eeft—d t—d+m)
x(t—O)-%zu(t—d—O)- ﬂu(é) cu(t—d+m)Lu(t—d+m)
Eelt—d t—d+m)

6.6.4 Remark Constancy means that x is allowed to switch only if # has anticipated that
possibility d,., respectively d s time units before. It does not imply the uniqueness of d,.,d ¢

and at 6.6.3 (1) we have an example when d,. is not unique.



6.7 Rising-Falling Symmetry
6.7.1 Definition The DC i is called (rising-falling) symmetrical if one of the next equivalent
properties is true:
a) Vu,i(u)={x|xei(u)}
b) Vu,Vx,x€i(u) < xe i(L_l)
and respectively (vising-falling) asymmetrical otherwise.

6.7.2 Examples a) /; with d >0 arbitrary is symmetrical because
xelyw) e x(t)=u(t —d) < x()=u(t —d) < x e 1 1 (u)

1s true for all » and all x.

b) Solgc is symmetrical also and let for this an arbitrary « . If lim u(#) does not
t—0

exist, then lim @ does not exist and
t—>00

Solge (1) = Sol g (u) = §

from where we infer the desired property. Let us suppose now that lim u(z) exists, thus
t—o

lim m exists and we note with c,z € B these limits. We take an x € So/g- (1) and we have
t—>0

the existence of d20  with  x(6)=x(¢) % (—a,q) () D C A[g,m) (). Because
X(O) Yooy () ® € Ag ) () € Solsc (), we infer xeSolgc(u) resulting that

xeSolgc(u)= x e Sol sC (u) . The inverse implication is similarly proved.
c¢) The DC’s defined at 6.2.3 b) are asymmetrical. We suppose for the first of them that
xei(u), ie. d>0 exists SO that x(1) =u(®) A[d o) (1) - Because

E =X (=o0,d) (1) ® @ “A[d ) (1) € i(;) , we infer that the symmetry is not fulfilled.

d) Let UcS with xeU=xeU and i,j symmetrical DC’s. Then iv j is
symmetrical and, when defined, the DC’s i AU and i A j are symmetrical too.

6.8 Serial Connection

6.8.1 Definition For the DC’s i, j we note with k =io j the function k:S — P*(S) defined
in the next way

k(w)={y|3x,xe j(u)and y €i(x)}
k is called the serial connection of the DC’s i and ;.

6.8.2 Theorem (the compatibility between the serial connection and consistency, stability,
determinism, time invariance and symmetry)

a) k isa DC.

b) If i, j are deterministic, then & is deterministic.

c) If i, j are time invariant, then & is time invariant.

d) If i, j are symmetrical, then k£ is symmetrical.
Proof a) Let u arbitrary for which j(u)# < shows that x € j(u) exists and i(x) # < shows

that y €i(x) exists, thus y € k(u) exists. On the other hand, if lim u(¢) exists, then lim x(7)
t— t—o0

exists and lim y(¢) exists also and the three limits are equal.
t—0



b) The determinism of % is equivalent with the fact that the composition of the § — §
functions (see Remark 6.3.2)isa S — S function.
c) We must show that for any u, y € S,d € R we have the implication

(uord eSandyek(u)):(yord eSandyord ek(uord))
true. If yek(u), let xeS whose existence is guaranteed by the definition of k£ so that
xe€ j(u) and y ei(x). By applying 6.5.1 to j, because u o @es , we have that xo les

dej(uord). We apply again 6.5.1 to i and we obtain yordeS and

and xot
yord ei(xord). Thus yord ek(uord).

d) ; € k(;) o 3x,xe j(;) and ; € i(;) S I, xeju)and yei(x) = yek(u)
6.8.3 Counterexample showing that the serial connection £ of the constant DC’s i, j is not
necessarily constant and we consider for this the DC defined by

() = Solgc (u) A {x | x(t = 0) - x(t) <u(t —d,) and x(t - 0)- x(t) <u(t —d 7 )}
where d,. 20,d r >0. i is obviously constant.
Let u =7 [rq) for which 1€i(u) and y[4 ) €i(l) take place for any 120 and any
d>0. In order that k =ioi be constant, d ,,' 20 must exist so that for any u =y ), the

signal y = X[d,0) should satisfy
Liay () =yt =0)- y() Su(t—d,) =y, (0 (1

[d) +7,%)

Let such a d; fixed; by choosing d and t so that d < d: + 1 be true, (1) is false. & is not
constant.
6.8.4 Remark The set of the DC’s is a non-commutative semi-group relative to the serial
connection having the unit 7 :
iol=1loi=i

Three of its important sub-semi-groups are represented by the deterministic, the time invariant
and respectively the symmetrical DC’s.
6.8.5 Theorem (the compatibility between the serial connection and the order) Let the DC’s
i, j,k . The next implications are true:

icj=iokcjok

jCck=iojciok
Proof Let u and ye(iok)(u), meaning that some x exists with xek(u) and yei(x);
because y € j(x), we obtain y e (jok)(u).

On the other hand, if we suppose that y € (i o j)(u), then x exists so that x € j(u) and

yei(x). We get x € k(u) implying y e (o k)(u).

6.8.6 Theorem (the compatibility between the serial connection and A,v ) Let U — S and the
DC’s i, j,k .
a) If Yu,i(u) AU =, then Vu,(io j)(u) AU = and
(iAU)e j=(o ) AU
If Yu, j(u) AU # I, then we have
io(jAaU)cioj
b) If Yu,i(u) A j(u)# , then Yu,(iok)u) A (jok)u)#<D and



(inj)ekc(iok)n(jok)
If Yu, j(u) Ak(u) =3, then Yu,(io j)u)A@{ck)u)=<D and
io(jak)yc(ie j)n(ick)
c) We have
(ivj)ek=(ick)v(jok)
io(jvk)=(@ioj)v(ick)
Proof a) Vu,((i AU)o j)u)={y|3x,yei(x)and yeU and x € j(u)} = (o j) AU)(u)
Yu,ic(jAU))u)={y|3x,yci(x)and x € j(u)and xeU} c
c{y|3x,yei(x)and x € j(u)}=(io j)(u)

b) Yu,((i A j)eok)u)={y|3x,yei(x)and y € j(x)and x € k(u)} C
c{y|3x,Ix",yei(x)and xck(u)and y € j(x')and x'e k(u)} = ((io k) A (jo k))(u)
Yu,(io(jAR)wu)={y|3Ix,yei(x)and x € j(u)and x € k(u)} c
c{y|3x,x'",yei(x)and x € j(u)and y €i(x") and x'e k(u)} = ((io j) A (i k))(u)

c) Vu,((iv j)ok)u)={y|3x,(y €i(x)or y € j(x))and x € k(u)} =
={y|3Ix,(yci(x)and xk(u))or (ye j(x)and xck(u))}=(Icok)v (jeok))(u)
Vu,io(jvk)u)={y|3Ix,yei(x)and (x € j(u)or xek(u))}=
={y|3Ix,(yei(x)and x e j(u))or (yci(x)and xek(u))}= (o j)v (iok))u)

7. Bounded Delays

7.1 The Consistency Condition

7.1.1 Theorem Let 0<m, <d,,0<mg<d; be given. The following statements are

equivalent:
a) Yues, u@ < Ju©
Eelt—d, t—d, +m; ] &e[t—df,t—df+mf]
b) Vues, Nu@ - Nu@® =0
Eelt—d, t—d, +m,.] &e[t—df,t—df +mf]
] d.—m,<dpandd;—my<d,
d) VueS,Ixe S u@©) <x(n)< Ju©)
Eelt—d, t—d; +m,.] &e[t—df,t—df+mf]
Proof a) < b): Vu, uE©) < Ju©
Eelt—d, t—d,+m; ] &e[t—df,t—df +mf]
=V, Nu@ v Nu@ =1
Eelt—d, t—d,+m; ] ée[l—df,t—df +mf]
oV, Nu@ - Nu@® =1
Eelt—d, t—d, +m; ] ée[l—df,t—df +mf]
eV, Nu© Nu® =0
Eelt—d, t—d,+m; ] &e[l—df,t—df +mf]
byee):  Vu, Nu© Nu@ =0

Eelt—d, t—d,+m; ] &e[t—df,t—df +mf]



SVL[t—dt—d, +m.]A[t-d gt —d s +mf]¢®
(= if Elt,[t—dr,t—dr+mr]/\[t—df,t—df +mf]=@, then u exists so that
VEelt—d,,t—d, +m,.],u(§)=1 and Vée[t—df,t—df +mf],u(ﬁ,):0 contradiction with
the hypothesis; < if Vt,[t—dr,t—d,+mr]/\[t—df,t—df +mf]¢®,then Yu,Vt,
Vie[t—dr,t—dr+mr]/\[t—df,t—df +my], u(€)=1 and u(§)=0 cannot be both true

and the conclusion results)
SVt,—(t—d,+m,.<t-dyort—ds+my <t—d,)

SVit-d . +m. 2t—-dgandt—dp+my2t-d,
<d,—m.<dyanddy—-m;<d,

a)<d) is obvious if we take into account the fact that ﬂu(&,) ,
eelt—d, t—d,+m,]
Uu(é) are signals, see Theorem 4.2.3.
&e[t—df,t—df—kmf]

7.1.2 Definition Any of the properties 7.1.1 a),...,7.1.1 d) is called the consistency condition
(of the bounded delay condition) (CCgpc).

7.1.3 Remark Let us see some special cases of satisfaction of CCgpc. If d, =d r =d and
m.=mg=m, CCgpc 1s fulfilled under the form d>d-m. CCgpc is also fulfilled if
m, =d, and my = df. If m, = mye = 0, then the satisfaction of CCppc is equivalent with
d,=dy.

7.2 Bounded Delays
7.2.1 Theorem The next system
Nu© <x(@)< Yu© (D
Eelt—d, t—d,+m; ] ée[z—df,t—df +mf]

where u,xe S and 0<m, <d,, 0<my <d defines a DC if and only if CCppc is satisfied.

Proof If CCppc is true, then (1) has solutions x for any u and all the solutions satisfy
x € Solgc (1), see Theorem 6.3.4. If CCppc is not fulfilled, then some u exists so that (1) has

no solutions.

7.2.2 Definition We suppose that CCgpc is true: d, —m, < df, df —my <d, . The system
7.2.1 (1) is called the bounded delay condition (BDC); u,x are the input (or the control),
respectively the state (or the output); m,.,m ; are the (rising, falling) memories (or thresholds
Jor cancellation) and d,..d ; are the (rising, falling) upper bounds of the (transmission)
delays (for transitions). The differences d fFomyg, respectively d,. —m,. are called the (rising,

falling) lower bounds of the (transmission) delays (for transitions). We say that the tuple
(u,mr,dr,mf,df,x) satisfies BDC.

", . mydymyg.d g
We also call bounded delay condition the function Solp,~ 7 7 :S—>P*(S)
defined by



my,d;,

d
Solgpe "I ()= (x| (u,my.,d,.,mr,d ,x) satsifies BDC}

7.2.3 Theorem a) The next system

(u(®) <x(n)< Uu© (D
Eelt—dy max->!—d f min] Celt=d £ max>!=dr min]
where u,x€ S, 0<d, nin <d; max> 0<d s min <d f max defines a DC if and only if
dr,min < df,max 2
df,min < dr,max 3)

b) When (2), (3) are fulfilled, the system (1) and BDC from 7.2.1 (1) are equivalent, in
the sense that by a suitable choice of the parameters m,.d,.,mys.dr.d; min,d; max.

d ¢ min-d £ max their solutions coincide for all u .
Proof a) If (2), (3) show that the sets [ —d . max.! —d f min]:[f = d £ max>t = d; min ] are non-
empty and the inequalities 0<d, iy <d; max, 0<df min <d g max show that the meet
[t —d) max-t —d g min AL —d £ max -t = d ) min ] 18 non-empty because

t=dfmax St—dgmin and t —d, pay St—d, min

thus (1) has a solution for any u , similarly with the proof of 7.1.1. It is shown that for any u
and any solution x of (1) we have x € Solgc (u).

Only if If dy min >d fmax then [t—d ; oyt —dymin]=2 shows that Vz,x(1)=0 in (1)

implying the existence of some u so that (1) has no solutions. Similarly for d ¢ pin > d) max -

b) We define
d, = dr,max “)
dy=dfmax (5)
My =d; max — df,min (6)
myg = df,max - dr,min (7

7.2.4 Theorem (the property of compatibility between the initial values of the input and of the
d d
output for BDC) If x € SOZZIS’C rmferf (u), then x(0—0)=u(0-0).
Proof u(0—0)=0 is equivalent with u(#) <o q)(¢). We have in this case
x() < Uu® < U 1000) &) =X{d pm 1.0) () < Xj0,0) ()
&e[t—df ,t—df +mf] &e[l—df,t—dfwtmf]
ie. x(0-0)=0.
u(0—0)=1 is equivalent with u(z) > X (~0,0) () and we have
x(t) 2 u®©) = (t(=.0) (&) = X (—oo,dy—my.) (1) 2 X (=0,0) (7)
Eelt—d, t—d,+m,]  E€lt—d, t—d,+m;]
ie. x(0-0)=1.

my,d;,

myg,d
7.2.5 Theorem Sol 51"/ (¢)={c},VceB.

Proof If V¢,u(f) =c, then V¢, u© = Ju© =c.
Eelt—d, t—d,+m;.] &e[z—df,t—dwamf]



7.2.6 Remark We analyze BDC in the hypothesis that m, >0 in the following manner.
a) x(0-0)=0 and u(?)=y[o,;)(t), with 0<t<m,, ie. we apply at the input a
‘short’, ‘insufficiently persistent’ 1-pulse. The situation is the one from the next figure, where

we remark that ﬂu(@) is identically null.
Eelt—d, t—d,+m,; ]

14
s ¢
[u®
Ee[t—dp t—d .+ ]
i
Juc®
E_,E[.ﬁ—a"f ,E—a"f +mJ{]
fif —J"I’If df + T g
Fig 9

x(8) = x(1) - Xld p—mg.d f+1) (1)
te(-o,dy—myg); x(¢) =0 necessarily, the pulse from the input did not alter the output, that
keeps the initial value
teldy—-myp,dy+1); x(1)=0 or x(£) =1, 0 and 1 are both possible values of the output, that

could be altered by the pulse from the input
teldy +t,0); x(f)=0 necessarily, the value 1 from the input cannot alter the output any
longer

We observe that the 1-pulses of length shorter than or equal to m, (the dual situation

is true also) at the input are not necessarily transmitted to the output, thus BDC includes the
special case when such pulses are surely not transmitted. The last property strengthens the
inertial character of BDC.

b) x(0-0)=0 and u(?) =x[,1)(#), with ©>m,, in other words a ‘long’, ‘persistent’
l-pulse is applied at the input. This corresponds to the drawing in Fig 10, where
ﬂu(&) is not null:

eelt—d, 1—d,+m;.]

X(O) =X Afd p—m ¢ .dp) DD Ud, .y —my +0) O OXO) X[,y +1,d f41)(O)
te(—o,dy—my); x(t) =0 necessarily, the input pulse did not alter the output
teldy—myg.,d,.); x(t)=0 or x(#)=1, 0 and 1 are possible values of the output, that could be

altered by the input pulse
teld,,d, —m, +1); x(t)=1 necessarily, the persistent input pulse has propagated to the
output



i
= ¢
(e
EEli—d 0 i—d e ]
¢
U“@ d, d.—m.+71
E_,E[f.—cif,z—dj+m_f]
fif —mf fif + T ‘
Fig 10

teld, —m, + ‘E,df +1); x(#)=0 or x(¢)=1, 0 and 1 are possible values of x, that could still

be influenced by the input pulse
teldy+1,0); x(t)=0 necessarily, the state of balance=stability when x depends only on
the value lim u(¢#) =0 and not on the input pulse.
t—0©
We conclude that if « is 1 for strictly more than m, time units, then x becomes 1

with a delay of d €[d f—m f,dr] time units and, in a dual manner, that if u is O for strictly
more than m ¢ time units then x becomes 0 with a delay of d €[d, —m,..d ;] time units. Fig
10 best shows why dy —myp =d, iy and d, =d, ., see 7.2.3 (4),..., 7.2.3 (7), were

previously called the rising lower bound and upper bound of the delays, together with the dual
taxonomy.

This analysis has shown, by the use of the words possible and necessary that was
made on purpose, the existence of interference not only with temporal logic —this was obvious
from the very beginning- but also with modal logic. The idea is natural to all these authors
that consider temporal logic be a ‘modal logic aiming to express time dependent processes’,
together with Mihaela Malita and Mircea Malita (‘The Foundations of Artificial Intelligence,
1 Propositional Logics’, ed. Tehnica, Bucuresti, 1987, in Romanian).

Two interpretations of BDC exist, that we shall call the positive and the negative
interpretation.

The positive interpretation of BDC is the following: it is natural that the value of the
output be arbitrary when the input is not sufficiently persistent (in the previous case a) for
teldp—myp,ds+1) and in the previous case b), for

te [df - mf,d,)\/ ld, —m, + ‘E,df +1)). This fact could also be modeled by the replacement

of the set {0,1} with {O,%,l} -some authors do so- but this has algebraical disadvantages,
,%,1} is poorer algebraically than {0,1}. Non-determinism is another way
(ours!) of solving this problem.

The negative interpretation of BDC: it is not natural that at some time moment #; we
should have x(#; —0)- Ttl) =1, while Vz <t),u(t-0)- M =0 in the sense that x switches in
a manner that is not compatible with the (more or less) (left) local behavior of u .

because the set {0



! d

Fig 11

In other words, pulses on the output may exist that do not reproduce the pulses on the
input.
7.3 The Properties of the Bounded Delays

7.3.1 Theorem (The representation of the solutions of BDC). Let u,x €S and the numbers
0<m,<d,.,0<m r <d f so that CCppc is fulfilled. The following statements are

equivalent:
d d
a) xeSol g ()
b) 3y €S so that x satisfies
x(1)= Nu©  Vy@)- Yu©)
&elt—d, t—d, +m, ] ﬁe[t—df,t—df +mf]

Proof We can take y(z) = x(?) .

7.3.2 Remark Let 0<m, <d,,0<my <d; and OSm'r Sd},OSml'f Sd} so that CCppc 1is

fulfilled twice: d, 2d s —-myg,dy2d, —m,, respectively d'r > d"f - ml'f,d.'f > d'r - mr .
The next statements are equivalent:

my,dp, m;,,d,',,
BDC BDC

b)d,>ds—msdy>d, —m.d, >ds—ms,dy>d, —m,

2) Vi, Sol 77T () & So1 TS 4y 2

. . . m}" 5d}” amf 5df m;" 5d}"‘am'f‘ 5d'](‘ .
and if one of them is satisfied, then So/ BDC A Sol BDC exists under the form

u@© v u@ <x)< Yu© - Ju@©

telt—dpt—dptmp]  cfi—dli—dim.] Celt=dpi=dg+mpl ecfi-d'ri-dy+ms]

my,dpm¢.d m' ,d' ,m' ,d' . .
but it i1s not a BDC. On the other hand Sol BL};CV ref v Sol Blr)Cr ) exists without

other consistency requirements than those represented by the validity of the two CCppc’s and
it is not a BDC either:

u© - ﬂu(é)' <x(r) < Uu@ v Yue©)

Eelt—dy t—dy+m;] Eje[t—d;ﬁ ’[_d;,.:,.mr] Eelt-dyt—dy+my] &e[t—d'f,t—d'f+m'f]

7.3.3 Theorem Let 0<m, <d,,0< m s < df so that CCgpc is true. The next statements are

equivalent:



Mmydpmypdy . L
a) Sol g~ is deterministic

b) the upper bounds and the lower bounds of the delays coincide
d,, de —mf,df Zdr —m,
¢) the memories are null
m, =my =0
d) the bounded delay degenerates in a translation
mysdpmfdf

3d 20,50l g~ 1,
dy.my.d .
Proof a) = b) The hypothesis states that SOZZISC P8 has exactly one element, i.e.
Vu, Nu@® = Uu© (1)

Eelt—d, t—d, +m,. ] &e[t—df,t—df +mf]
We give u the values y[0,q).% (—u0,0) and we obtain

(00,50 (&) = %[d .00 (©) )
Eelt—d, t—d, +my ]

U10,00) @) =%1a p=m 10y () (3)
&e[t—df,t—df +mf] ' ‘

ﬂX(—oo,O) ©= X(~o0,d, —mr)(t) “4)
Eelt—d, t—d; +my ]

UX(—oo,O) &)= X(—oo,df)(t) (%)

&e[l—df,t—df +mf]

(1) implies the equality of the functions from (2) and (3) and of the functions from (4) and (5)
and this indicates the satisfaction of b).

b)= c¢) We add the two relations term by term and we get m, +m =0. c) is true.
c)=d) From the hypothesis c¢) and from CCgpc we infer d.2dy.dy2d, 1ie.
d, = df =d and 7.2.1 (1) becomes
u(t—d)<x(@)<u(t—d)
in other words SS9 (u) = {u(t —d)} .
d)= a) Obvious, since /; is deterministic.

7.3.4 Theorem Let 0<m, <d,.0<my <dy and 0<m, <d,,0<my <dy so that CCppc is

fulfilled for each of them. The next statements are equivalent

a) Solgggr’mf Af CSolgggr’mf Af
b) Vu, ﬂ“(é) < ﬂ“(é) < UU(E.,) < Uu(é)

E_,e[t—d'r,t—d'r+m'r] Eelt—dy t—dy +my ] ge[z_df,;_df +mf] &e[z—d"f,t—d"f +m.'f]
c) [t—d,t—d, +m,]1>[t—d,.t—d, +m,]
[t-dst—ds+mplct—dst—dy+m;]
d) dy—m,<d,-m,<d;<d;



dp-my<ds-mp<d, <d,

Proof Obvious.

75y ,m 7> f
7.3.5 Theorem Sol BDC 1s time invariant.

Ay ,d
Proof We choose u,x€ S and d € R arbitrary so that u o r eS and x e SOZBDC Al

(u)
be true. From the supposition that #(0 —0)=0,1.e. uot (t) <%[0,0) () and from
Geths  UwerH®s  Unjow) © =21d o) O <1[0.0) )
&e[t—df,t—df +mf] ae[t—df,t—df+mf]
we infer supp Dy (x o ¢ ) [0,0); and if u(0—0)=1,1i.e. uo ¢ (t)= X (—o0,0) (¢), then
(xot)n)2 N@ot?)E) = (% (20,0 (€)= X (o0, —my ) () = X (=00, 0) (©)
Eelt—dy t—d,-+my.] Eelt—dy t—d,-+my. ]
from where supp Djo(x o rd) c [0,00). Because
supp D(x o ) = supp Doy (x o 1% ) v supp Dy (x o 1) [0, 00)
we conclude that xot? €S . The inequalities

Nwot?)E) <(xot? )< U@e?)e)
Eelt—d, t—d,+my.] &e[z—df,t—df +mf]

d mr,dr,mf,df d
that we have already made use of show that xo 1" € Sol, DC (wot™).

mr,dr,mf,df . . . .
7.3.6 Theorem Solpp~ 7 is symmetrical if and only if d, =d y and m, =m .

Proof If We note with d the common value of d,. =d ; and with m the common value of

m,. =m . We get
xe Solngde d(u) & ﬂ@ <x(f) < UTE)

Eelt—d,t—d+m] Eelt—d,t—d+m]
< Ju@®) <x()< ()
Eelt—d t—d+m] Eelt—d t—d+m]
o Nu® <x(n)< UJu®) o xeSolfsdrmd )
Eelt—d t—d+m] Eeft—d t—d+m]

Only if For u =g 1) with t>m,,1>m,, we have

ﬂ @ = X (~o0,dy.—my )V[1+d,.,20) (0)
&elt—d, t—d,+m;.]

U u = K (=o0,d p)v[t+d f~m g ,0) (1)
&e[z—df ,t—df +mf]
4@ =x1d, r+dp—m) @
Eelt—d, t—d,+m, ]
U”(a) :X[df—mf,r+df)(z)
&e[t—df ,t—df +mf]



- 5d 5 ad -
The systems of inequalities that are inferred from xeSoler)Cr "rer (1[0.1)):

X (—o0,d-—my )V[t+d,.,0) (< % < X (=o0,d p)v[t+d f—m g ,0) (1) Le.

Ud poovd p-m ) (O S O S [dy—my rvd,) (1)
and respectively from x e Solgnggr’mf af (X[0,7))
Ldy cordy—my) (OO SXO <A pom g ovd ) (O
are equivalent —i.e. they have the same solutions- only if d,. =d y and m, =m .
7.3.7 Theorem Let the numbers 0<m, <d,,0<m <d; and 0< mr < d'r,O < mf < d"f SO
that d,2d;-myg,dp2d, —m, and d'r Zd} —m"f,dl'f Zd'r —m'r are true. Then

my+m, ,d +d, ,m +m ,d +d .
SolBlr)Cr rremfrnfarTas 1s a BDC and we have

m;,,d;,,m'f,d'f mr,d,,,mf,df _ m,,+m;,,d,,+d,',,mf+m'f,df+d'f
SOIBDC o SOIBDC = SOZBDC

Proof We observe that d;+dy>d,+d, —m,—m,, d,+d,>d+d;—ms—mps, thus

rody+d, rudr+d
CCapc is fulfilled again and Solghe """ 4TS makes sense.

We prove

my +m;, ,dy +d,1,mf +m'f ,df +d'f
BDC

m;,,d,'f,m'f,d'f mr,dr,mf,d

BDC o SOIBDC ! c Sol

Sol

podympod dympod , dympd
Let u arbitrary and yeSolZZ)CV nrer oSoZZBCr nreer (w), ie. xeSolggcr nres (u)
Al ’dl , Al ’dl ) .
exists so that ye SOI}?ISC P (x). We infer w(0—0)=x(0—0) = 1(0—0), ie. the
compatibility with the initial conditions is satisfied. Moreover:

u(@) <x()< Ju(w) (1)
we[&—d, E-d)+m,;.] (oe[a—df,&—df +mf]

x@©) <y@)< Ux©) ()
Eelt—dy t—dy+my ] gelt—d foi—dy+my]

from where

Nue = Nu@ <

Eelt—d, —d;,t—dr—d'r +mr+m'r] &e[t—d'r,t—d;,+m;,]we[§—dr=§—dr +my.]
< x© <y@o< Ux® <
Eclt—dy t—d, +m, ] gelt~d pot—d f+my]
< U Yu(w) = Ju©
&e[l—dl'f,t—d.'f+ml'f]c‘)e[§_df’§_df +my] Eelt—d f —d"f t=df —d.'f+mf +m.'f]

' ’d dl ’ ' ’d dl
thus yeSolglgémr rrérmprmparres (u).

We prove



my +m;,,d,, +d,',,mf +m"f,df+dl'f mydp,myg.df

Al dl 1 dl
< Solgh” "4 o S0l

Solppc BDC
and we must show that for any y with
(u(©) << Ju©) 3)
Eelt—dy—d. t—dy—d+my+m,.] eeli—d p—d pi~d f~d r+m f+m'f]

some x exists so that (1), (2) be fulfilled. The property is true for <0 and let against all
reason t( >0 be the first time instant when the property is false. We suppose that y(¢,)=0.
From (3)
u(w) =0

geltgdytg—dy+my J0LE~dr&dytmy]

ie.
3 eltg —d, .ty —d, +m,], Nu(@) =0
0e[E0—dy,E0—dp+my]

(1) shows that we can choose x(&()=0 and (2) is true, because

xE©)  =x(E)=0
Eelto—d, .to—dy-+my. ]
in contradiction with the supposition that was made on the existence of #. The same result is

obtained if we suppose y(zy)=1.

7.3.8 Corollary The set of the BDC’s is, relative to the serial connection, a commutative
semi-group where the unit is /.

7.3.9 Remarks If i is an arbitrary DC, then by its serial connection with a BDC we obtain an
arbitrary DC (not a BDC).

We combine now the order of the BDC’s from 7.3.4 with Theorem 6.8.5 of
compatibility between the serial connection and the order and with Theorem 7.3.7 related with

. . . my,dyp,m¢,d
the serial connection of the BDC’s in the next manner. Let the BDC’s So/ BLV)CV 1A ,

" n "

"d" "d' "’d ’ ’d ' '
My-dpsmpdf o d Sol;%crmf /. where 0<m.<d,, 0<my<dy, 0<m,<d,,

SOIBDC

0< m'f < d}, 0< m; < d;, 0< m} < d} and CCppc is fulfilled three times. The implication

n

m;,,d,',,m"f,dl'f m;,d,,,m},d;f
SOIBDC CSOZBDC =
m' ,d' ,m' ,d' my,d,,my¢,d m",d",m" ,d" my,dp,my¢,d
:SOIBBCF fAr OSOZBLSCV ref CSOIBECF fer OSOZBBCF ref
means that
dy—m, <d,—m, <d;<d;
dy—myp<dy-my<d, <d,
implies

dp+d,—m.—m, <d,+d,—m,—m.<dp+d;<d;+dy
dp+dp—mp—myp<d;+ds—mp—my<d,+d, <d,+d,

The other situation from 6.8.5 is similar



n

m;,,d,',,m"f,dl'f m;,d,,,m},d;f
Solpne < Solpp e =
’d , ’d ' ’dl , ' ’dl ’d i ’d n ’dll , n ’dll
= Solggcr nreer OSOZZLSCV nreer CSOIZECF hard OSOZZBCF nreer
mr,dr,mf,df . ...
7.3.10 Theorem If x € Solp, " 7 (u), the next inequalities are fulfilled:

u(t—d, —0)- (u@) <x(t-0)<u(t—d;-0)u Ju©

Eelt—d, t—d,+m;) &e[t—df,t—df +my)

Proof We take the left limit in BDC and use 4.2.1.

7.4 Fixed and Inertial Delays

7.4.1 Corollary of Theorem 7.3.3. The deterministic BDC’s are given by the equation

x(t) =u(t-d) (D
where d >0; the non-deterministic BDC’s consist in the system 7.2.1 (1), where
my, +myg>0.

7.4.2 Definition For u,xeS and d >0, the relation 7.4.1 (1) is called the fixed delay
condition (FDC). The delay defined by this equation is also called pure, ideal or non-inertial.
We also call fixed delay condition the function 7 .

A delay different from FDC is called inertial.

7.4.3 Remark A special case of inclusion at 7.3.4 consists in the situation when the left BDC
is deterministic. Let d €[d, —m,.,d, 1A [df - mf,df] ; then the statements

l—d,, Sl‘—dﬁl—d, +mr,t—df Sl—dﬁl‘—df +I’I1f
u®© <u(t-d)< Yu®
Eelt—d, t—dy+m;.] ﬁe[t—df,t—df+mf]

mr,dr,mf,df
make us conclude that /; < Sol g, - .

7.4.4 Corollary FDC is deterministic (Example 6.3.3, Theorem 7.3.3), time invariant
(Example 6.5.5, Theorem 7.3.5), constant (Example 6.6.2) and symmetrical (Example 6.7.2,
Theorem 7.3.6). The serial connection of the FDC’s coincides with the composition of the
translations: for d > 0,d'>0 we have

Lgoelgp=Igpely=I14.q

7.4.5 Remark At Definition 7.4.2 inertia was defined to be the property of the DC’s of being
not ideal. In particular the non-deterministic DC’s, for example the non-trivial BDC’s where
m, +m >0 are inertial.

8. Absolute Inertial Delays

8.1 Absolute Inertia

8.1.1 Theorem Let the numbers &,20,86,2>0. When xeS, the next conditions are

equivalent:



a) x(t=0)-x()< ()x(8)
Eelt,t+0, ]
x(t-0)-x@t)<  [)x(©)
&e[l,t+6f]
b) x(t=0)-x() < x(t-0)- () x(&)
Eelt,t+6,]
x(t=0)-x()<x(t-0)-  [)x(©)
&e[l,t+8f]
c) xX(t=0)-x()=x(t=0)-  ()x(€)
Eelt,t+6,]
x(t=0)-x(0)=x(t-0)-  [)x(¥)
§e[t,t+8f]
d) x(t=0)-x() <x(t =8, -0)-  [)x()
Eelt—3 1.1
xX(t=0)-x() < x(t -8, -0)-  [)x()
Eelt=5, 1)
e) Vd <d',x(d—0)-x(d) =1and x(d'-0)-x(d") = 1= d'—d >3,
vd <d',x(d -0)-x(d)=1and x(d'-0) x(d")=1=d'-d >3

Proof a) = b) Both terms of the first inequality from a) are multiplied with x(#—0) and the
first inequality from b) results.

b)= a) X(t=0)-x()<x(t-0)-  [(x&< [)x(©)
Eelt,t+8,]  Ee[t,t+5,]

a) = c) In the system
x(t=0)-x()<  ()x(E)<x()
Eelt,t+6, ]
we multiply all the terms with x(z—0).

¢)= a) xX(t=0)-x(t)=x(t=0)-  [xE)< [)x(©)
Ee[t,t+8,]  Eelt,t+3,]

a) = e) Let d <d' arbitrary so that
x(d —0)-x(d)=1and x(d'—0)-x(d") =1
a) states that ﬂu(&):l and ﬂ@zl, thus [d,d+6r]/\[d',d'+6f]:@ from
Eeld,d+6,.] &e[d',d'+6f]
where d + 6, <d' and the conclusion is d'-d >§,..
e) = a) We suppose that a) is not true, i.e. d exists with
x(d—0)-x(d)=land  [)x(&)=0
teld,d+5,]
meaning the existence of d'e (d,d + 93, ] where x switches from 1 to 0
x(d'-0)-x(d")=1
We have d'-d <§,., contradiction with e).
d) = e) Let us take two numbers d < d' so that




x(d —0)-x(d)=1and x(d'-0)-x(d") =1
resulting
x(d-5;-0)- [x@®) =land x(d'-5,-0)-  [|x(&) =1
Ee[d—5 f.d) teld'-5,,d")

In other words €; >0 and &, >0 exist with the property

VEeld -8, —¢,d),x(§)=0

VEeld'-d, —&,,d"),x(&) =1

[d—8p—g1,d)A[d'-8, —&,d") =D
The last empty intersection gives the conclusion that
d<d-5, —¢y
is true, i.e. d'-d 29, +€; >9,..
e) = d) If d) is not true then d' exists so that
x(d'-0)-x(d")=1and x(d'-8 ; —0)-  ()x(&) =0
Ee[d'=5 f.d")
This means that for any € >0 some d €[d'-0 f- g,d") exists with
x(d —0)-x(d) =1

The inequality d'-6 r —e<d thatis true forall €>0 gives d'-d <& s, thus ¢) is not true.

8.1.2 Definition Any of the properties 8.1.1 a),..., 8.1.1 e) is called the absolute inertial
condition (AIC). 8,.,8 ¢ are called the (rising, falling) inertial parameters. If AIC is fulfilled,

we say that the tuple (5,.,0 f,x) satisfies AIC. When 6, =9 r= 0, AIC is called trivial and if
8, >0 or & >0, then AIC is called non-trivial.

5,,0
We also call absolute inertial condition the set Sol A;é /< S defined by

5;,0
Sol i) = {x((8,.,8 ,x) satisfies AIC}
8.1.3 Remarks For all 7<0 and all x, AIC is trivially fulfilled since
x(t—0)-x(¢t)=x(t — 0)- x(t) = 0. This property represents the compatibility between AIC and

the initial value of x.
The interpretation of AIC results from Fig 12. We observe how the switch

moc(tz) =1 in the 8.1.1 a) version assures that x will remain 1 for a time interval of
length #3—-#, >3, and in the 8.1.1 d) version assures that x has remained 0 for a time
interval of length 7 —#; >3 . When ¢ runs in R, the two conditions are equivalent.

To be remarked the way that any of 8.1.1 a),..., 8.1.1 e) degenerates in the trivial
situation 8, =8 r =0: Sol 91’10C =S To be remarked also the intermediary situations

X I

I
I
I

: I t
31 fz—aj‘ 52 52+6r 53

Fig 12



when one of 9, >0, f:0, respectively 6, =0,0 r >0 1is true and the inclusions

,0 .
Sol A;C ! c § are strict. In fact we have

8y, 5 . :
Sol e < Solh S 58, 28, and 5 5

8;-,0 8;,0 8,8, 67,0
Sosz’CfASosz’szszEag( O3 )

5,,0 5,,0 d 6 dr.,0
SIA;’CfvSolA;’szSZj;g( 8 pmin 1.8 1)

The set Sol e o is not closed under the Boolean laws if &, >0 or &, >0, for

1,0 _ 1,0
example %70,2),7(1,3) €S0l jzc and xp1.2) =X(0.2) " x1.3) 50 jyc -
8.2 Absolute Inertial Delays

8.2.1 Definition Let the numbers 5, >0, 8f >0. If the DC i satisfies Vu z(u)cSolA]Cf ,

then it is called absolute inertial delay condition (AIDC). We also say that i satisfies AIC

rdf
(represented by Sol e’ )

8.2.2 Remark Intuitively, we say that AIDC expresses a cause-effect relationship between an
input and an inertial state, so that for any form of u, the variations of the delayed signal x
cannot be faster than the satisfaction of AIC allows.

8.2.3 Examples A DC i with the property Vu,i(u) A Sol A1Cf #(J defines the AIDC
i/\SolA;’Cf. For example Solgc /\SolAﬁéf is AIDC for any 8,.>0,8,>0 and

Iy ASol i) d'>0 is AIDC for 8, =5 » =0 only.

On the other hand, the next functions
Lif 3 lim u(¢) and lim u(t) =1
i(u)=

t—00 t—0
0, otherwise

t—>00

{ ,if 3 lim u(¢) and hm u(t)=0
i(u)=

1, otherwise

t—>0

{{1} V X [r,00) [T2 0}, 5 3 hm u(t) and lim u(t)=1
i(u)=

{0} v {X (—0,7) [ T2 0}, otherwzse

t—>0

{0} v {X (<0,7) [ T20},if 3 hm u(t) and lim u(t)=0

i(u)=
v A [e0) [T2 05, otherwzse

are DC’s satisfying AIC forall 6, 20,8 20.



824 Theorem Let 0<m<d. The deterministic DC (see Theorem
x(f) = ((u(@) satisfies

Ee[t—d,t—d+m]
x(1=0)-x()<  [)x(©)
Eelt,t+m]
and its dual x(7) = Ju(@) satisfies
Ee[t—d,t—d+m]
x(1=0)-x()<  [)x()
Eeft,t+m]
Proof We show the first of these two properties. The hypothesis states
d">d"and x(d'-0)-x(d") =1 and x(d"-0)-x(d") =1
from where we infer (see 4.2.2)
u(d'-d —0)- u@ -u(d-d+m)=1
te[d'-d,d'-d+m)
u(d"—d —0)- ueE) =1

teld"~d,d"—d+m]

ie. d'-d+m=d"-d —¢ for some ¢>0 and eventually d"-d'>m.

6.3.4)

H+T M+T+E
N —

Ee[t—d,i—d +m]

o d+7T d+m+T4E
\ﬁ,—f
e
Fig 13
i
£
g
| Juce)
Eelt—d t—d +m]
t
d—-m d+8
m+e

Fig 14



8.2.5 Theorem Let 0<m, <d,,0<mp<dy so that dy>d, —m,.,d.2dy—my is true.

The system
x(t=0)-x(t) =x(t-0)- (u(©) (1)
Eelt—d, t—d,+m; ]
x(t = 0)- x(1) = x(t = 0)- (u(® 2)

&e[t—df,t—df +mf]
satisfies the next properties:
a) (the property of compatibility of (1), (2) with the initial conditions)
x(0—0)=u(0-0) and for any 7 <0 we have

x(t—0)-x(¢) = x(t - 0)- (uE =0 (3)
Eelt—d, t—d, +m,. ]
x(t—0)-x(t) = x(¢ - 0)- Nu@E =0 4)

&e[t—df,t—df +mf]
b) (1), (2) have a unique solution xe §.
c) (the property of compatibility of the system with the final conditions) (1), (2) define

a deterministic DC i: x € Solgc(u) and if 3 lim u(¢), then ) exists so that V¢ >¢ we have
t—>00

(3), (4) fulfilled.

d) xe SOZZ{C_dr +my,dy—d f+myg

my,dy,m¢,d
e) xeSolpp - )

) (1), (2) are time invariant

g) (1), (2) are constant

h) (1), (2) are symmetrical iff d, =d y and m, =m .
Proof a) If x(0—0) = u(0—0), then we suppose x(0—0)=0,u(0—0)=1. This implies that for
any t<0<d, —m, we have

0=x(t—0)-x(t) # x(t - 0)- u@ =1
eelt—d, 1—d,+m,.]

contradiction and similarly for x(0—0)=1,u(0—0)=0. Thus x(t—0)=u(t—0)=c¢ for any

t <0, where ce B is some constant and we get x(t—O)'x(t):x(t—O)'%:c'Ezo. At the

same time, ¢ <0 implies that ﬂu(&) is equal with ¢ and ﬂ@ is
Eelt—d, t—dy+my.] ée[tzdf,t—df +my]
equal with ¢ so that
x(t —0)- Nu©) =c-c=0
Eelt—d, t—d, +m,. ]
x(t —0)- Nu@ =cc=0

&e[t—df ,t—df +mf]
and the truth of a) results.

b) The solution is unique for <0 and is given by x(z)=u(0—0). The non-
uniqueness means the existence of a time instant ¢ >0 with the property that V¢ <t the
solution is unique and on the other hand x(#;)=0,x(#;) =1 satisfy both (1), (2). We suppose
x(¢; —0)=0 and (1) becomes



x(t) = (u(©)

&ely—d, 1 —d+my. ]
from where either x(¢;) =0, or x(¢;) =1 is true but not both. Similarly for x(1;) —0)=1. As ¢;
was arbitrary, the solution is unique.
c) We suppose without loosing the generality that 3¢ > 0,V¢>1¢,u(t) =1 and we have
two possibilities:
ci) x(t; +d, —-0)=0. From (1) we have x(t;+d,)=1 and V¢>t# +d,,
x(t) =1 and (3), (4) are fulfilled
c.ii) x(t; +d,, —0)=1.Then V¢ 24 +d,, x(¢)=1 and (3), (4) are fulfilled too.
d) The hypothesis is
d'>d and x(d —0)-x(d) =1and x(d'-0)-x(d") =1

Nu@ Nu@© =1

geld~dy.d—dy+m,] Eeld'~d f,d'~d g +m g ]
=[d-d,.d—d, +m]A[d-ds,d=ds +ms]=D
=d-d,+m,<d-dpord-ds+my<d-d,

resulting

=d-d>dy—d, +m,
(the inequality d'-d <d;—my—d, represents a contradiction, because the left term is

strictly positive and from d r —m ¢ <d,., we get that the right term is non-positive).

u
: t
M.+E Mp+HMy+E+E
(&) —
Ee[t—d p t—dp +i]
£
Uu(é.-) oy d,+8 dp+Mp+iy+E+8
ée[.ﬁ—a’j‘ ,é—dj' +mJ{]
¢
dy—my dp+my+& dy+mp, +5+¢
df—dptmpte dp—dystmy+e
Fig 15
e) We suppose against all reason that #,u exist so that ﬂu(é) =1 and

eelt—d, 1—d,+m,.]

x(#)=0; we get from (1) x(t—0)=0 and x(t—0)=1 and on the other hand, because

ﬂ@ =0 (from CCgpc) equation (2) gives M:o, thus  x(¢)=1,
&e[l—df,t—dwamf]



contradiction. In other words ﬂu(&) <x(¢). The inequality
Eelt—d, t—d +m,. ]
x(t) < Uu(c‘,) is similarly proved.
&e[t—df ,t—df +mf]

f) We show that i is time invariant and the hypothesis is uot? eS and x=i(u),

where d € R is arbitrary. Because i(u o rd)e S and xot? =i(uo rd) (as resulted by the

d

replacement in (1), (2) of u,x with xo1%,uo 4 ), the fulfillment of this property follows.

g) The inequalities

x(t—0)-x(t) = x(t - 0)- Nu® <u(t-d,)
Eelt—d, t—d, +m,.]
x(t—0)-x(t) = x(t - 0)- Nu@  <u(t-dj)

&e[l—df,t—df +mf]
show that i is constant.
h) x €i(u) < x €i(u) is equivalent, from the form of (1), (2) with the fact that

u@ = (u(©)

Eelt—d, t—d,+my ] &e[t—df ,t—df +mf]
and with the fact that d, =d y,m,. =m .

8.2.6 Remark If in 8.2.5 we put m, =my =0, then CCgpc implies d, :df =d and the
system

x(t=0)-x(t) = x(t=0)-u(t ~d)

x(t=0)-x(1) = x(t = 0)-u(t —d)
is equivalent with FDC (it has the same solution).

8,0
8.2.7 Theorem a) Solgc A Sol /- /" is time variable.

8,07 . L
b) Solgc A Sol A?C T s symmetrical iff 5, =6 /.
Proof a) See Example 6.5.5 b) where the time variability of So/gc is shown.

b) If Like at 6.7.2 b), by replacing Solsc with Solge A Sol5R.
Only if We suppose against all reason that 5, <& ; by taking a 8€(3,,6 ) we have for

3,,0 — 8,,6
some u (with limu()=1 false) that 75 €Sol e’ and yps 2 Sol e’
t—o0

contradiction with the symmetry request:

- 5;-,0 - 5;,0
Vu,Solgc (1) A SolAﬁcf ={x|xeSolgc(u) A SOZA;Cf}
Similarly for 8 » <3,..

8.2.8 Theorem Being given the non-negative numbers Sr,Sf,S',,S'f and the DC’s i, j, the

next properties are true:

8;,0 8;,0 8,0 8;,0 8;,0
a) (inSol o Yo (jASol o Y=o (i ASol e YA Sol il < (io jynSol !



8,08 8,8 8,08
b) If Vu,i(u) < Sol 7ol ju) < Sol e then Vu, (io j)u) < Sol Jrer .

Proof a) From 6.8.6 a).

. Y |
b) War, (fo /)u) = (i A Sol ! Yo (j A Sol ! Wa)© (G0 ) A Sol ! Yu) < (o j)a)

5,-,0 .
thus io j=(io j) A Sol A;Cf . The conclusion follows.

8.3 The Consistency Condition
8.3.1 Theorem The numbers O0<m,<d,, O0<my<d, are given so that

dfz2d,—m,,d.2dgr—my is true and let also 6, 20,6 2>0. The next statements are
equivalent:
a) 8r+8f Smr+mf

b) For any u € §, the system of inequalities

Nu® <x®)< Ux®
Eelt—d, t—d, +m,. ] ée[z—df,t—df +mf]
x(t-0)-x()<  [)x(&)
Eelt,t+6,]
x(t=0)-x()<  [)x(©)
&e[l,HSf]
has a solution x e S'.
Proof a) = b) The next possibilities exist:

)d,—dr+mp28,.dr—d,.+m. 28,
i) d,—dy+mp<8.,dr—d.+m.28;
iil) d, —dyp+mp28,,dr—d,+m. <8/
because the fourth possibility, ie. d,—-dy+msp<8.,dp—d.+m. <8, gives the
contradiction 9§, + Sf >m,+myp. It is sufficient without restricting the generality to consider
the input
u(t) = X[0,m,. +&)v[m,. +m f +e+e',0) ()
that produces a 1-pulse followed by a O-pulse at the output, where €,&'>0 are arbitrary, for
which the existing solutions of the system in the three cases 1), ii), iii) have been noted in Fig
16 with x,y,z. For d. —d s +my 28,, dr—d,.+m, 28 (case 1)) and
x(2) = X[df —m g, dyp+e)vld f+my +e+e',0) ()
it is obvious that BDC and AIC:
dy+e—dp+mp>8,,dp+m,+e+e—d, —e>d
are fulfilled. In the case of
y(t)= X[df —mg.d —myp+8,+e)vld f+my +e+e',0) )
if d. —dy+my <3, (consequence of case ii)) we have BDC and AIC fulfilled under the

form



)
Mm.+& Mp+mys+e+8 :
[ . S
Eeli—d, t—dr+im ]
d, d,+& m?,,+m,,+mf+s+s'r
Uu@ —
E_,E[:—cff ,f,—df+mjr]
i dp-my dp+ma+8 dye+m,+E+8 g
d 7+, +E+8 .
¥ df—mf r.’ir+E
d i, +e+¢
z| dp-my dy—Mys+0,+8 ;
£

dp+0y—M,—My d.+&8 d.+0s+E+¢

Fig 16

d.+e<dy—my+08,+e<dy+m, +¢
dp—mp+8,+e—dp+mp>8,,dp+m,+e+e'—dsp+msy—8,-e>3
and similarly for
2O =A[dy+5 f~my—m f,dyp+e)V[dyp+8 £ +ete,o0) (1)
if d f- d,+m, <d r (consequence of case iii)) where BDC and AIC are fulfilled again:
dy—myg<d,+8;—m,—my<d,
dy+e—d, —dp+m.+myp>8,,d.+6y+e+e'-d. —e>5,
b) = a) We consider the input

u(t) = X[0,m,. +&)v[m, +m g +28,2mp +m £ +3e)V[2(my +m £ )+4e,3my +2m g +5£)v...(t)
where € >0 is arbitrary.

The hypothesis states the existence of a state x of the form
x(t) = X[tl,tz)v[t3,t4)v...(t)
where
S, <th—4
dr<t3—ip
O, <ty—13



7]

21, +m y + 38
nu(éﬂ M+ & My + M+ 28 k
Celt—d, i—dp +my ] fir+mr d,+m,
Uu@) d, d.+& +My+26 +My+38

E_,e[z—.:if ,r.—ai'f+mJ;]

£

dy—My drtm,.+8 dy+m,+28

Fig 17

and #; <t, <t3 <t4 <... are arbitrary numbers so that
dy—my<ty<d,
d.+e<ty<dg+m. +¢
dp+m.+2e<t3<d.+m,+ms+2e
dp+m.+myp+3e<ty<dg+2m,+my+3¢

dy+2m.+myp+4e<ts<d,+2m,+2m+4¢

We infer
0,+8, <t3-t1<d.—dy—m.+2(m, +mp)+2e<2(m, +mp)+2¢

200, +8 ) <ts—ty <d,—d g —m. +3(m, +mp)+4e<3(m. +my)+4e
38,+8 7)<ty -ty Sd,—d g —m, +4(m. +my)+6e<4(m, +my)+6¢

and thus
Vn21,Ye> 0,8, +8 <L (m. +my)+2e

8.3.2 Definition Given the numbers 0<m, <d,,0<my <d, and §, 20,8 ; >0, the system

of inequalities
dr de —I’}’Zf,df Zdr—mr

8r+8f Smr+mf

is called the consistency condition (of the bounded absolute inertial delay condition)
(CCBAIDC)-

8.3.3 Remark (Special cases of CCgapc) If m, = my = 0 then CCgapc becomes d, :df
and 8, =8, =0 and the system 8.3.1 b) is equivalent with FDC. For m, =d,,my =dy
CCpamc becomes 8, +8,<d.+d;; and in the symmetrical case m, =mg=m,

dr de :d,8, :8f :8,CCBAIDCmeans 0<m.



8.4 Bounded Absolute Inertial Delays
8.4.1 Definition Let u,x € S and the numbers 0<m, <d,,0<m; <d;,0<3,,0<8 ; so that

dy2d,—m,.d.2dg—my and 5, +8 r <m, +my are true. The system of inequalities

u®© <x()< Ju©) (1)
Eelt—d; t—d,+m,;.] ée[t—df,t—df+mf]
x(1=0)-x()<  ()x(&) (2)
Eelt,t+6,]
x(t-0)-x(N<  [)x(©) 3)
&e[t,t+8f]

is called the bounded absolute inertial delay condition (BAIDC). When BAIDC is fulfilled,
we say that the tuple (u,m,,dr,mf,df,Sr,Sf,x) satisfies BAIDC.

We also call bounded absolute inertial delay condition the DC

mr,dr,mf,df /\Solsr’éf

SOIBDC

8.4.2 Remark BAIDC is a DC indeed, from Theorem 8.3.1. Its interpretation is obvious: x is
a solution of BAIDC if it switches from 0 to 1 with a delay d €[d f—m f,dr] and then it

keeps the value 1 for strictly more than §, time units and dually if it switches from 1 to 0
with a delay d €[d, —m,.,d ;] and, after the switch, a new switch may happen after strictly

more than § » time units.
BAIDC keeps the negative interpretation of BDC, see 7.2.6.
8.4.3 Theorem We suppose that 0<m, <d,, 0<m;<d;, 0<m, <d,, 0<my <dy and

5, 20, 6f >0, 6; >0, 8} >0 are given and they satisfy CCgaipc twice. In such conditions

m,,,d,,,mf df 8,,,8f mr,dr,mf df 6',,,5}
Solppe ASol 4y’ Solppe ASol e s

mytmy.dy+dym pm'd g +d g 878 1 , .
Solppy e nSol -7 are BAIDC’s and the next property of serial
connection holds:

podymyd. dym p.d :
(Sol gy A Sol A,C ) o (Solgpye " A Sol A§Cf =
mr+mr,d +dr,mf+mf df+df 8r,8f
< Solppe A Sol e

Proof We observe that 8; +6'f Sm', + m'f implies 6', + S'f <m,. +m', +my +m'f thus,

taking into account Theorems 7.3.7 and 8.2.8, the result follows.

9. Relative Inertial Delays

9.1 Relative Inertia

9.1.1 Theorem Let the real numbers 0<p, <8,,0<p,<8,. The next statements are

equivalent



a) x(1—0)-x(1) < (u(©)
Ee[t—0, ,t=0,+1, ]
x(1—0)-x(1) < (u(©)
&e[t—Sf,t—&f +url
b) x(t —0)-x(¢) < x(¢t - 0)- ()
Ee[t—0,,t=0,+1, ]
x(t—0)-x(1) < x(¢ - 0)- Nu(©)
ée[z—éf,t—ﬁf +u ]
where u,xe S
Proof Similar with the a) < b) part of the proof from 8.1.1.

9.1.2 Definition Any of the properties 9.1.1 a), 9.1.1 b) is called the relative inertial condition
(RIC). u,x are the input, respectively the state (or output) and n,.,8,,1u 7,6 ; are the (rising,

Jalling) inertia parameters. We say that the tuple (u,p,.,8,,1 £,8 r,x) satisfies RIC.

05,1 £,0
We call also relative inertial condition the function Solh'n'*/°/ . —> P*(S)

RIC
defined by

”’}" asr 7”]( 56](

Solgrc (u)={x|(u, 1,8, ,1 r,8 s, X) satisfies RIC}

9.1.3 Remarks The compatibility between RIC and the initial values u(0—0),x(0—0) is

given by the fact that for any #<0 we have x(#—-0)-x(¢) :x(t—O)'E =0, thus RIC is
fulfilled trivially.
The word ‘relative’ in our terminology refers to the fact that u,x occur both in RIC.

We interpret this condition now by recalling some quotations.
[12], [13], see 5.13 a): the inertial delays ‘model the fact that the practical circuits will
not respond (at the output) to two transitions (on the input) which are very close together’. In

case that two transitions of u are ‘very close together’, i.e. if u has a 1-pulse of length <p,.,
respectively a O-pulse of length <, then the function ﬂu(é) , respectively
Celt=8,,1=8,+py ]

(u(® s null, thus the function x(z —0)- x(r), respectively x(z—0)-x(f) is null
&e[l—Sf ,t—6f+uf]
too.

In this context we rewrite a quotation from [11], see 5.13 b): ‘pulses shorter than or
equal to the delay magnitude are not transmitted’ in the next manner: ‘pulses shorter than or
equal to p, (respectively W) are not transmitted and pulses strictly longer than ,

(respectively than 1) may be transmitted’.
On the other hand 5.14 ii) and 5.16 1) look like RIC with &6, =8/ =dy;,,
My =H 7 =dpyjy —0 in the latter, point of view that agrees with the one from [12], [13] see

Convention 5.3 stating that : ‘the transmission delay for transitions is the same as the
threshold for cancellation’. Here §,,8 ¢ act as ‘transmission delays for transitions’ even if

they are rather ‘minimum transmission delays for transitions” and p,.,u » act as “thresholds

for cancellation’. ‘The same as’ means that the two quantities differ by a small infinitesimal.



Furthermore, let us recall [1], see 5.15 with: ‘changes should persist for at least I,
time units but propagated after I,,l, >1; time’. In our formalism, if we accept the rising-
falling symmetry, we have: [y =p, =pr,lp =8, =08, and ‘changes should persist for

strictly more than | time units but propagated after more than or equal with 1,1, 21, time’.

9.1.4 Theorem (The relation between RIC and AIC) Let 0<p, <8,,0<p r <3 arbitrary. If

1) 0 r 76 8,0 r
828, — 1.8, 28, —p s then Vu,Sol b (uy  Sot OO TS

07, £,0
Proof Let d <d', u and x e Solzfc rRfos (u) so that

x(d—0)-x(d)=1and x(d'-0)-x(d") =1

Nu®© = Nu® =1

&eld =08, ,d—8, +1,] E_,e[d'—ﬁf,d'—ﬁf+pf]
= [d ~8,,d ~8, +, IA[d'=3 ,d'-8 ; +1;]1=D
=d=8,+W, <d-6y0rd'-8r+py<d-9,

We get

=d'-d>8; -8, +p, ord=d <8y —pur-39,
=>d-d>8; -8, +p,
(The inequality d'-d <&y —p r -3, is false, because the left term is strictly positive and the
right term is non-positive).
The proof is similar for the second inequality.

9.1.5 Definition In the next property:

0,1 7,0
Ve >0,3d,3d',u, Ix e Sol;;C rhfof (u) so that

x(d—-0)-x(d)=1and x(d'-0)-x(d")=1and |d -d'|< ¢
the signal x whose existence is stated is called Zeno solution of RIC (expressed by
Byt f .8 f
Solp1c0 ).

’5 b ’5
9.1.6 Theorem The necessary and the sufficient condition in order that Solzlrc PRI has

no Zeno solutions is that & » >8, —,.,8, >8r —pr.
Proof The necessity We suppose against all reason that 8 » <6, —p,. and let u =y ) for
which
(2% (=0,0) (&) = X (=o0,8,, -, (©)
Celt=8,,1=8,+py ]
ﬂ X[0,00) &)= X[Sf,oo) (0
&e[l—ﬁf,t—ﬁf +u ]

My ’5

STy oy .
We have for any €>0 that x=y ) € Sol R]Cr kel (u), contradiction with the

[0 ¥a —-£,0 i
hypothesis. The supposition that 8, <& s —  is similar.

The sufficiency results from Theorem 9.1.4.



05,1 £,0 —
9.1.7 Remarks We have for any a € B that Solzfc PR @y = (0,1 v e ® A[reo) | T2 0}

On the other hand RIC is a constancy condition, in the sense that
x(t—0)-x(¢)<u(t-9,)
x(t-0)-x(t) Su(t-3 1)

9.2 Relative Inertial Delays
9.2.1 Definition Let the numbers 0<p, <3,,0<u <8, and the DC i. If i satisfies the

Hr=8raHfa8f (u)

condition Vu,i(u) < Solp;~ then it is called relative inertial delay condition

05, £,0
(RIDC). We also say that i satisfies RIC (represented by Solzlrc rRfos ).

”’}" asr ,Hf 95f

9.2.2 Examples a) If the DC i fulfills Vu,i(u) A Sol ;-

(u) # D, then it defines (see

05,1 1,0 . .
Theorem 6.2.4 c)) the RIDC i/\Sol;;Cr H/°°F  The extreme situations are expressed by

Solgc and respectively by 7, that define in this manner RIDC’s for all p,.8,,nr.,6 7,
respectively for p, =p  =0,8, =8 =d.

b) The next functions
{l,if 3 lim u(¢) and lim u(z) =1
i(u)=

t—0 t—o0
0, otherwise

0,if 3 lim u(¢) and lim u(¢)=0

l(u) = t—>0 t—0
1, otherwise

and more general the next functions

8, + max supp Du, supp Du # O
{1 v [ 1,00) |T25},5={ '

b

0, supp Du =2
i(u)= if Eltli>m u(t) and tli)m ut)=1
o0 o0
0, otherwise

8 y + max supp Du, supp Du # &

0}V () |T=0},0= ,
OV oy [ 728} {o,suppm:@

i(u)= if 3lim u(t) and lim u(¢)=0
t—0 t—0
1, otherwise

are DC’s defining RIDC’s like at a) for all p,,8,,n 7,8 1.
c)Let 0<m<d.From 4.2.2 we have that the DC x(¢) = ﬂu(&) satisfies RIC
Edt—d t—d+m]
x(1—0)-x(1) < (u(©)
Eelt—d t—d+m]
x(t —0)- x(t) <u(t —d +m)



and dually for x(¢) = U u(g) .
Eelt—d t—d+m]
d) The DC that is defined by 8.2.5 (1), 8.2.5 (2) satisfies the relative inertial condition
x(t—0)-x(1) < (u(©)
&elt—d, t—d,+my. ]
x(t—0)- x(¢) < (u()
&e[t—df ,t—df+mf]

9.2.3 Theorem Let 0<p, <3,,0<p, <8 /.

P-r er f

a) Solgc A Solp, is time variable.

Bpabfdp -
b) Solgc A SoZ;;C rRIOT s symmetrical iff p, =p »,8, =8 7.

05, £,0
Proof a) Like at Example 6.5.5b), =10 1l eS and X[0,00) € Solgc (D) A Sol;;c rRof @,

but %[0 .q0) © ! =X[-1,00) €5 -
b) Only if For u = X[0,00) W€ compute
(N %10,50) (&) = X[5.00) (1)
Ee[t=06,-,t=8,+14;- ]
ﬂ X (~0,0) €)= X(—oo,Sf—uf) (0)
Eelt=3 718 f+ursl c

ﬂ X (=0,0) ©)= X (0,8, —1;) (1)
Ee[t=0; t—=0,+11;]

N x10.00) (&) = %18 £.00) (1)
ée[t—Sf A=D +pf]
The systems of inequalities

x(t = 0) - x(£) S %[5, 00 (0) x(t = 0) - X(t) < X (<05, -y, (©)
Xt =0) X)X (ons pop ) (O [X(C=0)-X(0) S5 1) (1)
are equivalent only if 8, =8y and p, =p .

9.2.4 Remark A property like the one that was stated for AIC in Theorem 8.2.8 is not true for
RIC. Let for this the statement 8.2.8 a)

Wy, 0,1 .0
(SOISCASoz;jC’”f )o (SOISCASoszCr Iy 2
WSy b g Sep .
=(SolSCo(SolSC/\SolR;Cr °7)) A So l“” PR

8
c(SolSCoSozSC)ASoz”r Sraf o

(1)
where u, :ur,é}; = ,,uf :uf,ESf :6'f or, in any case, u;,Sl,u},S} are fixed and
depend on MV’SV’“fan’“'V’S'V’M'f’S'f Onl}’- WC take u(t) = X[Zl,oo) (t)a
x@®)=1,Ly@)= A[t0.0) (1), 0<ty,0<¢ for which



H‘}" 58}” 5“/‘ 58f

e
RIC (u)

1 Al 6'
y € Solgc(x)and y € Sol g rRfof (x) and x € Solg¢ (u) and x € Sol
but

6 6"
v e(Solsc o Solsc)u)and y & Sol g7 ()

if 1>ty — 6:, and this shows the falsity of (1). In other words, inertia’s inertia is not inertia,

the inertia’s paradox that we have mentioned in our introduction (Section 1).
The explanation of this paradox brings us from 8.2.8 to 6.8.6 a), where the proof for
iAU)oj=(oj)AU
was the next one: for any u
(EAU)e Yu)={y|3x,yci(x)and y eU and x € ju)}=((i > j) AU)(u)

5;,0 . . .
and this was true for U = Sol A;Cf at 8.2.8. If U is variable however U =¢(-) like here,

' ’8' , ' ’8' '
with o(u) = Sol;;C rifos (u) the property 6.8.6 is false because the statements

(GA@)e ) u)={y|3x,y€i(x)and y € (x) and x € j(u)}
(o ) ~no)u)={y|3x,yci(x)and y € ¢(u) and x € j(u)}
are not equivalent. The first equality from (1) is false.

9.3 The Consistency Condition
9.3.1 Theorem The numbers 0<m, <d,..,0<m;<d;0<p,<8,0<p,<8, are given.

The next system

u@ <xn< YJu©

Eelt—d, t—d, +m;.] &e[t—df,t—df +mf]
x(t = 0)-x(t) < Nu©
Ee[t—06,,t=08,+1, ]
x(t—0)- x(7) < Nu(®)
&e[z—éf,t—éf +u 7]
where u,x € S has solutions for any u if and only if one of the next requests is satisfied:
a) dy—myp<8,<d. <8, —p,+m,
dy—m, <8y <d;<8;—pus+my
b) dp—m.+W,<8.<dy-ms<d,
dy—mp+pp<dp<d.—-m.<dy
c) dp—my<38,<d.—m,+u,<d,
d,—m, <8y <dr—ms+ur<dy
d) 8, <dp—my<8,+m, -, <d,
dp<d.—m.<8;+mp—py<dy
Proof Solutions exist iff whenever x must have the value 1, respectively the value 0 in ¢

( ﬂu(&) switches in ¢ from O to 1, respectively Uu(c‘,) switches in ¢
Eelt—d, t—d, +m,.] &e[t—df,t—df +my]



from 1 to 0), RIC gives this possibility (#' exists so that ﬂu(&) =1, respectively so
Eel[t'=8, '8, +1,-]
that ﬂ@ =1) in  time (t'elt—d,+dy—mp,t], respectively
&e[l'—Sf,t'—Sf +u ]
telt—dy+d, —m,.,t]).

4.
t
(u(® ;
Belt—dp t—dp oy ]
¢
Ju® s
E_,E[r—df,f—df +mjr]
¢
dy—mg
Fig 18

This happens for example in Fig 18 for ¢t =d,.. We can write
u(t—d, =0)- Nu@ < U (u(©) (1)
Eelt—dy t—dy+my]  Ce[t—dy+d p—m f EE[1-5, .08, +1,]
inequality that is true for any u *. The next statements are all equivalent with the previous one:

Vu, u@© < U (u(© 2)

Celt—dy ti—dp+my]  t'€lt—dp+d f—my 1]18e[t'=8, '8, +p;]

(1)=(2): Let 0<¢y and u so that ﬂu(é) =1 and we define v(§) =
Eelrg,t0+my]
(1) and  from  v()<u(?) we  have  w(ip-0)-  [|v(E)=1 thus
Eelig to+my ]
Arelty+dy—my.tg+d,], 1= vE) < (u(©) thus (2) is true.
Eelt'=0,,t'=0p+up ] E€[t'=8, 'O )+ ]

{u(é)a &1 From

0,& <ty

(2)=(1):We have

ut-d, -0)-  [u@ < (u@ < U Nu© )
Eelt—d, t—d,.+m;.]  Eelt—d, t—d,+m,. ] t'e[t—dr+df—mf,t]ée[r'—&r,t'—8r+pr]
relt—d, +dyp—mp.tl[t—d, ,t—d, +m.]D[1'-8,,1'-8, +,] 3)
t—d,+dp-mg <t 1<t
3t rtof Y and{ 4)
t—d, +9, <t t'<t—d,+m, +3, —pn,

* The left term of this inequality represents Dy ﬂu(%) ,see 4.2.2
Celt—dy t=dyp+m; ]



max (t—d,+dy—myp,t—d,.+8,)<min(t,t —d, +m, +8, —,.) ®)

one of the next possibilities is true: (6)
J) —d,+dp—mp<-d, +3,
0<-d,+m, +98, -,
-d, +8,<0
1) —d.+dy—my=2—d, +3,

0<—d, +m,.+5, —p,
—d,+dy—mp <0

17) —d,+dp—mp<-d,+3,
0=2-d, +m, +95, —p,
—d, +0,<-d,+m, +06, — L,

jv) —d,+dp—my2-d, +3,
0>-d, +m, +93, —,
—d,+dp—mp<—-d.+m.+3, -,

It is shown that j), jj), jij), jv) are equivalent with the first statements of a), b), c), d).

9.3.2 Definition The condition
93.1a)or9.3.1b)or9.3.1¢c)or9.3.1d)
is called the consistency condition (of the bounded relative inertial delay condition)

(CCBRIDC)-
9.3.3 Theorem a) Any of 9.3.1 a),...,9.3.1 d) implies d r 2d, —m,,d,. 2d y —my in other

words CCgripc in stronger than CCgpc.
b) CCgripc implies the next conditions (that are conditions of necessity for the
existence of a solution of the system 9.3.1)

m,. Z]J.r,mjf Zuf
0,<d..bp<dy
dp—mp<8,—p,+m.,d.—m,<8;—Ur+mg
¢) The next conditions (that are sufficient for the existence of a solution of the system
9.3.1)
df—m]r SSf—Mf SSVSd,
dr—m,£8r—urs8f Sdf

1mply CCBRIDC-
Proof b) It is shown that any of 9.3.1 a),...,d) implies these inequalities..
¢) It is shown that they imply 9.3.1 a).

9.3.4 Remarks (Special cases of CCgrinc) If in CCprinc W, =m, =p s =my =0, then it
takes the form 8, =d,=8;=dy=d and the system 9.3.1 degenerates in FDC. If
m.=d.,mg=dp, p.=8,,uy=08s then CCpripc becomes &,<d,.8,<dy. If
dy=08,,dr=8p,m.=n,, mp=pg, then CCpripc becomes dy >d, —m,.d, >2dp—my,

i.e. CCBDC.



9.4 Bounded Relative Inertial Delays
9.4.1 Definition Let wu,xeS and the numbers 0<m,<d,,0<my<dg,

0<p, <9,,0<p r <d £ 80 that CCpripc be satisfied. The system of inequalities
u@) <x(0)< Ju®

&elt—d, t—d, +m, ] §e[l—df,t—df +mf]
x(t—0)-x(2) < (u(®)
Ee[t=08,,t=08, +1,]
x(t—0)-x(1) < (u(®)
&e[t—(Sf,t—(Sf +pf]
is called the bounded relative inertial delay condition (BRIDC); We say that the tuple
(u,mr,d,,mf,df,ur,Sr,uf,Sf,x) satisfies BRIDC.

We call also bounded relative inertial delay condition the DC

My dy,mg.d ¢ HysBpsb £,8 £
Sol g A Sol pre .

9.4.2 Remark BRIDC is obviously a DC, from Theorem 9.3.1. Its meaning results from Fig
19 representing the situation from 9.3.1 <¢), where we have supposed that

x(0—0)=0,u(t) = [0 1) (t),t>m,. The functions u© . Ju©
Eelt—d, t—d, —m,. ] &e[l—df,t—df +mf]
from BDC give the possibility, respectively state the necessity of a value of x, while the
functions ﬂu(&) , ﬂtTE) from RIC give the possibility that some
Ee[t=06,,t=6,+1,] ée[t—Sf,t—Bfﬂlf]
switches of x happen.

)
T =M,
i t
(@ |
telt—dy t—dp+iny] |
Uu(%) | r:il,, dp+T— M, | :
—d ¢.t—d ]
= fit f+Mf] | ! E
M) A=Wy dy+t
EE[E—Bp.i—Op +ip ] | |
t
n@ 0, | Op+T—L ) |
E_,E[ﬁ—ﬁf,ﬁ—&fﬂif] | |
! |
] |
ik ],



These interpretations may be done in other cases of CCpgripc (or violations of
CCpripc!), for example 9.3.1 a) from Fig 20, where x(0—-0)=0,u(?) = X[0,7) ),t>m,

i
T >,
3 4
(&
Ecli—dp.i—dp+imyp]
U“@ | dy oy +T— M, | ;
i |
e[ it f+mf] I ;
M@ df=tiy dytr
EE[t—8p £— 8 +lby ] |
T f
n@ 0, | | 0, + T— s
Ee[i-8 7. t-B 7 +U 7] |
| |
. | 87— Ly ds+71 i t
| I
1]
I i

The intervals [5,,6  —ur] and [8 7 +1,8, +1—p,] are observed; if they are non-empty,
then Zeno solutions of RIC exist.

We refer in Fig 21 to the requests 9.3.3 c); we suppose without loss that
x(0-0)=0,u(t)= X[0,7) (t),t>m, and we have the next time intervals when u has
sufficiently long pulses (u is 1 strictly longer than m, and then u is O strictly longer than

- te(-o,dy—my); x(t)=0 and the only possible switch -that does not happen- is
from 1 to 0

-teldy—myp, 8y —py), x(1)=0;. x(¢) could be 1, but it is allowed to switch only
from 1 to 0 and this does not happen

-tedy—pny,8,), x(¢)=0;. x(¢) could be 1, but no switch is allowed

- t€[d,,d,]; x(1)=0 and x(¢)=1 are both allowed, switching from 0 to 1 may
happen and exactly one such switch takes place

-te(d,,d, +t—m,); x(¢t)=1 and the only possible switch -that does not happen- is
from 0 to 1

-teld,+1-m,. 0, +1—n,), x(t)=1; x(¢) could be 0, but it is allowed to switch
only from 0 to 1 and this does not happen

- t€[8, +1-p,,8,+17), x(t)=1; x(z) could be 0, but no switches are possible in

this time interval
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UH(@ d dp+T— M, J
E_,E[f,—a?f,f,—a!’f+mjf]
t
nu(a) dy—my ds+7
Ee[i=8p 0= 8p +ldp |
£
ﬂ@ a,. 6r+’|:—'pf
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Fig 21

-te[dr+1dyp+1]; x(1)=1 and x(r) =0 are both possible, switching from 1 to 0 is
allowed and exactly one such switch takes place
- te(dy+1,0); x()=0 and the only possible switch -that does not happen- is from

1to 0.
This succession of time intervals is repetitive if u is suitable chosen.

9.4.3 Theorem The next properties are equivalent in the sense that the arbitrary signals u,x
satisfy one of them if and only if they satisfy the other one.
a) m,,d,,m f,d 1 K50, 1 f,S f are given and the next inequalities are fulfilled (see

also 9.3.3 ¢))

0<m,<d,,0<mp<dy (1)
OSM,,SS,,,OSMfSSf (2)
df—mjtSSf—MfSS,,Sdr (3)
d.—m. <8, —,.<8,<dy 4)

u@© <x(@)< Ju©® )

Eelt—d, t—d, +m, ] &e[t—df,t—df +mf]
x(1=0)-x(1) < (u(®) (6)
Ee[t=08,,t=8,+1, ]
x(1=0)-x(1) < u(®) (7)

&e[t—Bf,t—?Sf +Mf]
b) The numbers mr,min’dr,min’mr,max’dr,max’mf,min’df,min’mf,max’ df,max are
given and we have

0< My max < dr,max’o S m ¢ max S df,max 3)



0<my min < dp min-0 <M £ min <d £ min ©)

df,max —M £ max < df,min M £ min < dr,min = dr,max (10)
dr,max — My max < dr,min =My min < df,min < df,max (11)
x(1-0): u(® <x(1=0)-x(1) < (12)
Eelt—dy max-t—dy max 7y max |
<x(1-0)- (u(®)
&elr=dy min-t—dy min +" min]
x(1—=0)- Mu(©) < x(t—0)-x(¢) < (13)
Eelt—d £ maxt=d f max +™M f max |
<x(t1-0)- u(®)

Eelt—d £ min>!—d f min +" £ min]
Proof The next equalities take place

My min = K4y min = O (14)
My max = mradr,max =d, (15)
M ¢ min =Hfsd f min =087 (16)
Mf max =My,d g max =d g (17)

under the form 'equal by definition with' in both directions @)= b) and b) = a) resulting
that (1),...,(4) and (8),...,(11) coincide.

a) = b) The left inequality of (5) multiplied with x(¢—0) gives the left inequality of (12)
and (6) multiplied with x(z —0) gives the right inequality of (12). The rest results by duality.

b) = a) We suppose that ﬂu(&) =1 and we have the next possibilities
Eelt—d, t—d,+m; ]
1) x(t-0)=0
Then the left inequality of (12) shows that x(¢) =1 and the left inequality of (5) is satisfied.
i) x(¢-0)=1
and the right inequality of (13) becomes

x(1) < Nu(®) (18)
§e[t—8f,t—8f +Hf]
(10), (11) are written under the form (3), (4) and this implies

1=8r+ur2t—d, (19)
t—d,+m.2t-8y (20)
Le.
[t—dr,t—dr+mr]/\[t—8f,t—6f +uf]¢® (21)
and thus ﬂTE) =0. From (18) we get x(¢) =1 and the left inequality of (5) is

&e[t—Bf,t—Bf +pf]
satisfied in this case too.
On the other hand, the right inequality of (12) gives
x(t —0)- x(¢) < x(t - 0) - u@© < (u(©) (22)
Celt=08, =0, +1y]  E€[1=8,,1=8)+p)]
i.e. (6).



The other implications result by duality.

9.5 Deterministic Bounded Relative Inertial Delays
9.5.1 Theorem Let the real numbers 0 <m, <d,,0<my <d arbitrary with d,. —m, <d 7,

dy—my <d,. The next systems are equivalent, in the sense that if u,xe S satisfy one of

them, then they also satisfy any other.

a) u@ <x@)< Ju©) )]
Eelt—dy,t—dy —my ] F,e[t—df,t—df+mf]
x(1=0)-x() < (u(€) 2)
Eelt—d, ,t—d, +m, ]
x(t—0)-x(r) < Mu(®) 3)
§e[t—df,t—df+mf]
b) x(t=0)-x(t) = x(t - 0)- (u(©) 4
Eelt—d, t—d,+m; ]
x(t = 0) - x(t) = x(t - 0)- Mu®) (5)
&e[t—df,t—df+mf]
c) u@ <x() (6)
Eelt—d, t—d,+my ]
Nu@  <x(0 (7
&e[l—df,t—df +mf]
Nu® Nu@ <
Eelt—dyt=dp+my] Celt-dyt-dp+my]
< x(t - 0)- x(t) U x(t — 0) - x(¢) (8)
1, u@© =1
Ee[t—dy t—dy+m,;]
d) x(t)=10, Nu® =1 9)

ée[t—df,t—df +m ]
x(t—0), otherwise

e) x(#)= (@  x(-0)- Uu® (10)

&elt—d, t—d, +m, ] F,e[t—df,t—df +mf]
f) Dx(1) = x(t-0)- Nu@© v

eelt—d, 1~dy+m,.]

U x(t=0)- u(® (1)
&e[t—df,t—df+mf]
g) x(t—0)-x(t)- u@) Ux(t—0)-x(1)- Nu@ U
Eelt—d, t—d, +m,.] &e[t—df,t—df+mf]

U x(t—0)-x(7)- Nu® U

telt—d, t—dy+m,.]



U x(t—0)- x()- Nu® =1 (12)
ﬁe[t—df ,t—df +mf]
Proof In a),...,g) three possibilities exist, due to the satisfaction of CCppc:

i) Nu® = Uu® =0
Eelt—d, t—d,+m; ] &e[t—df,t—df +mf]

i) Nu@ =0, Uue =1
Eelt—d, t—dy+m; ] &e[t—df,t—df +mf]

i) Nu@ = Uue =1

Eelt—d, t—d,+m; ] ée[t—df,t—df +mf]

Case i) a) gives 0<x(¢)<0 from (1), thus x(#)=0. By taking into account the fact that

Uu® = Nu® =1,byis
&e[l—df,t—dfﬂnf] ée[z—df,t—df +mf]

x(t—-0)-x(r)=0
x(t —0) - x(¢) = x(t — 0)

whose unique solution is x(z) =0 . c¢) shows, from (7), that 1< E, that is x(¢)=0. d) and e)
give x(¢)=0 too. f) becomes x(z—0)® x(¢) =x(t —0), in other words x(z)=0. Because

ﬂu(&,) =1, g) is in this case
Eelt—dy t—d,-+my;.]

x(t = 0) - x(1) U x(t = 0) - x(1) = (x(t = 0) U x(¢ = 0)) - x(1) = x(1) =1

ie. x(r)=0.
The other two cases are similar, with x(z) = x(¢ —0) forii) and x(z) =1 for iii).
9.5.2 Remarks In any of the equivalent conditions 9.5.1 a),...,9.5.1 g), CCgripc and CCppc
coincide, as we have mentioned at 9.3.4.

The implications of the violation of this condition in 9.5.1 a),...,.9.5.1 g) are the
following. Let u and ¢' so that

[t'—d,.t'=d, +m A[t'=d p.t'=d r +m ] = %}
vé € [t'_draf—dr +mr]:u(§) =1
v&, S [f—df,l'—df +mf],u(§) =0

Let us suppose, in order to make a choice, that #'~d,. +m, <t'-d ;. From the last two
equations and from the right continuity of u in ¢'—d, +m,.t'-d s +m ; we get the existence
of >0 sothat r'~d,. +m, +& <t'—d ; and

VEelt'—d, t'—d, + m, +el,u()=1
VE e [Z'—df,l'—df tmyg+ el,u(§)=0

’d b
9.5.1 a) shows that Solggcr

9.5.1 b) becomes for any ¢ [¢',#'+¢]
x(t = 0) - x(1) = x(t - 0)
x(t = 0) - x(t) = x(t — 0)
and the system accepts two possibilities x(#)=0,x(t—0)=1 and x(¢)=1, x(t—0)=0,

"I )=

meaning that x should continuously switch in this interval; no signal satisfies such requests.



9.5.1 ¢) has no solution either, because 9.5.1 (6), 9.5.1 (7) show that x(¢r)=0 and x(¢)=1 are
both true for ¢ [¢',#'+¢] and this is the case of 9.5.1 d) also, where x(¢) is not a well defined
function for ¢ e[¢','+€]. 9.5.1 e) gives x(¢)=1, te[t',t'+€]. 9.5.1 f) and 9.5.1 g) become
both
Dx(t)=1t e[t ,t'+e]

and this equation represents a nonsense similar with the one from 9.5.1 b), because the set
{t|te[t',t'+e],Dx(¢t) =1} should be finite (x has resulted to be ‘everywhere discontinuous’ in
[',t'+€]).

On the other hand, Theorem 8.2.5 characterizes, via 9.5.1 b), all 0of 9.5.1 a),...,9.5.1 g).

9.5.3 Definition For u,xe S and 0<m, <d,,0< my < df so that CCppc is satisfied, any of

the equivalent properties 9.5.1 a), ..., 9.5.1 g) is called the deterministic bounded relative
inertial delay condition (DBRIDC). We say that the tuple (u,m,.d,,mz,d,x) satisfies

DBRIDC.
We call also deterministic bounded relative inertial delay condition the function

Sol" ML 6 px(S) defined b
ol pprIDC S (S) defined by
my.,dm¢.d my.,d.m¢.,d my.,dm¢.d
Sol ot ) = Sol i ) A Sol i (wy

10 Alternative Definitions. Symmetrical Deterministic Upper
Bounded, Lower Unbounded Relative Inertial Delays

10.1 Alternative Definitions

We just mention the possibility of replacing
- in BDC the functions u®) . Ju©) with (u).
Celt—dy t—dy+my.] Eelt—d ft—d f+m 1] Eelt—d, 1)
U u(&) ; new notation BDC’
Eelt—d f,t)
- in AIC the functions ﬂx(&), ﬂ@ with ﬂx(&), ﬂ@ ; new
Eelt,t+3,] &e[t,t+8f] Eelt t+6;) &e[t,t+6f)
notation AIC’
- in RIC the functions ﬂu(&) , ﬂu(&) with ﬂu(&), ﬂu(&);
Eelt—0,,t—=0,+1;-] &_,E[t—6f,t—5f+uf] Eelt—5,,t) &e[l—Sf,t)
new notation RIC’.
In BDC’ d, >0, df >0 is a consistency condition, but in AIC’ and RIC’ any of
S,, Sf can be null, resulting trivial conditions. Such substitutions are natural, but BDC’ and

RIC’ are suggested also by the ‘common form of implementation...’, from Convention 5.3.
None of the six new functions are signals, however, because they are not right
continuous.



10.2 Symmetrical Deterministic Upper Bounded, Lower Unbounded Relative Inertial
Delays

10.2.1 Lemma Let d, >0,d r >0 and u € S. The next formulas are true:

u@=u-0)- | JDu(®)

Eelt—d, 1) Ee(t—d, 1)
Nu@=ut=0)-  (JDu(®)
ﬁe[l—df,t) ﬁe(l—df,t)

Proof We prove the first of these two relations and let ¢ arbitrary, fixed. We have:
ﬂu(&,) =l u(t-0)=1and Ul1—d, 1) is constant
Eelr—dy 1)
< u(t—0)=1and w4, ;) is constant

(because u is right continuous in 1 —d,.)
Su(t-0)=land VEe(t—d,,t),Du()=0

cu(t-0)- | JDuE)=1
Ce(t=dy,1)
Because ¢ was arbitrary, the equation is proved.

10.2.2 Remarks The idea from 10.1 has implications in the way of understanding 9.5.1, for
example 9.5.1 f) can be thought under the form

Dx()=x(t=0)-  (u@ux(t=0)-  [Ju(®) (1
Eelt—d,.t) Eelt—d f.1)
The natural notation of equation (1) following the previous patterns is DBRIDC’.
In the rising-falling symmetric version, when d, =d p =d >0:

(i=0) (u@uUx(t=0)- [Nu@©)=
Eelt—d. 1) Eeft—d 1)
=x(t-0)-u(t-0)- | JDuE)Ux(-0)-u(r-0)- |JDu(€)= (from10.2.1)
Ee(t—d.,1) Ee(t—d.,1)
=(x(t=0)-u(t=0)Lx(t—0)-u(t—0))- UDu(é) =
Ee(t—d,t)
=(x(t=0)®u(r-0))- | JDu(®)
Ee(t—d.,1)
and equation (1) becomes
Dx(t)=(x(t-0)@ u(t—0))- UDu(&) (2)
Ee(t—d,1)
In [23], the equation of the inertial delay circuit with null initial conditions was written under
the form
Dx(1) = (x(t=0)®u(t=0))- | JDu(&)-A[d,20)(1) 3)
Ee(t—d, 1)
The context from there demanded that the signals f* satisfy by definition the non-restrictive
request supp f [0, ), thus the general form of equation (3) is

Dx(t) = (x(t=0)®u(t —0))- | JDu(®) - xg.0) (1) ® 0 %401 (1) (3
Ee(t—d.t)



where the initial value x* € B stands for x(0—0) in our present work.
In the next drawing

4
F
| ) oue)
Eelt—d £) ;
| JDui) |
Ee(t—d 1)
g £
Fig 22

we have shown that, because x(0—0) @ u(0—0)=0 (a slightly modified version of Theorem
7.2.4 is valid here) both equations (2) and (3) satisfy Vu,V¢<d,Dx(t)=0 thus they are
equivalent. The abbreviation is SDBRIDC”.

11. Other Examples and Applications

11.1 A Delay Line for the Falling Transitions Only

The proposed circuit that is reproduced from [11] has the gates and the wires governed by
delays

2 , i Y3
Fa X5
=
Fig 23
From the static point of view, u, y,..., 5,z € B and we observe that
z2=y1ys=Y1Ya=y1- 3 Y)=n-y3=y1"y2 =y 1=y =u (1)

i.e. the Boolean function that this circuit computes is the identity.

The model is offered by the circuit from Fig 24, where all the variables that occur are
signals, the gates and the wires have no delays and the delays are concentrated in the delay
circuits. The system of equations and inequalities is:

n@o=u( @
y2(0)=x1() 3)
30 =520 (4)

Y4(0) = x3(2)- (1) )



Fig 24

v5(t)=2x4(0) (6)
z(t) = x5(t) x (1) B (7)
i@ <x<s  Jyi@),i=15 (8)
Eelt—d, 1) Eelt—d 1)
Nz@<wi<  [Jz() 9)
Eelt—d; 1) ée[t—df,t)

thus we use BDC’ with d, >0,d >0 the parameters that characterize the six delay
circuits. The compatibility with the initial conditions is supposed to be satisfied under the form
u(0—0)=y;(0—0)=x;(0—0) =y (0~0)=x,(0~0)=y3(0—0) =130~ 0) =
=4(0-0)=x4(0-0)=y5(0-0)=x5(0-0)=2(0-0)=w(0-0)
that simplifies (2),...,(7). For example (5) was written in the next manner:
Y4 ()= y40=0) % (—0,0) (1) © x3(1) - x1 (1) - X [0,00) () =
= x3(0—0) - x1 (0= 0) X (,0) (1) ® X3 (1) - X1 (1) - X[0,00 (1) = X3 (1) - 1 (1)

We have

Nrn@<x®=<  Un® (equation (8)) (10)
Eelt—d, ,t) Eelt—d 1 ,1)

Nu@®<xO<  Ju®) (from (2) and (10))  (11)
Eelt—d, 1) Eelt—d g 1)

Nr:@<xo<  [Jrs©) (equation (8)) (12)
Eelt—d, ,t) Eelt—d 1,1)

Nn@<x0< Uxn© (from (4) and (12))  (13)
Ee[t—d, ,t) Eelt—d f,1)

Nrn@ <0< [J»n®) (equation (8)) (14)
Eelt—d, ,t) Eelt—d f.1)

Nrn@<xnO<  UrnE (from (14)) (15)
Eelt-d 1.0) Eelt—d, )

Na® <0< Un@E (from (3) and (15)) ~ (16)

Eelt—d £ 1) Eelt—d,.t)



Na@© <x@s<  Un@E  (from(13)and (16) (17)

Eelt—d,—d 1 .1) Eelt—d,—d 1 .1)
Nu@) <x30)< Ju© (from (11) and (17)) (18)
Eelt-2d.—d 1 .1) gelt—d,—2d s .t)
ya(6)=x3()-x1 (1) (from (5)) (19)
u@© - (@) <ys0)< Yu© - Yu© (20)
Eel[t-2d, —df,z) Eelt—d, 1) Eelt—d, —de,t) &e[z—df,t)

from (18), (11) and (19). But [t -2d, —d r,t) D[t —d,,1),[t =d, —2d ;,t) D[t —d 1) imply
Nu® < Nu©,  Yu© = Ju®
gelt-2d,~d p,t)  Eelt-dp,t)  Eelt-dp—2d 1) Eclt—d 1)
Nu® - Nu@=  (u@©
gelt-2d,~d £,0) Eelt—dp.t)  Ee[t-2dp—d p.1)
Uu® - Uu@= Yu®
gelt-dy—2d r,0) Eelt-d ) Eelt—d g.1)

from where (20) becomes

Nu@ <y@O<  Ju®© 21
Ee[t-2d,—d £ 1) Eelt—d f.1)
Furthermore
Nrs@<xs@< [Jrs© (equation (8)) (22)
gelt—d, t) Eelt—d 1)
Nra@<xs(< Jxa®) (from (6) and (22)) (23)
gelt—d, b) Eelt—d f.1)
Nra@<xs< Ura® (similar with (15))  (24)
Ee[t—d 1) eelt—d, .t)
(rya® <xs(1)< Ura® (from (23) and (24)) (25)
Eelt—dy—d £ 1) Eelt—d—d £ 1)
Nu@) <xs5(0)< Ju®  (from (21) and (25)) (26)
Eelt-3d,—2d 1) Eelt—d,—2d £ 1)
2(6) = x5() - 1 (t) (from (7)) 27)
Nu® - Nu@<z0)< Uue - Ju® (28)
Eelt-3d, —de,z) Eelt—d, 1) Eelt—d, —de,t) ge[t—df,t)
from (27), (26) and (11). With argﬂnentsge those ar%d (20) we infer from (28)
Nu®© <2< Ju® (29)
Eelt-3d, —2df,t) &e[l—df ,t)
u(®) <z(0) < Ju® (30)
&e[z—df,t) Eelt-3d, —de,t)
From (9) and (30) we get
u®©) <w(@)< Ju®© €1y

Eelt—d, —d 1,1) Eelt-3d, —3df,t)



The conclusion expressed by (31) is that the circuit increases the one gate rising delay from
d, to d,+dy and respectively the one gate falling delay from d , to 3d, +3d s, ie. the

growth of the falling delay is bigger than the growth of the rising delay. This justifies the title
of the paragraph.

11.2 Example of Circuit with Tranzient Oscillations

We reproduce in Fig 25 an example of circuit from [3].

i

Fig 25

Even if the static analyzis, when u,v,x € B of such a circuit is not appropriate due to the
feedback loop we remark that the proposed circuit computes the 1 Boolean function because

x=u-v-x=u-u-x=0=1
Modeling is done like in the next drawing

i

v Y o z
> |

-

Fig 26

where u,v,x,y,z€ S and after solving the system we must obtain lim z(z) =1 independent
t—>0

on the type of DC’s that we choose. The delays of the gates and of the wires from the original
circuit have been concentrated in the two delay circuits from Fig 26, where the gates and the
wires have no delays. We choose that the delays associated to the two logical gates be FDC’s.
The equations are:

V() = V(0= 0) % (—c0,0) (1) D (1) - X[0,00) (1) (1)
y(O)=v(t-d) )
x(t) = X(0 = 0) %, (0,0 (1) D u(t)- (1) - 2(t) X 0,00 (1) 3)
z(t)=x(t—d") 4)

resulting
Y(£) =9(0=0) Y (0,0t —d) O u(t = d) 1[0 0 (t— )
=1(0=0) Y (—o0,q) (O @u(t —d) A[g.0y()  (from (1), (2) )
x(t) = X(0—0) % (0,0 (1) ® (from (3), (4), (5)) ~ (6)



Du(r)- (M(0=0) % (—c0,d) () B ult =d) - X[ d,00) (1)) - X(t =d") - %[ 0,00) (1)
We solve (6) in the special case when x(0—-0)=v(0—-0)=1 and u(#)=1, when it
becomes

X(1) = X (=0,0) (1) @ X (o0, (1) - X(t = d") - %[0,00) (1) (7)
The solution of (7) is the following

x(t) | I I I
| |
| |
; I f
x(-d) | | | |
|
i ¢
Loy E)-x—d") I I | |
| | -
d 24" d 3d' d'vd 44’
Fig 27
x(t) ! | |
¢
x(t—d") ! ! !

L) ©-2C=d) | | :

I ___________T________ i 2z
w,
™+

Fig 28

2kd'<d < (2k+1)d' implies
(0) = {X(—OO,O) (DO A[a 24" (DD . D A2k -1)a" 2kd") (1) D A[d 00) (1), h 21
X (—0,0) (1) © A [d,00) ),k =0
(2k +1)d'< d < (2k +2)d" implies
() = {X(—oo,O) (D@ Aa 24 ) D . O Y[ 2k-1)d" 2kd") (D) D X[ 2k +1)d",00) (D)> k 2 1
X (~00,0) () @ K[ 00) (), k =0



where £ =0,1,2,... We have represented in Fig 27 and Fig 28 these two formulas for £ =1.

The output z(¢) of the circuit is obtained from (4).

The idea of solving the equation (6) in other cases as well as the behavior of the circuit
from Fig 25 are obvious now.

11.3 Example of C Gate. Generalization
The circuit from Fig 29 where the gates and the wires have delays is modeled like in Fig 30

Tt

Fig 30
where the Boolean functions are computed instantaneously:
YO =u@)-v(1) (D
z*(t) = u(t)- x() )
w* (1) =v(1)- x(2) 3)
x*(1) = y() V z(1) V(1) 4

and the delays on gates and wires are localized in the four delay circuits. We have supposed
for  simplicity that all the signals have the same initial  values
u(0—0)=v(0—-0)=...=x(0-0) and for example equation (1) has resulted in the next way:

Y*(O)=y*(0=0) % (=0,0) () D u(?) - V(1) - %[0,00) (1) =
=1(0—=0)-v(0=0) - % (—00,0) (1) D u(t) - v(2) - A [0,00) (1) = u(t) - v(?)
a) The bounded delay model

Nr* ©<y@)< Ur*© (5)
Eelt—dy t—d,+my ] ée[t—df,t—df +mf]
ﬂ z* () <z()< U z*(&) (6)

Eelt—dy t—d,+my ] &e[t—df,t—df+mf]



(w*  ©<wn< Uw*© (7

Eelt—dy t—d,+my ] Eelt—dy t—dp+my ]
Nx*  ©<x(0)< Ux*@© ®)
E€lt—D, t—Dy,.+M,.] &e[t—Df =D y+M 1]

with 0<m, <d,, 0<my<d;, 0<M,<D,, 0<M;<D; and the consistency
conditions are fulfilled under the form: d,.2d;-my, dy=>d,—-m, respectively

D,2Dy-Myg, Dp2D,.—-M,. We have considered that the three AND gates are

identical. We eliminate the intermediary variables y* ,Z¥ Wk Vs Z, w,x*:
(4),(8)

x(t) = (r(E) vzE)UmE) = NyE =
Eeli—Dy,t—Dyp+M,] Eelt—Dyi-Dy+M, ]

6)

> ﬂ my*((x))z ﬂy*(é) =

&elt—Dy t—Dy+M, N 0e[é—d, —dy+my ] E€[t—dy—Dy t—dy—Dy+mp+M,; ]
@

= V@@ - v(&)) ©)
&elt—dy—Dy t—dp—Dy+my+M ]
(4).(8)
X0 =< Uo@uz@uwe) =

ﬁe[t—Df,t—Df ""Mf]

= Ur® v Uz v Uwe <

&e[[—Df,t—Df+Mf] Eje[t—Df,t—Df+Mf] ﬁe[t—Df ,t—Df+Mf]
(5),(6),(7)
< U Ur*@ v
&e[l—Df,t—Df +Mf] me[&—df,ﬁ—dermf]

U U Uz*@ v U Uw*(w) =

&e[t—Df,t—Df+Mf] me[&—df,ﬁ—df +mf] ée[z—Df,t—Df +Mf] me[é—df,é—df-kmf]

= Ur*© u Uz*© u
&e[t—df—Df,t—df—Df+mf+Mf] &e[t—df—Df ,t—df—Df+mf+Mf]
u Uw*© =
&e[l—df—Df,t—df—Df+mf+Mf]
1,(2),(3)
= Uu@-ve v Uu@©)-x© v
ée[t—df—Df,t—df—Df+mf+Mf] &e[t—df—Df,t—df—Df+mf+Mf]
u Un®-x@ =

F,e[t—df—Df,t—df—Df+mf+Mf]

= J@(®-v(©) v @@ un©) ()
&e[[—df—Df t—df—Df+mf+Mf]

N J@©-v©) vu@unE)=
Eelt— df Df t— df Df+mf+Mf]

= J@(© vuve©) (10)
Eelt— df Df {— df Df""mf""Mf]

thus, by cumulating (9), (10)



@(©)-vE) <x(n)< U@ vuv©)
&elt—d,—Dy t—d,—Dyp+my.+M,. ] Celt-dp—Dyt—d f—Dy+mg+M 1]
we have obtained a system that is very much similar with BDC.

b) The deterministic model
We ask that (9), (10) be fulfilled together with

x(t—0)-x(1) < (@) -v(E)) (11)
&elt—dy—Dy t—dy—Dy+m-+M,.
x(t—0)-x(7) < u(©) v(E) (12)

&e[t—df—Df,t—df—Df+mf+Mf]
The system (9), (10), (11), (12) represents a deterministic model, similar with 9.5.1 a)
and it is equivalent with the next one, that is similar with 9.5.1 b):

x(t—0) - x(£) = x(t —0)- (@) v(©)
&elt—d,—Dy t—d—Dy+my+M ]
x(t = 0)- x(t) = x(t - 0)- u(©) v(E)

&e[t—df—Df,t—df—Df+mf+Mf]
etc. The C gate, also called Muller C element generalizes the delay circuit, in the sense that
when the two inputs are equal, it becomes a delay circuit. In the same manner, the systems
that we have obtained generalize our systems BDC, respectively DBRIDC and may be called

2-delays: 2-BDC, respectively 2-DBRIDC. The general case of n-BDC and n-DBRIDC is
obvious now.
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