ANALELE UNIVERSITATII DIN ORADEA FASCICOLA MATEMATICA, TOM III, 1993

CURVILINEAR PSEUDOBOOLEAN INTEGRALS

Serban E. Vlad

Str. Zimbrului, Nr. 3, Bl. PB68, Et.2, Ap.11, 3700, Oradea, Romania E-mail: serban_e_vlad@yahoo.com

1. By $B_2 = \{0,1,\oplus,\cdot\}$ we write the binary Boole algebra, where $'\oplus'$ is the modulo 2 sum and $'\cdot'$ is the intersection. If $\{a_i \mid i \in I\}$ is a binary family so that it has a finite support

$$|\{i \mid i \in I, a_i = 1\}| < \infty$$

then it makes sense to speak about the modulo 2 summation of the elements of this family, that will be written $\Xi_i a_i$. In fact,

$$\Xi_{i \in I} a_i = \begin{cases} 1, if \mid \{i \mid i \in I, a_i = 1\} \mid = 2k + 1 \\ 0, if \mid \{i \mid i \in I, a_i = 1\} \mid = 2k \end{cases}$$

If I = N, then the meaning of this sum is that of a convergent series. If the support of this family to be summed is not finite, then the sum cannot be done and this is the sense of a divergent series in this theory.

The topology of B_2 is the discrete one.

2. Let $x:[a,b] \to B_2$ with the property that the set $\{t \mid t \in [a,b], x(t) = 1\}$ is finite. The *left integral* and the *right integral* of x on [a,b), respectively on (a,b] is given by:

$$\int_{a}^{b} x = \frac{\Xi}{\xi \in [a,b]} x(\xi), \int_{a}^{b} x = \frac{\Xi}{\xi \in (a,b]} x(\xi)$$

3. A function $x:[a,b] \rightarrow B_2$ has *left limits* if

$$\forall t \in (a, b], \exists x(t-0) \in \boldsymbol{B}_2, \exists \varepsilon > 0, \forall \xi \in (t-\varepsilon, t) \land (a, b], x(\xi) = x(t-0)$$

and, in a dual way, x has right limits if

$$\forall t \in [a,b), \exists x(t+0) \in \mathbf{B}_2, \exists \varepsilon > 0, \forall \xi \in (t,t+\varepsilon) \land [a,b), x(\xi) = x(t+0)$$

In the case that these properties are true, there are defined the functions x(t-0) and x(t+0) called the *left limit* and the *right limit function* of x.

4. Let $x:[a,b] \to B_2$ be with left limits and right limits (not equal, in general). In such cases, we ask that in the points *a* and *b*, *x* has a right limit, respectively a left limit. The functions: $Dx(t) = x(t-0) \oplus x(t), D * x(t) = x(t+0) \oplus x(t)$

are called the *left derivative* and the *right derivative* of x.

5. Lemma If $x:[a,b] \rightarrow B_2$ has left limits and right limits, then the sets

 $\{t \mid t \in (a,b], Dx(t) = 1\}, \{t \mid t \in [a,b), D * x(t) = 1\}$

are finite.

Proof From the definition of the left limits and of the right limits, we have the existence of a set of points

 $a = t_0 < t_1 < \dots < t_n = b$

with the property that

$$\forall i \in \{1, ..., n\}, \forall \xi, \xi' \in (t_{i-1}, t_i), x(\xi) = x(\xi')$$

and finally

 $\{t \mid t \in (a,b], Dx(t) = 1\} \subset \{t_1, \dots, t_n\}, \{t \mid t \in [a,b), D^*x(t) = 1\} \subset \{t_0, \dots, t_{n-1}\}$

6. **Remark** The previous definition 3 may be extended at $[a,b] \rightarrow B_2^n$ functions, $n \ge 1$. In the paper, we shall consider the case n = 2.

7. A path in B_2^2 is a function $\gamma: [a,b] \to B_2^2$, $\gamma = (\gamma_1, \gamma_2)$, that has left limits and right limits. The path is called *closed* if $\gamma(a) = \gamma(b)$.

The *inverse* of γ is defined to be the path $\gamma^-:[a,b] \to B_2^2$,

$$\gamma^{-}(t) = \gamma(a+b-t)$$

 $\gamma \quad (t) = \gamma(a+b-t)$ The *reunion* of the paths $\gamma:[a,b] \to B_2^2$, $\sigma:[b,c] \to B_2^2$ that satisfy $\gamma(b) = \sigma(b)$ is defined by

$$\gamma \lor \boldsymbol{\sigma} : [a,c] \to \boldsymbol{B}_2^2, (\gamma \lor \boldsymbol{\sigma})(t) = \begin{cases} \gamma(t), t \in [a,b] \\ \boldsymbol{\sigma}(t), t \in [b,c] \end{cases}$$

The *equivalence* of the paths $\gamma:[a,b] \to \mathbf{B}_2^2$ and $\sigma:[c,d] \to \mathbf{B}_2^2$ is written $\gamma \sim \sigma$ and is given by the existence of an increasing homeomorphism $h:[a,b] \rightarrow [c,d]$ so that the next diagram is commutative:

8. It is called *Boolean form* on B_2^2 a function $\omega: B_2^2 \to F(B_2^2, B_2)$ where we have noted

$$F(\boldsymbol{B}_2^2, \boldsymbol{B}_2) = \{ f \mid f : \boldsymbol{B}_2^2 \to \boldsymbol{B}_2 \}$$

so that for any $x, y \in B_2^2$, $x = (x_1, x_2)$, $y = (y_1, y_2)$, ω is given by: $\omega(x)(y) = \omega_1(x) \cdot y_1 \oplus \omega_2(x) \cdot y_2 \oplus \omega_3(x) \cdot y_1 \cdot y_2$

We just mention that with the notation

$$F(\boldsymbol{B}_2^n, \boldsymbol{B}_2) = \{ f \mid f : \boldsymbol{B}_2^n \to \boldsymbol{B}_2 \}$$

the Boolean forms on B_2^n are functions $B_2^n \to F(B_2^n, B_2)$.

9. Let the Boolean form ω on B_2^2 and $\gamma:[a,b] \to B_2^2$ be a path. Because the sets $\{t \mid t \in (a,b], \omega_1(\gamma(t)) \cdot D\gamma_1(t) = 1\}, \{t \mid t \in [a,b), \omega_1(\gamma(t)) \cdot D * \gamma_1(t) = 1\}$ $\{t \mid t \in (a,b], \omega_2(\gamma(t)) \cdot D\gamma_2(t) = 1\}, \{t \mid t \in [a,b), \omega_2(\gamma(t)) \cdot D * \gamma_2(t) = 1\}$ $\{t \mid t \in (a,b], \omega_3(\gamma(t)) \cdot D\gamma_1(t) \cdot D\gamma_2(t) = 1\}, \{t \mid t \in [a,b), \omega_3(\gamma(t)) \cdot D * \gamma_1(t) \cdot D * \gamma_2(t) = 1\}$ are finite - accordingly to lemma 5- there has sense the number

$$\int_{\gamma} \omega = \int_{a}^{b} \omega_{1}(\gamma) \cdot D * \gamma_{1} \oplus \int_{a}^{b} \omega_{2}(\gamma) \cdot D * \gamma_{2} \oplus \int_{a}^{b} \omega_{3}(\gamma) \cdot D * \gamma_{1} \cdot D * \gamma_{2} \oplus \\ \oplus \int_{a}^{b} * \omega_{1}(\gamma) \cdot D \gamma_{1} \oplus \int_{a}^{b} * \omega_{2}(\gamma) \cdot D \gamma_{2} \oplus \int_{a}^{b} * \omega_{3}(\gamma) \cdot D \gamma_{1} \cdot D \gamma_{2}$$

all the six integrals from the right side being defined. It is called the *curvilinear integral of* ω *along the path* γ .

10. **Theorem** a) If $\gamma \sim \sigma$, then

$$\int_{\gamma} \omega = \int_{\sigma} \omega$$

b) If $\gamma \lor \sigma$ makes sense, then
$$\int_{\gamma \lor \sigma} \omega = \int_{\gamma} \omega \oplus \int_{\sigma} \omega$$

c)
$$\int_{\gamma} \omega = \int_{\gamma^{-}} \omega.$$

Proof a) Let $\gamma:[a,b] \to B_2^2$ and $\sigma:[c,d] \to B_2^2$ be two paths for which there exists the increasing homeomorphism $h:[a,b] \to [c,d]$ with the property that it makes commutative the diagram:

The fact that there takes place

$$\int_{a}^{b} * \omega_{1}(\gamma) \cdot D\gamma_{1} = \int_{c}^{d} * \omega_{1}(\sigma) \cdot D\sigma_{1}$$

for example may be shown by taking into account the following equivalences, where to $u, u', u'' \in (a, b]$ there uniquely correspond the points $v = h(u), v' = h(u'), v'' = h(u'') \in (c, d]$: $\omega_1(\gamma(u)) \cdot D\gamma_1(u) = 1 \Leftrightarrow \exists u' \in (a, u), \forall u'' \in (u', u), \omega_1(\gamma(u)) \cdot (\gamma_1(u'') \oplus \gamma_1(u)) = 1$ $\Leftrightarrow \exists v' \in (c, v), \forall v'' \in (v', v), \omega_1(\sigma(v)) \cdot (\sigma_1(v'') \oplus \sigma_1(v)) = 1 \Leftrightarrow \omega_1(\sigma(v)) \cdot D\sigma_1(v) = 1$

b) We remark that if $\gamma:[a,b] \to B_2^2$ and $\sigma:[b,c] \to B_2^2$ there take place the formulas that are symbolized by:

$$\int_{a}^{c} = \int_{b}^{b} \bigoplus_{a}^{c} \int_{a}^{c} = \int_{a}^{b} \bigoplus_{a}^{c} \bigoplus_{a}^{c} \bigoplus_{b}^{c} \bigoplus_{b}^{c}$$

c) We have $\gamma, \gamma^-: [a,b] \to B_2^2$ and the decreasing homeomorphism $h: [a,b] \to [a,b]$ that is given by h(t) = a + b - t and makes commutative the diagram:

Analoguely to the situation from item a), we can show that for any $u, v \in (a,b)$, v = h(u), it is true for example the equation:

$$\omega_{1}(\gamma(u)) \cdot D^{*}\gamma_{1}(u) = \omega_{1}(\gamma^{-}(v)) \cdot D\gamma_{1}^{-}(v)$$

This is also the case if $u = a$, $v = b$ and we can write:
$$\int_{a}^{b} \omega_{1}(\gamma) \cdot D^{*}\gamma_{1} = \underset{u \in [a,b)}{\Xi} \omega_{1}(\gamma(u)) \cdot D^{*}\gamma_{1}(u) = \underset{u \in (a,b)}{\Xi} \omega_{1}(\gamma(u)) \cdot D^{*}\gamma_{1}(u) \oplus \omega_{1}(\gamma(a)) \cdot D^{*}\gamma_{1}(a) =$$

$$= \underbrace{\Xi}_{v \in (a,b)} \omega_{1}(\gamma^{-}(v)) \cdot D\gamma_{1}^{-}(v) \oplus \omega_{1}(\gamma^{-}(b)) \cdot D\gamma_{1}^{-}(b)$$
$$= \underbrace{\Xi}_{v \in (a,b]} \omega_{1}(\gamma^{-}(v)) \cdot D\gamma_{1}^{-}(v) = \int_{a}^{b} * \omega_{1}(\gamma^{-}) \cdot D\gamma_{1}^{-}$$

The other equations may be proved similarly.

11. Let $\omega: \mathbf{B}_2^2 \to F(\mathbf{B}_2^2, \mathbf{B}_2)$ be a Boolean form. It is called *exact* if there exists $f: \mathbf{B}_2^2 \to \mathbf{B}_2$ with the property that:

$$\forall x \in \mathbf{B}_2^2, \partial_1 f(x) = \omega_1(x), \partial_2 f(x) = \omega_2(x), \partial_{12}^2 f(x) = \omega_3(x)$$

where ∂ is the notation for the *Boolean derivative*

$$\partial_1 f(x_1, x_2) = f(x_1 \oplus 1, x_2) \oplus f(x_1, x_2)$$

$$\partial_2 f(x_1, x_2) = f(x_1, x_2 \oplus 1) \oplus f(x_1, x_2)$$

$$\partial_{12}^2 f(x_1, x_2) = \partial_1 (\partial_2 f(x_1, x_2)) = \partial_2 (\partial_1 f(x_1, x_2))$$

12. **Remark** The functions $f: B_2^2 \to B_2$ may be put under the form

$$f(x_1, x_2) = a \oplus b \cdot x_1 \oplus c \cdot x_2 \oplus d \cdot x_1 \cdot x_2$$

where $a,b,c,d \in B_2$ and then, if ω is exact, it is given – after following an identification procedure –by:

$$\omega_1(x_1, x_2) = b \oplus d \cdot x_2$$

$$\omega_2(x_1, x_2) = c \oplus d \cdot x_1$$

$$\omega_3(x_1, x_2) = d$$

It is seen the validity of the formula:

$$\partial_2 \omega_1(x_1, x_2) = \partial_1 \omega_2(x_1, x_2) (= d)$$

recalling the theory of the real functions (the closed real differentiable forms). Conversely, if $\omega_1, \omega_2, \omega_3$ are like above, then ω is exact.

13. Theorem The next statements are equivalent:

a) ω is exact

b) for any closed path $\gamma:[a,b] \rightarrow B_2^2$, we have

$$\int \gamma \omega = 0$$

c) for any paths $\gamma:[a,b] \to B_2^2$, $\sigma:[c,d] \to B_2^2$ with the same extremes $\gamma(a) = \sigma(c)$, $\gamma(b) = \sigma(d)$ we have:

$$\int_{\gamma} \omega = \int_{\sigma} \omega$$

Proof a) \Rightarrow b) There are two lemmas that we need.

14. **Lemma** Being given $f: \mathbf{B}_2^2 \to \mathbf{B}_2$ and the function $\gamma: (a,b] \to \mathbf{B}_2^2$ with left limits, there takes place the formula:

$$Df(\gamma_1(t),\gamma_2(t)) = \partial_1 f(\gamma_1(t),\gamma_2(t)) \cdot D\gamma_1(t) \oplus$$

$$\oplus \partial_2 f(\gamma_1(t),\gamma_2(t)) \cdot D\gamma_2(t) \oplus \partial_{12}^2 f(\gamma_1(t),\gamma_2(t)) \cdot D\gamma_1(t) \cdot D\gamma_2(t)$$

This fact may be seen from the following equalities, that are valid for any $a,b,c,d,x_1,x_2,y_1,y_2 \in B_2$:

$$\begin{aligned} f(x_1, x_2) &= a \oplus b \cdot x_1 \oplus c \cdot x_2 \oplus d \cdot x_1 \cdot x_2 \\ \partial_1 f(x_1, x_2) &= b \oplus d \cdot x_2, \partial_2 f(x_1, x_2) = c \oplus d \cdot x_1 \\ \partial_{12}^2 f(x_1, x_2) &= d \end{aligned}$$
$$\Rightarrow f(x_1, x_2) \oplus f(y_1, y_2) &= \partial_1 f(x_1, x_2) \cdot (y_1 \oplus x_1) \oplus \partial_2 f(x_1, x_2) \cdot (y_2 \oplus x_2) \oplus \\ \oplus \partial_{12}^2 f(x_1, x_2) \cdot (y_1 \oplus x_1) \cdot (y_2 \oplus x_2) \end{aligned}$$

(identity easy to remark). Furthermore, by considering

$$\begin{aligned} &(x_1, x_2) = (\gamma_1(t), \gamma_2(t)) \\ &(y_1, y_2) = (\gamma_1(t-0), \gamma_2(t-0)) \end{aligned}$$

the statement of the lemma results.

15. **Lemma** Let $x:[a,b] \rightarrow B_2$ with left limits and right limits. It is true the formula of Leibniz-Newton:

$$\int_{a}^{b} D^* x \oplus \int_{a}^{b} D^* x = x(a) \oplus x(b)$$

Proof Let the points

$$a = t_0 < t_1 < \dots < t_n = b$$

like in the proof of lemma 5, defined by the property that the values $c_0, c_1, ..., c_n, d_1, ..., d_n \in \mathbf{B}_2$ exist so that

$$x(t_i) = c_i, i = 0, n$$

$$\forall \xi \in (t_i, t_{i+1}), x(\xi) = d_{i+1}, i = \overline{0, n-1}$$

We see that

$$\int_{a}^{b} D^* x \oplus \int_{a}^{b} D^* Dx = (c_0 \oplus d_1) \oplus (c_1 \oplus d_2) \oplus \dots \oplus (c_{n-1} \oplus d_n) \oplus (c_1 \oplus c_1) \oplus (d_2 \oplus c_2) \oplus \dots \oplus (d_n \oplus c_n) = c_0 \oplus c_n = x(a) \oplus x(b)$$

We may proceed now to prove the implication a) \Rightarrow b) and from the hypothesis there exists a function $f: B_2^2 \rightarrow B_2$ with the property that

$$\forall x \in \boldsymbol{B}_2^2, \partial_1 f(x) = \omega_1(x), \partial_2 f(x) = \omega_2(x), \partial_{12}^2 f(x) = \omega_3(x)$$

We take some path $\gamma:[a,b] \to B_2^2$ with the property that $\gamma(a) = \gamma(b)$. We may write, by using lemma 14 and its right dual:

$$Df(\gamma_1(t),\gamma_2(t)) = \partial_1 f(\gamma_1(t),\gamma_2(t)) \cdot D\gamma_1(t) \oplus$$

$$\begin{split} & \oplus \partial_2 f(\gamma_1(t), \gamma_2(t)) \cdot D\gamma_2(t) \oplus \partial_{12}^2 f(\gamma_1(t), \gamma_2(t)) \cdot D\gamma_1(t) \cdot D\gamma_2(t) = \\ & = \omega_1(\gamma_1(t), \gamma_2(t)) \cdot D\gamma_1(t) \oplus \omega_2(\gamma_1(t), \gamma_2(t)) \cdot D\gamma_2(t) \oplus \omega_3(\gamma_1(t), \gamma_2(t)) \cdot D\gamma_1(t) \cdot D\gamma_2(t) \\ & D * f(\gamma_1(t), \gamma_2(t)) = \omega_1(\gamma_1(t), \gamma_2(t)) \cdot D * \gamma_1(t) \oplus \omega_2(\gamma_1(t), \gamma_2(t)) \cdot D * \gamma_2(t) \oplus \\ & \oplus \omega_3(\gamma_1(t), \gamma_2(t)) \cdot D * \gamma_1(t) \cdot D * \gamma_2(t) \end{split}$$

and from lemma 15:

$$\int_{\gamma} \omega = \int_{a}^{b} D^* f(\gamma) \oplus \int_{a}^{b} D^* f(\gamma) = f(\gamma(a)) \oplus f(\gamma(b)) = 0$$

b) \Rightarrow c) Let us take $\gamma:[c,d] \rightarrow B_2^2$ and $\sigma:[c',d'] \rightarrow B_2^2$ two paths satisfying the conditions: $\gamma(c) = \sigma(c'), \gamma(d) = \sigma(d')$

We fix a < b and $a' \in (a,b)$ and choose the increasing homeomorphism $h_1 : [a,a'] \rightarrow [c',d']$ respectively the decreasing homeomorphism $h_2 : [a',b] \rightarrow [c',d']$ that give the definitions

$$\alpha_1:[a,a'] \to \boldsymbol{B}_2^2, \alpha_1 \stackrel{def}{=} \gamma \boldsymbol{o} h_1$$

$$\alpha_2:[a',b] \to \boldsymbol{B}_2^2, \alpha_2 \stackrel{def}{=} \sigma \boldsymbol{o} h_2$$

The reunion $\alpha = \alpha_1 \lor \alpha_2 : [a,b] \to B_2^2$ makes sense because

$$\alpha_1(a') = (\gamma \mathbf{o} h_1)(a') = \gamma(d) = \sigma(d') = (\sigma \mathbf{o} h_2)(a') = \alpha_2(a')$$

and it is a closed path

$$\alpha(a) = \alpha_1(a) = (\gamma \mathbf{o} h_1)(a) = \gamma(c) = \sigma(c') = (\sigma \mathbf{o} h_2)(b) = \alpha_2(b) = \alpha(b)$$

By making use of the hypothesis, as well as of the fact that $\alpha_1 \sim \gamma, \alpha_2^- \sim \sigma$, we have:

$$0 = \int_{\alpha_1 \vee \alpha_2} \omega = \int_{\alpha_1} \omega \oplus \int_{\alpha_2} \omega = \int_{\alpha_1} \omega \oplus \int_{\alpha_2^{-}} \omega = \int_{\gamma} \omega \oplus \int_{\sigma} \omega$$

c) \Rightarrow a) Let us put ω under he form:

$$a_i(x_1, x_2) = a_i \oplus b_i \cdot x_1 \oplus c_i \cdot x_2 \oplus d_i \cdot x_1 \cdot x_2$$

where $a_i, b_i, c_i, d_i \in \mathbf{B}_2, i = \overline{1,3}$ and we show, by choosing convenient pairs of paths $\gamma, \sigma : [a,b] \to \mathbf{B}_2^2$ with the same extremes: $\gamma(a) = \sigma(a), \gamma(b) = \sigma(b)$ that ω is of the same form like the one indicated in Remark 12. We shall use the notation $\chi_{(\cdot)} : [a,b] \to \mathbf{B}_2$ for the characteristic function and let $\tau \in (a,b)$;

$$\gamma = (\chi_{(\tau,b]}, 0)$$

$$\sigma = (\chi_{[\tau,b]}, 0)$$

give, because the only non-zero derivatives are $D * \gamma_1 = \chi_{\{\tau\}}, D\sigma_1 = \chi_$

$$\int_{\gamma} \omega = \omega_1(\gamma(\tau)) = a_1, \int_{\sigma} \omega = \omega_1(\sigma(\tau)) = a_1 \oplus b_1$$

so that $a_1 = a_1 \oplus b_1$ and $b_1 = 0$.

This reasoning was written in table 1.

γ	σ	The equation	The conclusions	Remarks
$(\chi_{(\tau,b]},0)$	$(\chi_{[\tau,b]},0)$	$a_1 = a_1 \oplus b_1$	$b_1 = 0$	(1)
$(0,\chi_{(\tau,b]})$	$(0,\chi_{[\tau,b]})$	$a_2 = a_2 \oplus c_2$	$c_2 = 0$	(2)
$(\chi_{(\tau,b]},1)$	$(\chi_{[\tau,b]},1)$	$a_1 \oplus c_1 = a_1 \oplus b_1 \oplus c_1 \oplus d_1$	<i>d</i> ₁ = 0	(3) from (1)
$(1,\chi_{(\tau,b]})$	$(1,\chi_{[\tau,b]})$	$a_2 \oplus b_2 = a_2 \oplus b_2 \oplus c_2 \oplus d_2$	<i>d</i> ₂ = 0	(4) from (2)
$(\chi_{(\tau,b]},\chi_{(\tau,b]})$	$(\chi_{[\tau,b]},\chi_{[\tau,b]})$	$a_1 \oplus a_2 \oplus a_3 = a_1 \oplus c_1 \oplus a_2 \oplus b_2 \oplus a_3 \oplus b_3 \oplus c_3 \oplus d_3$	$c_1 \oplus b_2 \oplus b_3 \oplus c_3 \oplus d_3 = 0$	(5)
$(\chi_{[a,\tau]},\chi_{[a,\tau]})$	$(\chi_{[a,\tau)},\chi_{[a,\tau]})$	$a_1 \oplus c_1 \oplus a_2 \oplus b_2 \oplus a_3 \oplus b_3 \oplus c_3 \oplus d_3 = a_1 \oplus c_1 \oplus a_2$	$b_2 \oplus a_3 \oplus b_3 \oplus c_3 \oplus d_3 = 0$	(6)
			$c_1 = a_3$	(7) from (5), (6)
$(\chi_{[a,\tau]},\chi_{[a,\tau]})$	$(\chi_{[a,\tau]},\chi_{[a,\tau)})$	$a_1 \oplus c_1 \oplus a_2 \oplus b_2 \oplus a_3 \oplus b_3 \oplus c_3 \oplus d_3 = a_1 \oplus a_2 \oplus b_2$	$c_1 \oplus a_3 \oplus b_3 \oplus c_3 \oplus d_3 = 0$	(8)
			$b_2 = a_3$	(9) from (5),(8)
			$c_1 = b_2$	(10) from (7),(9)
			$b_3 \oplus c_3 \oplus d_3 = 0$	(11) from (6),(9)
$(\chi_{[a,\tau)},\chi_{[\tau,b]})$	$(\chi_{[a,\tau]},\chi_{(\tau,b]})$	$a_1 \oplus c_1 \oplus a_2 \oplus a_3 \oplus c_3 = a_1 \oplus a_2 \oplus b_2 \oplus a_3 \oplus b_3$	$c_1 \oplus c_3 \oplus b_2 \oplus b_3 = 0$	(12)
			$b_3 = c_3$	(13) from (10),(12)
			$d_3 = 0$	(14) from (11),(13)
$(\chi_{[a,\tau)\vee(\nu,b]},\chi_{[\tau,b]})$	$(1, \chi_{(\tau, b]})$	$a_1 \oplus c_1 \oplus a_2 \oplus c_2 \oplus a_3 \oplus c_3 \oplus a_1 \oplus c_1 = a_2 \oplus b_2$	$a_3 \oplus c_3 \oplus b_2 = 0$	(15) $a < \tau < \nu < b$ from (2)
			$c_3 = b_3 = 0$	(16) from (9),(13),(15)

Table 1