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Abstract. The asynchronous systems are the discrete time and real time
models of the asynchronous circuits from digital electrical engineering. The
functions that these systems work with, called (binary) signals, are the models of
the electrical signals. In our paper we prove that the sets of periods of the
periodic points of the non constant signals are of the form {p,2p.3p,...},p =1

(discrete time) and {7',27,37T,...},T >0 (real time).
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1. Introduction

The asynchronous systems are the models of the asynchronous circuits

(digital electrical circuits) and the functions representing their inputs and states
are called (binary) signals. An important special case consists in systems that

are generated by Boolean functions @ : {0,1}" — {0,1}"" that iterate (like the

dynamical systems), but the iterations happen on some coordinates ®@y,..., D,

only, not on all the coordinates (unlike the dynamical systems). Other classes of
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asynchronous systems are defined by equations and, in the most general case,
by multi-valued functions (Vlad, 2007).

In order to study the periodicity of the asynchronous systems, we need to
study the periodicity of the (values of the) signals first. Our present aim is to show
that, when the signals are not constant, the sets of periods of their points are of the
form {p,2p,3p,...}, p 21 indiscrete time and {7,27,3T,...},T >0 in real time.

2. Preliminaries. Signals

The set B ={0,1} is a field relative to the modulo 2 sum '@’ and the
product "+’ and also a topological space relative to the discrete topology. Natural

structures are induced on B" ,n>1.
Notation 1. We have the notation y 4: R — B for the characteristic
function of the set A R:VteR,

XA(t):{

Notation 2. We denote Nﬁ ={-1,01,...}.
Definition 3. The discrete time signals are by definition the functions
X:N — B". Their set is denoted by s

Lifte A,

0,otherwise.

The continuous time signals are the functions x: R — B" of the form
VteR,

X(1) = 1 Y (=o0,10) O @ X(10) * X[10,1) D D . @ x(1) - A1, 1, ) D ..
where ne B" and t;, e R,ke N is strictly increasing and unbounded from
above. Their set is denoted by st p is usually denoted by x(—o+0) and is
called the initial value of x.

Remark 4. Let xe S" and te R arbitrary. We have the properties of
existence of the left limit x(r—0)e B":3e>0,VE e (t—¢,1),x(E) =x(t—0), of
the right limit x(z +0)e B" : 3¢ >0,VE e (t,t +¢),x(E) =x(¢t +0) and of right
continuity: x(z) = x(¢ +0) . The last property will be used in the paper under the
form Je>0,VE e[t,t+¢),x(§) =x(¢) . These things are discussed for example
in (Vlad, 2007).

Lemma 5. Let xe S and the sequence T € R,k € N that is strictly
decreasing convergentto 7€ R. Then IN € N,Vk > N,

x(Ty ~0) = x(Ty) = x(T). (1)
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Proof. Some ¢ >0 exists with the property that

VEe[T,T +¢),x(&)=x(T). ()
As T, = T strictly decreasing, N, € N exists such that
Vk>Ng,T<T, <T+¢. 3)
We fix an arbitrary k > N, . If we take €' (0,7, —T), we have
T-T, <—€'<0. 4)
We add T}, to the terms of (4) and we obtain, taking into account (3) also:
T<Ty—e'<T, <T+e. ®)
We conclude on one hand that
(2),(5)
VEe Ty -, 1), x(8) = x(T),
thus
x(Ty, = 0) = x(T) (6)
and on the other hand that
W) S XD, @

By comparing (6) with (7) we infer (1).
Definition 6. The sets

Or(x)={x(k)|keN },
Or(x)={x(t)|te R}
are called the orbits of x,x.

Notation 7. For €S, xe S and peOr(%),v e Or(x), we use the
notations

Ty ={k|keN ,i(k)=n},
T; ={t|te R,x(t)=p}.
Lemma 8. Let neOr(x) and t'eR . If (—o0,1'1C T4y > then

T N[t',0)=J.
Proof. We have two possibilities.
Case p=x(-0+0), when r'e T, , makes that Ty N[¢',0) #J be true.

Case p#x(-0+0) , when T;N(-0o,']=F , T #Q make that

Ty c (¢',0), thus Ty N[f',0)# D .
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3. Periodic Points

Definition 9. We consider the signals £ S, xe ™.
Let ueOr(x) and p>1.1If

VkeTi tk+zplzeZ}nN cTy, (8)
we say that p is periodic, with the period p. The least p that fulfills (8) is
called the prime period of . The set of the periods of p is denoted with Pf .

Let peOr(x) and T >0,#'€ R such that
(=0,']1C T{{(—040) » )
VteTSr\[t',oo),{t+ZT|ZeZ}m[t',oo)cTS. (10)

Then p is called periodic, with the period T . The least T with the
property that ¢' exists such that (9), (10) are fulfilled is called the prime period

of . The set of the periods of p is denoted with PJ .

Lemma 10. Let xe S, pe Or(x),T >0,'<t" such that

VlET}fﬁ[l",OO),{Z‘+ZT|ZEZ}ﬁ[t',OO)CTx, (11)
x@"-0)=x(")=p. (12)
Then
x("+T -0) = x("+T)=pn. (13)
Proof. From (11) and x(t")=u, since #'<t", we infer x(¢"+7)=u.
Some &'>0,&">0 exist having the property that
VEe (1"-¢',1"),x(E) = x(1"-0), (14)
VEe(t"+T —¢€",t"+T),x(§) = x(t"+T —0) (15)
and for any ¢ € (0,min{e',e",#"—#'}) we can write that
(=g, t") [t ), (16)
(t"—&,t") c (1"—€", "), (17)
("+T —,t"+T) c (t"+T —€",t"+T) (18)
hold. We take now an arbitrary, fixed & e (t"—¢,¢"). We infer
(15),(18) (11),(16)
x"+T-0) = x(&+T) = x(§=

14),a7) 12) 12) @11
= x("-0) # x(t") = p = x(t"+7),

thus (13) is proved.
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4. Sums, Differences and Multiples of Periods

Theorem 11. The signals e S, xe S are considered.
a) Let p, p'>1,ue Or(x) and we ask that

VkeTf,{k+zp|zeZ}mN CT)AC, (19)
VkeT] tk+zp|zeZ}AN cTf (20)
hold. We have p+ p'>1,
VkeTi {k+z(p+p)|zeZ}nN T,
and if p> p',then p—p'>1,
Vel ,(k+z(p-p)|zeZynN cTy.
b) Let 7,7'>0,¢,"€ R, € Or(x) be arbitrary with

(—OO, t'] - T)?C(—OO+0) 5

VlET}fﬁ[l",OO),{Z‘+ZT|ZEZ}ﬁ[t',OO)CTx, (21)
(=0,1"] T —040) » (22)
VteTSm[t",oo),{t+ZT'|zeZ}m[t",oo)cTS (23)

fulfilled. We have on one hand that 7+ 7'>0 and # € R exists with
(0,11 € T 1)
Vte TS N[, 0),{t+z(T+T")|ze Z}N[t;,0) TS
and on the other hand that 77> 7" implies T —7"'>0 and ¢, € R exists with

(=0,15]1 € T(—040) »

Vte T N[ty,0),{t+z2(T-T")|ze Z}N[ty,0) T, .

Proof. a) We prove the second implication. We take some arbitrary,
fixed ke Tj,z € Z such that k+z(p—p')>—-1 and we have the following
possibilities:

Case z<0

o ) (20) . hyp
We obtain in succession k—zp'>-1, k-zp' € T} , k—zp'+zp > -1,

a9 .
k+z(p—-p") € TJ.
Case z=0

k=k+z(p-p')e Tf trivially.
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Case z>0
a9 . hyp (20) .
Wehave k+zp2>-1, k+zp € TS, k+zp—zp' 2 -1, k+z(p-p') € TJ.
b) We prove the first implication. We notice that for # = max{¢',"} the

following statements

(=0,1]1 < Tx(—040) » (24)
VteTJm[tl,oo),{t+zT)|zeZ}m[t1,oo)cTJ, (25)
Vte Ty nt,),{t+21")|z€ Z}n[f,0) c T, (26)

hold. Indeed, in order to see this fact we suppose without loosing the generality
that #'<¢",fy =¢" are true. Then (24) coincides with (22) and (25), (26) coincide
with

VteTJm[t",oo),{t+zT)|zeZ}(‘\[t",oo)cTJ 27

and (23). From Lemma 8 we get T N[t",0)#J . Let te Ty N[t",0) and

z e Z arbitrary such that ¢+ 27 >¢". Then te T,f N[t',0) and ¢+ 2T >¢', thus
(21)
t+2T € T, (27) holds, and we can use (24),...,(26).
Let now teT J N[t;,©) , zeZ be arbitrary, fixed such that
t+z(T+T") 2.
Case z<0

. ) hyp @5
We have in succession (+zT2t+z(T+T')2>21 , t+zI € T

(26)
t+2(T+T") € Ty .

Case z=0
Weinfer t=t+2(T+T")eTy .

Case z>0
(25) hyp (26)
Wehave t+27>t>t, t+2T € T, t+z(T+T") 2 1y, t+2(T+T") € Ty .

Corollary 12. 2) If pe Pf ,then {p,2p3p,..} C Pf .
b)If T e PS, then {7,27,3T,...} PJ.

Proof. These statements result from Theorem 11.
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5. The Set of the Periods

Theorem 13. a) Let the signal x e S™ and e Or(x). We ask that p
is a periodic point of x. Then some p >1 exists such that

Pd‘ ={p.2p,3D,...} .
b) We suppose that the signal x € .S () is not constant and we take some

peOr(x). We ask that p is a periodic point of x. Then there is T >0 such
that

PY ={T 2T 3T,.}.
Proof. a) We denote with p the least element of Pj. From Corollary
12 we have the inclusion {p,2p3p,..}cC Pj . We show that
Pf c{p,2p,3p,...} . We presume against all reason that this is not true, i.e. that

some p'e Pj —{p,2p,3p,...} exists. In these circumstances we have the
existence of &y >1 with kyp < p'<(k; +1)p . We infer that 1< p'—kp < p and,
from Theorem 11 and Corollary 12 we conclude that p'—k;p € Pj . We have
obtained a contradiction with the fact that p is the least element of Pf .

b) The proof is made in two steps.

b.1) We show first that min PJ exists. We suppose against all reason
that this is not true, namely that a strictly decreasing sequence 7, € PJ ke N

exists that is convergent to 7 =inf PJ . As x is not constant, some "€ R exists
with the property
x("-0) = x(t")=p. (28)

The hypothesis states the existence Vk e N, of t,'( € R with
(=0,14 1€ T —0+0) » (29)
Vte TS N[ty,0),{t+zT} |z€ Z} N[t} ,0) C TJ .
From (28), (29) we infer "> t}{ thus we can apply Lemma 10, wherefrom
Vke N, x(t"+T, —0) = x(t"+T;)=p. (30)

We infer from Lemma 5 that N € N exists with VAk> N,
x(t"+T;, —0) =x(t"+T; ) = x(:"+7),



30 Serban E. Vlad

contradiction with (30). It has resulted that such a sequence 7}, ,k € N does not
exist, thus PJ has a minimum that we denote by T.

b.2) The inclusion {7,2T 3T ,...}CPJ results from Corollary 12, we
prove the inclusion PJ c {YN" 2T 3T .-} . We suppose against all reason that
some T'e By —{T2T3T,.} exists and let k=1 with the property
T'e (klf,(kl +1)f). We infer that 0 < T'—k17~” <T and, from Theorem 11 and
Corollary 12 we get T '—k17~" € Pd‘ . We have obtained a contradiction, since 7'

was defined to be the minimum of PJ. PJ ={T 2T 3T,...} holds.

Remark 14. We did not need to ask in the hypothesis of Theorem 13,
item a) that X is not constant. When X is constant and equal with p, then p=1

and Pj ={1,2,3,...} , thus item a) of the Theorem is still true. And if x is

constant and equal with i, then By = (0,%0) .
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SEMNALE BINARE: MULTIMEA PERIOADELOR
UNUI PUNCT PERIODIC

(Rezumat)

Sistemele asincrone sunt modelele de timp discret si timp real ale circuitelor
asincrone din ingineria electronica digitala. Functiile cu care lucreaza aceste sisteme,
numite semnale (binare), sunt modelele semnalelor electrice. In aceasti lucrare se
demonstreaza cd multimile perioadelor punctelor periodice ale semnalelor neconstante
sunt de forma {p,2p,3p,...}, p =1 pentru timpul discret si {7,27,37,...},T >0 pentru
timpul real.



