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Abstract

The Boolean autonomous dynamical systems, also called reg-
ular autonomous asynchronous systems are systems whose �vector
�eld�is a function � : f0; 1gn ! f0; 1gn and time is discrete or
continuous. While the synchronous systems have their coordinate
functions �1; :::;�n computed at the same time: �;� ��;� �� �
�; ::: the asynchronous systems have �1; :::;�n computed inde-
pendently on each other. The purpose of the paper is that of
studying the basins of attraction of the �xed points, of the orbits
and of the !-limit sets of the regular autonomous asynchronous
systems, by continuing the study started in [8]. The bibliography
consists in analogies.

MSC: 94C10
keywords: asynchronous system, !�limit set, invariance, basin of

attraction

1 Introduction

The R ! f0; 1g functions model the digital electrical signals and they
are not studied in literature. An asynchronous circuit without input,
considered as a collection of n signals, should be deterministically mod-
elled by a function x : R ! f0; 1gn called state. Several parameters
related with the asynchronous circuit are either unknown, or perhaps
variable or simply ignored in modeling: the temperature, the tension of
the mains, the delays the occur in the computation of the Boolean func-
tions etc. For this reason, instead of a function x we have in general a set
X of functions x; called state space or autonomous system, where each x
represents a possibility of modeling the circuit. When X is constructed
by making use of a �vector �eld�� : f0; 1gn ! f0; 1gn; the system X is
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Figure 1: Example of state portrait

called regular. The universal regular autonomous asynchronous systems
are the Boolean dynamical systems and they are identi�ed with �.
The dynamics of these systems is described by the so called state

portraits. We give the example of the function � : f0; 1g2 ! f0; 1g2
that is de�ned by Table 1, where � = (�1; �2) 2 f0; 1g2 :

(�1; �2) (�1(�1; �2);�2(�1; �2))
(0; 0) (1; 1)
(0; 1) (1; 1)
(1; 0) (1; 0)
(1; 1) (0; 1)

Table 1

The state portrait of � was drawn in Figure 1 where the arrows show
the increase of time. The coordinates �i; i 2 f1; 2g are underlined if
�i(�1; �2) 6= �i and they are called unstable, or enabled, or excited.
These are the coordinates that are about to change their value. The
coordinates �i that are not underlined satisfy by de�nition �i(�1; �2) =
�i and they are called stable, or disabled, or not excited. These are the
coordinates that cannot change their value. Three arrows start from
the point (0; 0) where both coordinates are unstable, showing the fact
that �1(0; 0) may be computed �rst, �2(0; 0) may be computed �rst
or �1(0; 0);�2(0; 0) may be computed simultaneously. Note that the
system was identi�ed with the function �.
The existence of several possibilities of evolution of the system (three

possibilities in (0; 0)) is the key characteristic of asynchronicity, as op-
posed to synchronicity where the coordinates �i(�) are always computed
simultaneously, i 2 f1; :::; ng for all � 2 f0; 1gn and the system�s run is:
�;�(�); (� � �)(�); :::; (� � ::: � �)(�); :::
The purpose of the paper is that of de�ning in the asynchronous

systems theory, by following analogies, the basins of attraction of the
�xed points and of the orbits from the dynamical systems theory. We
shall also de�ne the basins of attraction of the !�limit sets. The paper
continues the study of the basins of attraction that was started in [8]
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and many introductory issues are taken from that work.

2 Preliminaries

Notation 1 The set B = f0; 1g is the binary Boole algebra, endowed
with the usual algebraical laws

0 1
1 0
;

� 0 1
0 0 0
1 0 1

;
[ 0 1
0 0 1
1 1 1

;
� 0 1
0 0 1
1 1 0

Table 2

and with the discrete topology.

De�nition 2 The sequence � : N! Bn; usually denoted by �k; k 2 N;
is called progressive if the sets

fkjk 2 N; �ki = 1g

are in�nite for all i 2 f1; :::; ng: We denote the set of the progressive
sequences by �n:

De�nition 3 For the function � : Bn ! Bn and � 2 Bn we de�ne
�� : Bn ! Bn by 8� 2 Bn;

��(�) = (�1 � �1 � �1 � �1(�); :::; �n � �n � �n � �n(�)):

De�nition 4 The functions ��0:::�k : Bn ! Bn are de�ned for k 2 N
and �0; :::; �k 2 Bn iteratively: 8� 2 Bn;

��
0:::�k�k+1(�) = ��

k+1

(��
0:::�k(�)):

Notation 5 We denote by �A : R ! B the characteristic function of
the set A � R: 8t 2 R;

�A(t) =

�
1; t 2 A
0; t =2 A :

Notation 6 We denote by Seq the set of the sequences t0 < t1 < ::: <
tk < ::: of real numbers that are unbounded from above.

De�nition 7 The functions � : R! Bn of the form 8t 2 R;

�(t) = �0 � �ft0g(t)� �1 � �ft1g(t)� :::� �k � �ftkg(t)� ::: (1)

where � 2 �n and (tk) 2 Seq are called progressive and their set is
denoted by Pn:
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De�nition 8 The function �� : Bn � R ! Bn that is de�ned in the
following way

��(�; t) = � � �(�1;t0)(t)� ��
0

(�) � �[t0;t1)(t)� ��
0�1(�) � �[t1;t2)(t)� :::

:::� ��0:::�k(�) � �[tk;tk+1)(t)� :::
is called �ow, motion or orbit (of � 2 Bn). We have supposed that
� 2 Pn is like at (1).

De�nition 9 The set

Or�(�) = f��(�; t)jt 2 Rg

is also called orbit (of � 2 Bn).

Remark 10 The function �� shows how an asynchronous iteration of
� is made: for any i 2 f1; :::; ng; if �i = 0 then �i is not computed, since
��i (�) = �i and if �i = 1 then �i is computed, since �

�
i (�) = �i(�):

The de�nition of ��
0:::�k generalizes this idea to an arbitrary number

k + 1 of asynchronous iterations, with the supplementary request that
each coordinate �i is computed in�nitely many times in the sequence
�;��

0
(�);��

0�1(�); :::;��
0:::�k(�); ::: whenever � 2 �n:

The sequences (tk) 2 Seq make the pass from the discrete time N
to the continuous time R and each � 2 Pn shows, in addition to � 2
�n, the time instants tk when � is computed (asynchronously). Thus
��(�; t); t 2 R is the continuous time computation of the sequence �;
��

0
(�); ��

0�1(�); :::; ��
0:::�k(�); :::

When � runs in �n and (tk) runs in Seq we get the �unbounded
delay model� of computation of the Boolean function �, represented in
discrete time by the sequences �;��

0
(�);��

0�1(�); :::;��
0:::�k(�); ::: and

in continuous time by the orbits ��(�; t) respectively. We shall not insist
on the non-formalized way that the engineers describe this model; we just
mention that the �unbounded delay model�is a reasonable way of starting
the analysis of a circuit in which the delays occurring in the computation
of the Boolean functions � are arbitrary positive numbers. If we restrict
suitably the ranges of � and (tk) we get the �bounded delay model� of
computation of � and if both �, (tk) are �xed, then we obtain the ��xed
delay model�of computation of �; determinism.

Theorem 11 [8] Let � 2 �n; (tk) 2 Seq be arbitrary and the function

�(t) = �0 � �ft0g(t)� �1 � �ft1g(t)� :::� �k � �ftkg(t)� :::;

� 2 Pn: The following statements are true:
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a) f�kjk � k1g 2 �n for any k1 2 N;
b) (tk) \ (t0;1) 2 Seq for any t0 2 R;
c) � � �(t0;1) 2 Pn for any t0 2 R;
d) 8� 2 Bn;8�0 2 Bn;8t0 2 R;

��(�; t0) = �0 =) 8t � t0;��(�; t) = ����(t0;1)(�0; t):

Notation 12 For any d 2 R; we denote with � d : R ! R the transla-
tion 8t 2 R; � d(t) = t� d:

Theorem 13 [8] Let be � 2 Bn; � 2 Pn and d 2 R: The function � � � d
is progressive and we have

����
d

(�; t) = ��(�; t� d):

De�nition 14 The universal regular autonomous asynchronous
system that is generated by � : Bn ! Bn is by de�nition

�� = f��(�; �)j� 2 Bn; � 2 Png;

any x(t) = ��(�; t) is called state (of ��), � is called initial value (of
x), or initial state (of ��) and � is called generator function (of
��).

Remark 15 The asynchronous systems are non-deterministic in gen-
eral, due to the uncertainties that occur in the modeling of the asynchro-
nous circuits. Non-determinism is produced, in the case of ��, by the
fact that the initial state � and the way � of iterating � are not known.
Some notes on the terminology:
- universality means the greatest in the sense of inclusion. Any X �

�� is a system, but we shall not study such systems in the present paper;
- regularity means the existence of a generator function �, i.e. analo-

gies with the dynamical systems theory;
- autonomy means here that no input exists. We mention the fact

that autonomy has another non-equivalent de�nition also, a system is
called autonomous if its input set has exactly one element;
- asynchronicity refers (vaguely) to the fact that the coordinate func-

tions �1; :::;�n are computed independently on each other. Its antonym
synchronicity means that the iterates of � are: �;� ��; :::;� � ::: ��; :::
i.e. in the sequence ��

0
;��

0�1 ; :::;��
0:::�k ; ::: all �k are (1; :::; 1); k 2 N:

That is the discrete time of the dynamical systems.
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De�nition 16 Let x : R! Bn be some function. If

9t0 2 R;8t � t0; x(t) = x(t0);

we say that the limit lim
t!1

x(t) (or the �nal value of x) exists and we
denote

lim
t!1

x(t) = x(t0):

Theorem 17 [7],[8] 8� 2 Bn;8�0 2 Bn;8� 2 Pn;

lim
t!1

��(�; t) = �0 =) �(�0) = �0;

i.e. if the �nal value of ��(�; �) exists, it is a �xed point of �.

Theorem 18 [7],[8] 8� 2 Bn;8�0 2 Bn;8� 2 Pn;

(�(�0) = �0 and 9t0 2 R;��(�; t0) = �0) =) 8t � t0;��(�; t) = �0;

meaning that if the �xed point �0 of � is accessible, then it is the �nal
value of ��(�; �):

Corollary 19 [8] We have 8� 2 Bn;8� 2 Pn;

�(�) = � =) 8t 2 R;��(�; t) = �:

3 !�limit sets
De�nition 20 For � 2 Bn and � 2 Pn; the set

!�(�) = f�0j�0 2 Bn;9(tk) 2 Seq; lim
k!1

��(�; tk) = �
0g

is called the !�limit set of the orbit ��(�; �):

Theorem 21 [8] For any � 2 Bn and any � 2 Pn; we have:
a) !�(�) 6= ;;
b) 8t0 2 R; !�(�) � f��(�; t)jt � t0g � Or�(�);
c) 9t0 2 R; !�(�) = f��(�; t)jt � t0g and any t00 � t0 ful�lls !�(�) =

f��(�; t)jt � t00g;
d) 8t0 2 R;8t00 � t0; f��(�; t)jt � t0g = f��(�; t)jt � t00g implies

!�(�) = f��(�; t)jt � t0g;
e) we suppose that !�(�) = f��(�; t)jt � t0g; t0 2 R: Then 8�0 2

!�(�);8t00 � t0; if ��(�; t00) = �0 we get

!�(�) = f����(t00;1)(�0; t)jt � t00g = Or���(t00;1)
(�0) = !���(t00;1)

(�0):
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Remark 22 If in Theorem 21 e) we take t00 2 R arbitrarily, the equation

!�(�) = !���(t00;1)
(��(�; t00)) (2)

is still true. Indeed, for su¢ ciently great t000, the terms in (2) are equal
with

f��(�; t)jt � t000g = f����(t00;1)(��(�; t00); t)jt � t000g:

Theorem 23 [8] For arbitrary � 2 Bn,� 2 Pn the following statements
are true:
a) lim

t!1
��(�; t) exists () card(!�(�)) = 1;

b) if 9�0 2 Bn; !�(�) = f�0g; then lim
t!1

��(�; t) = �0 and �(�0) = �0;

c) if 9�0 2 Bn;�(�0) = �0 and �0 2 Or�(�); then !�(�) = f�0g:

Theorem 24 [8] Let be � 2 Bn; � 2 Pn; d 2 R: We have !�(�) =
!���d(�):

4 Invariant sets

Theorem 25 [8] We consider the function � : Bn ! Bn and let be the
set A 2 P �(Bn): For any � 2 A; the following properties are equivalent

9� 2 �n;8k 2 N;��
0:::�k(�) 2 A; (3)

9� 2 Pn;8t 2 R;��(�; t) 2 A; (4)

9� 2 Pn; Or�(�) � A (5)

and the following properties are also equivalent

8� 2 �n;8k 2 N;��
0:::�k(�) 2 A; (6)

8� 2 Pn;8t 2 R;��(�; t) 2 A; (7)

8� 2 Pn; Or�(�) � A; (8)

8� 2 Bn;��(�) 2 A: (9)

De�nition 26 The set A 2 P �(Bn) is called a p-invariant (or p-
stable) set of the system �� if it ful�lls for any � 2 A one of (3),...,
(5) and it is called an n-invariant (or n-stable) set of �� if it ful�lls
8� 2 A one of (6),..., (9).
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Remark 27 In the previous terminology, the letter �p�comes from �pos-
sibly�and the letter �n�comes from �necessarily�. Both �p�and �n�refer
to the quanti�cation of �. Such kind of p-de�nitions and n-de�nitions
recalling logic are caused by the fact that we translate �real�concepts into
�binary�concepts and the former have no � parameters, thus after trans-
lation � may appear quanti�ed in two ways. The obvious implication is
n-invariance =) p-invariance.

Theorem 28 [8] Let be � 2 Bn and �0 2 Pn:
a) If �(�) = �; then f�g is an n-invariant set and the set Eq of the

�xed points of � is also n-invariant;
b) the set Or�0(�) is p-invariant and

S
�2Pn

Or�(�) is n-invariant;

c) the set !�0(�) is p-invariant.

5 The basin of attraction

Theorem 29 [8] We consider the set A 2 P �(Bn): For any � 2 Bn;
the following statements are equivalent

9� 2 �n;9k0 2 N;8k � k0;��
0:::�k(�) 2 A; (10)

9� 2 Pn;9t0 2 R;8t � t0;��(�; t) 2 A; (11)

9� 2 Pn; !�(�) � A (12)

and the following statements are equivalent too

8� 2 �n;9k0 2 N;8k � k0;��
0:::�k(�) 2 A; (13)

8� 2 Pn;9t0 2 R;8t � t0;��(�; t) 2 A; (14)

8� 2 Pn; !�(�) � A: (15)

De�nition 30 The basin (or kingdom, or domain) of p-attraction
or the p-stable set of the set A 2 P �(Bn) is given by

W (A) = f�j� 2 Bn;9� 2 Pn; !�(�) � Ag; (16)

the basin (or kingdom, or domain) of n-attraction or the n-stable
set of the set A is given by

W (A) = f�j� 2 Bn;8� 2 Pn; !�(�) � Ag: (17)

Remark 31 De�nition 30 makes use of the properties (12) and (15).
We can make use also in this De�nition of the other equivalent properties
from Theorem 29.
In De�nition 30, one or both basins of attraction W (A);W (A) may

be empty.
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Theorem 32 [8] We have:
i) W (Bn) =W (Bn) = Bn;
ii) if A � A0; then W (A) � W (A0) and W (A) � W (A0) hold.

De�nition 33 When W (A) 6= ;; A is said to be p-attractive and for
any non-empty set B � W (A); we say that A is p-attractive for B and
that B is p-attracted by A; A is by de�nition partially p-attractive
if W (A) =2 f;;Bng and totally p-attractive whenever W (A) = Bn:
The fact that W (A) 6= ; makes us say that A is n-attractive and in

this situation for any non-empty B � W (A); A is called n-attractive
for B and B is called to be n-attracted by A; we use to say that A is
partially n-attractive if W (A) =2 f;;Bng and totally n-attractive if
W (A) = Bn:

Theorem 34 [8] Let A 2 P �(Bn) be some set. If A is p-invariant,
then A � W (A) and A is also p-attractive; if A is n-invariant, then
A � W (A) and A is also n-attractive.

Remark 35 The previous Theorem shows the connection that exists be-
tween invariance and attractiveness. If A is p-attractive, then W (A) is
the greatest set that is p-attracted by A and the point is that this really
happens when A is p-invariant. The other situation is dual.

Theorem 36 [8] Let be A 2 P �(Bn): If A is p-attractive, then W (A) is
p-invariant and if A is n-attractive, then W (A) is n-invariant.

Corollary 37 [8] If the set A 2 P �(Bn) is p-invariant, then W (A) is
p-invariant and if A is n-invariant, then the basin of n-attraction W (A)
is n-invariant.

6 The basin of attraction of the �xed points

Notation 38 For any point � 2 Bn we use the simpler notationsW (�);
W (�) instead of W (f�g); W (f�g): Furthermore, if the point � is iden-
ti�ed with the n�tuple (�1; :::; �n); it is usual to write W (�1; :::; �n);
W (�1; :::; �n) for these sets.

Remark 39 This section is dedicated to the special case when in De�-
nition 30 the set A 2 P �(Bn) consists in a point �; in other words

W (�) = f�0j�0 2 Bn;9�0 2 Pn; !�0(�0) � f�gg; (18)

W (�) = f�0j�0 2 Bn;8�0 2 Pn; !�0(�0) � f�gg: (19)

The fact that the point � is chosen to be �xed is justi�ed by the
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Figure 2: The basins of attraction of the �xed points

Theorem 40 W (�) 6= ; () � is a �xed point of � and similarly,
W (�) 6= ; () � is a �xed point of �:

Proof. We prove the �rst statement. If �0 2 W (�); then �0 2 Pn
exists such that !�0(�0) � f�g: In this case !�0(�0) is non-empty, thus
!�0(�

0) = f�g and, from Theorem 23 b), �(�) = �:
Let us suppose now that �(�) = �: For any �0 2 Pn; Or�0(�) =

!�0(�) = f�g from Corollary 19, thus � 2 W (�) and W (�) 6= ;:

Remark 41 In [6] at page 5, the �xed point x0 2 X is called attractive
if the neighborhood U � X and t0 > 0 exist such that

8x 2 U;8t > t0;�t(x) 2 U and lim
t!1

j�t(x)� x0j = 0:

We give also the point of view from [3] where, at page 110 it is said,
in a discrete time context, that the basin of attraction of an attractive
�xed point x0 2 X is formed by the the set of all the initial points of
some sequences of iterates that converge to x0.

Example 42 In Figure 2 we have the property that all the points are
�xed points and 8� 2 B2;8� 2 P2;

W (�) =W (�) = f�g:

Any � 2 B2 is partially p-attractive and partially n-attractive.

Example 43 The point (1; 0) is �xed in Figure 3 and

W (1; 0) = f(0; 0); (1; 0)g;

W (1; 0) = f(1; 0)g:
The point (1; 0) is partially p-attractive and partially n-attractive.

Example 44 We have also the example when in Figure 4:

W (1; 0) = W (1; 0) = B2;

thus the �xed point (1; 0) is totally p-attractive and totally n-attractive.

10



Figure 3: The basins of attraction of the �xed points

Figure 4: The basins of attraction of the �xed points

Theorem 45 Let � 2 Bn be a �xed point of �. The following state-
ments are true:
a) We have

W (�) = f�0j�0 2 Bn;9�0 2 Pn; lim
t!1

��
0
(�0; t) = �g;

W (�) = f�0j�0 2 Bn;8�0 2 Pn; lim
t!1

��
0
(�0; t) = �g;

b) f�g � W (�) � W (�) thus � is p-attractive and n-attractive;
c) W (�) is p-invariant and W (�) is n-invariant.

Proof. a) If �0 2 W (�); then �0 2 Pn exists such that !�0(�0) = f�g: In
this situation from Theorem 23 b) we infer that lim

t!1
��

0
(�0; t) = �; thus

W (�) � f�0j�0 2 Bn;9�0 2 Pn; lim
t!1

��
0
(�0; t) = �g:

Conversely, if �0 2 Bn; �0 2 Pn exist such that lim
t!1

��
0
(�0; t) = �;

then !�0(�0) = f�g from De�nition 20 and we get f�0j�0 2 Bn;9�0 2
Pn; lim

t!1
��

0
(�0; t) = �g � W (�):

b) The fact that � 2 W (�) is a consequence of the fact that 8�0 2
Pn; lim

t!1
��

0
(�; t) = � (see Corollary 19).

c) � is p-attractive from b), thus W (�) is p-invariant (Theorem 36).
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7 The basin of attraction of the orbits and of the
!�limit sets

De�nition 46 Let be � : Bn ! Bn; � 2 Bn and � 2 Pn: We de�ne the
basins (or kingdoms, or domains) of p-attraction of ��(�; �); !�(�)
by

W [��(�; �)] = f�0j�0 2 Bn;9�0 2 Pn;9t0 2 R;8t � t0; (20)

��
0
(�0; t) = ��(�; t)g;

W [!�(�)] = f�0j�0 2 Bn;9�0 2 Pn; !�0(�0) = !�(�)g (21)

and the basins (or kingdoms, or domains) of n-attraction of ��(�; �);
!�(�) respectively by

W [��(�; �)] = f�0j�0 2 Bn;8�0 2 Pn;9t0 2 R;8t � t0; (22)

��
0
(�0; t) = ��(�; t)g;

W [!�(�)] = f�0j�0 2 Bn;8�0 2 Pn; !�0(�0) = !�(�)g: (23)

Remark 47 The attractiveness of the orbits and of the !�limit sets is
de�ned in the spirit of De�nition 33 and it is their property of making
one of the previous basins of attraction non-empty.
We mention [2], page 133, where M is a di¤erentiable manifold to-

gether with a distance d on M and a discrete time dynamical system is
generated by the Cr�di¤eomorphism � : M ! M: The orbit through
x0 2M is called attractive if

9� > 0;8x 2 B(x0; �); lim
n!1

d(�n(x);�n(x0)) = 0; (24)

where B(x0; �) is the notation for the open ball of center x0 and radius
�. In the same work [2], page 133 the orbit through x0 2 M is called
stable if

8" > 0;9�(") > 0;8x 2 B(x0; �);8n 2 N; d(�n(x);�n(x0)) < ": (25)

The translation of (24), (25) in our framework gives the statements

9�0 2 Bn;9�0 2 Pn; !�0(�0) = !�(�); (26)

9�0 2 Bn;8�0 2 Pn; !�0(�0) = !�(�); (27)

9�0 2 Bn;9�0 2 Pn;8t 2 R;��
0
(�0; t) = ��(�; t); (28)

9�0 2 Bn;8�0 2 Pn;8t 2 R;��
0
(�0; t) = ��(�; t); (29)

we note that (26), (27) are equivalent with W [!�(�)] 6= ;; W [!�(�)] 6=
; attractiveness, while (28), (29) are stronger than the attractiveness

12



Figure 5: The basins of attraction of the orbits and of the !-limit sets

Figure 6: The basins of attraction of the orbits and of the !-limit sets

properties W [��(�; �)] 6= ;; W [��(�; �)] 6= ;. On the other hand, if we
take in (26) and (28) �0 = �; �0 = � we get that these two properties are
always true, see Theorem 51 to follow, items a), b).
Note that the stability of the sets A from the dynamical systems the-

ory is interpreted as invariance [8], while the stability of the orbits from
the dynamical systems theory is interpreted to be stronger than attrac-
tiveness.

Example 48 In Figure 5 for

�(t) = (1; 1) � �f0g(t)� (1; 1) � �f1g(t)� (1; 1) � �f2g(t)� :::

we get
W [��((0; 0); �)] =W [!�((0; 0))] = f(0; 0); (1; 1)g;

W [��((0; 0); �)] =W [!�((0; 0))] = ;:

Example 49 We take in Figure 6

�(t) = (1; 1) � �f0g(t)� (1; 1) � �f1g(t)� (1; 1) � �f2g(t)� :::

and we obtain

W [��((0; 1); �)] =W [!�((0; 1))] = W [!�((0; 1))] = f(0; 0); (0; 1); (1; 1)g;

W [��((0; 1); �)] = ;:

13



Figure 7: The basins of attraction of the orbits and of the !-limit sets

Example 50 In Figure 7 for

�(t) = (0; 1) ��f0g(t)� (1; 1) ��f1g(t)� (0; 1) ��f2g(t)� (1; 1) ��f3g(t)� :::

we see that

W [��((0; 0); �)] =W [!�((0; 0))] = W [��((0; 0); �)]

= W [!�((0; 0))] = f(0; 0); (0; 1); (1; 1)g:

Theorem 51 We consider the point � 2 Bn and the function � 2 Pn:
a) W [��(�; �)] =W [!�(�)];
b) we have Or�(�) � W [��(�; �)]; thus W [��(�; �)] is non-empty;
c) W [��(�; �)] � W [!�(�)];
d) W [��(�; �)] 6= ; () card(!�(�)) = 1; thus card(!�(�)) = 1

implies that W [��(�; �)] and W [!�(�)] are non-empty;
e) if 9�0 2 Bn; !�(�) = f�0g; then W [��(�; �)] =W [!�(�)] =W (�0):

Proof. a) Let �0 2 W [��(�; �)] be arbitrary, for which �0 2 Pn; t0 2 R
exist such that

8t � t0;��0(�0; t) = ��(�; t); (30)

!�0(�
0) = f��0(�0; t)jt � t0g; (31)

!�(�) = f��(�; t)jt � t0g: (32)

(30) is ful�lled from the de�nition (20) of W [��(�; �)] and, by taking t0
su¢ ciently great, (31), (32) are ful�lled too (Theorem 21). As !�0(�0) =
!�(�) we get �0 2 W [!�(�)] and because �0 was arbitrary, we infer that
W [��(�; �)] � W [!�(�)].
Conversely, let �0 2 W [!�(�)] be arbitrary, thus

9�0 2 Pn; !�0(�0) = !�(�)

and let �00 2 !�0(�0) = !�(�) be some point,

��
0
(�0; t1) = �

�(�; t2) = �
00; (33)

14



t1; t2 2 R. The function

�00(t) = �0(t� t2 + t1) � �(�1;t2](t)� �(t) � �(t2;1)(t) (34)

is progressive and ful�lls

��
00
(�0; t2)

(34)
= ��

0�� t2�t1 (�0; t2)
Theorem 13

= ��
0
(�0; t1)

(33)
= ��(�; t2)

(33)
= �00;

8t > t2;��
00
(�0; t)

Theorem 11 d)
= ��

00��(t2;1)(�00; t)

(34)
= ����(t2;1)(�00; t)

Theorem 11 d)
= ��(�; t)

in other words �0 2 W [��(�; �)]: The fact that �0 was arbitrary gives the
conclusion that W [!�(�)] � W [��(�; �)]:
b) Let �0 2 Or�(�) be arbitrary, thus 9t0 2 R with �0 = ��(�; t0):

We get

8t � t0;����(t0;1)(�0; t)
Theorem 11 d)

= ��(�; t):

We have shown that �0 2 W [��(�; �)] and as �0 was arbitrarily chosen,
we infer Or�(�) � W [��(�; �)]:
c) Let �0 2 W [��(�; �)] and �0 2 Pn be arbitrary. Some su¢ ciently

great t0 2 R exists such that

8t � t0;��0(�0; t) = ��(�; t)

and we have

!�0(�
0) = f��0(�0; t)jt � t0g = f��(�; t)jt � t0g = !�(�);

i.e. �0 2 W [!�(�)]:
d) =) Let be � given by

�(t) = �0 � �ft0g(t)� :::� �k � �ftkg(t)� :::;

� 2 �n; (tk) 2 Seq and we de�ne

�0(t) = �0 � �ft00g(t)� :::� �
k � �ft0kg(t)� :::;

where
t0k =

tk + tk+1
2

; k 2 N (35)

belongs to Seq. We call point of discontinuity of ��(�; �) a point � 2 R
with the property that �0; �00 2 Bn and " > 0 exist such that

8t 2 (� � "; �);��(�; t) = �0;

15



8t 2 [�; � + ");��(�; t) = �00;
�0 6= �00:

The hypothesis states that e� 2 W [��(�; �)] exists ful�lling the property
9t0 2 R;8t � t0;��0(e�; t) = ��(�; t): (36)

Let us suppose against all reason that card(!�0(e�)) = card(!�(�)) > 1
and

!�0(e�) = f��0(e�; t)jt � t00g = f��(�; t)jt � t00g = !�(�);
t00 � t0: Then equation (36) is contradictory, since the discontinuity
points of ��

0
(e�; �)j[t0;1)1 and ��(�; �)j[t0;1) are included in the disjoint sets

[t0;1) \ (t0k) and [t0;1) \ (tk): The conclusion is that card(!�0(e�)) =
card(!�(�)) = 1 and in (36) the disjoint sets [t0;1)\(t0k) and [t0;1)\(tk)
contain no discontinuity points.
(=We presume that �0 2 Bn exists with !�(�) = f�0g and then for

an arbitrary �0 2 Pn we get 8t 2 R;��
0
(�0; t) = �0: As lim

t!1
��(�; t) = �0;

we conclude that 9t0 2 R such that 8t � t0;

��(�; t) = ��
0
(�0; t) = �0;

thus �0 2 W [��(�; �)]:
e) The fact that !�(�) = f�0g shows that �0 is a �xed point of �

(Theorem 23 b)), thus W (�0) 6= ;: W [��(�; �)]; W [!�(�)] and W (�0) are
all equal with the set

f�00j�00 2 Bn;8�0 2 Pn; lim
t!1

��
0
(�00; t) = �0g:

Theorem 52 For any � 2 Bn and any � 2 Pn;
a) the basin of p-attraction W [��(�; �)] is p-invariant;
b) if ��(�; �) is n-attractive, then the basin of n-attractionW [��(�; �)]

is n-invariant;
c) if !�(�) is n-attractive, then W [!�(�)] is n-invariant.

Proof. a) From Or�(�) 6= ; and Or�(�) � W [��(�; �)]; see Theorem
51 b), we have that W [��(�; �)] 6= ;: Let �0 2 W [��(�; �)] be arbitrary;
meaning that

9�0 2 Pn;9t0 2 R;8t � t0;��
0
(�0; t) = ��(�; t)

1��
0
(e�; �)j[t0;1) is the notation for the restriction of ��

0
(e�; �) : R! Bn to [t0;1):
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and we prove the inclusion Or�0(�0) � W [��(�; �)]: Indeed, the points �00
of the orbit Or�0(�0) are of the form

9t1 2 R; �00 = ��
0
(�0; t1)

and they ful�ll

8t � t1;��
0
(�0; t)

Theorem 11 d)
= ��

0��(t1;1)(�00; t);

thus

8t � maxft0; t1g;��(�; t) = ��
0
(�0; t) = ��

0��(t1;1)(�00; t):

We infer that �00 2 W [��(�; �)]:
b) We must prove any of the following three equivalent statements:

8�0 2 W [��(�; �)];8�0 2 Pn; Or�0(�0) � W [��(�; �)]; (37)

8�0 2 W [��(�; �)];8�0 2 Pn;8t1 2 R;��
0
(�0; t1) 2 W [��(�; �)]; (38)

8�0 2 Bn;8�00 2 Pn;9t0 2 R;8t � t0;��
00
(�0; t) = ��(�; t) =) (39)

=) 8�0 2 Pn;8t1 2 R;8�000 2 Pn;9t00 2 R;
8t � t00;��000(��0(�0; t1); t) = ��(�; t):

For this, let �0 2 Bn be arbitrary, �xed, making the following property
true:

8�00 2 Pn;9t0 2 R;8t � t0;��
00
(�0; t) = ��(�; t) (40)

and we take �0 2 Pn; t1 2 R; �000 2 Pn arbitrarily. The truth of (40) for

�00 = �0 � �(�1;t1] � �000 � �(t1;1) (41)

shows the existence of t0 2 R that we choose > t1 such that 8t � t0;

��(�; t)
(40)
= ��

00
(�0; t)

Theorem 11 d)
= ��

00��(t1;1)(��
00
(�0; t1); t) =

(41)
= ��

000��(t1;1)(��
00
(�0; t1); t)

(41)
= ��

000��(t1;1)(��
0
(�0; t1); t)

Theorem 11 d)
= ��

000
(��

0
(�0; t1); t):

(39) holds.
c) We must prove any of the equivalent statements:

8�0 2 W [!�(�)];8�0 2 Pn; Or�0(�0) � W [!�(�)]; (42)

8�0 2 W [!�(�)];8�0 2 Pn;8t1 2 R;��
0
(�0; t1) 2 W [!�(�)]; (43)
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8�0 2 Bn;8�00 2 Pn; !�00(�0) = !�(�) =) (44)

=) 8�0 2 Pn;8t1 2 R;8�000 2 Pn; !�000(��
0
(�0; t1)) = !�(�):

Let �0 2 Bn be arbitrary, �xed, that ful�lls

8�00 2 Pn; !�00(�0) = !�(�) (45)

and we take some arbitrary �0 2 Pn; t1 2 R; �000 2 Pn. A number t2 exists
with the property 8t � t2; �000(t) = 0: We de�ne e� 2 Pn by

e�(t) = �000(t� t1 + t2)
and we note that (as far as 8t � t1; t�t1+t2 � t2) we have e���(t1;1)(t) =
�000(t� t1 + t2) = (�000 � � t1�t2)(t); thus

!e���(t1;1)
(��

0
(�0; t1)) = !�000�� t1�t2 (�

�0(�0; t1)) = !�000(�
�0(�0; t1)); (46)

see Theorem 24. The truth of (45) for

�00 = �0 � �(�1;t1] � e� � �(t1;1) (47)

shows that

!�(�)
(45)
= !�00(�

0)
(47)
= !�0��(�1;t1]

�e���(t1;1)
(�0) =

(2)
= !e���(t1;1)

(��
0
(�0; t1))

(46)
= !�000(�

�0(�0; t1)):

The statement (44) was proved.

Theorem 53 Let � 2 Bn be a �xed point of � and � 2 Pn. We have

W (�) =W [��(�; �)] =W [!�(�)];

W (�) =W [��(�; �)] =W [!�(�)]:

Proof. Because
8t 2 R;��(�; t) = �;

!�(�) = f�g
we get for any �0 2 Bn the equivalence of the statements

9�0 2 Pn; !�0(�0) � f�g (equation (12));

9�0 2 Pn;9t0 2 R;8t � t0;��
0
(�0; t) = � (see (20));

9�0 2 Pn; !�0(�0) = f�g (see (21))
meaning that �0 2 W (�); �0 2 W [��(�; �)]; �0 2 W [!�(�)], thus W (�) =
W [��(�; �)] =W [!�(�)]:
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Theorem 54 Let be � 2 Bn and � 2 Pn. The following statements
hold:
a) W [��(�; �)] =W (Or�(�));
b) W [��(�; �)] � W (Or�(�));
c) W [!�(�)] =W (!�(�));
d) W [!�(�)] � W (!�(�)):

Proof. a)We prove thatW [��(�; �)] � W (Or�(�)) and let �0 2 W [��(�; �)]
be arbitrary, thus �0 2 W [!�(�)] (Theorem 51 a)). We get 9�0 2
Pn; !�0(�

0) = !�(�) � Or�(�) and �nally �0 2 W (Or�(�)):
We prove now that W (Or�(�)) � W [��(�; �)]: We presume that

�0 2 W (Or�(�)); i.e. 9�0 2 Pn; !�0(�
0) � Or�(�): Let �00 2 !�0(�

0)
be arbitrary. t1 2 R; t2 2 R exist then such that

��
0
(�0; t1) = �

�(�; t2) = �
00 (48)

and we de�ne

�00(t) = �0(t� t2 + t1) � �(�1;t2](t)� �(t) � �(t2;1)(t): (49)

We note that �00 2 Pn: We have

8t � t2;��
00
(�0; t)

(49)
= ��

0�� t2�t1 (�0; t)
Theorem 13

= ��
0
(�0; t� t2 + t1); (50)

��
00
(�0; t2)

(50)
= ��

0
(�0; t1)

(48)
= �00; (51)

thus 8t > t2;

��
00
(�0; t)

(51)
= ��

00��(t2;1)(�00; t)
(49)
= ����(t2;1)(�00; t) = ��(�; t):

We have proved the fact that �0 2 W [��(�; �)]; thus W (Or�(�)) �
W [��(�; �)]:
b) Let �0 2 W [��(�; �)] be arbitrary, in other words 9�00 2 Bn such

that !�(�) = f�00g (Theorem 51 d)). We infer that �00 2 Or�(�) and

W [��(�; �)] Theorem 51 e)
= W (�00)

Theorem 32 ii)
� W (Or�(�)):

c) For any �0 2 W [!�(�)] we have 9�0 2 Pn; !�0(�0) = !�(�); thus
9�0 2 Pn; !�0(�0) � !�(�) proving that �0 2 W (!�(�)) and the conclusion
is that

W [!�(�)] � W (!�(�)): (52)

In order to show that the inclusion (52) takes place under the form of an
equality, we presume against all reason that �0 2 W (!�(�)) nW [!�(�)]
exists, wherefrom we get

9�0 2 Pn; !�0(�0) � !�(�); (53)
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Figure 8: Showing that the inclusion W [��(�; �)] � W (Or�(�)) is not
equality

8�00 2 Pn; !�00(�0) 6= !�(�): (54)

From (53), t1 2 R; t2 2 R; �00 2 Bn exist such that

��
0
(�0; t1) = �

�(�; t2) = �
00 (55)

and we de�ne

�00(t) = �0(t� t2 + t1) � �(�1;t2](t)� �(t) � �(t2;1)(t): (56)

Obviously �00 2 Pn: We have

8t � t2;��
00
(�0; t)

(56)
= ��

0�� t2�t1 (�0; t)
Theorem 13

= ��
0
(�0; t� t2 + t1); (57)

��
00
(�0; t2)

(57)
= ��

0
(�0; t1)

(55)
= �00; (58)

thus 8t > t2;

��
00
(�0; t)

(58)
= ��

00��(t2;1)(�00; t)
(56)
= ����(t2;1)(�00; t)

Theorem 11 d)
= ��(�; t):

We have obtained !�00(�0) = !�(�); contradiction with (54).
d) We take an arbitrary �0 2 W [!�(�)]: The truth of

8�0 2 Pn; !�0(�0) = !�(�)

implies that
8�0 2 Pn; !�0(�0) � !�(�)

is true thus �0 2 W (!�(�)):

Example 55 In Figure 8 for any � 2 P2 we have that W [��((0; 0); �)] =
;; Or�(0; 0) = B2; W (B2) = B2 and the inclusion from Theorem 54 b)
is not equality.

Example 56 In Figure 9 we take � = (0; 0); !�(�) = B2 so thatW (!�(�)) =
W (B2) = B2: On the other hand we can see that W [!�(�)] = ;; showing
that the inclusion from Theorem 54 d) is not equality.
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Figure 9: Showing that the inclusionW [!�(�)] � W (!�(�)) is not equal-
ity
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Universit¼a̧tii din Piteşti, 2001.
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