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Abstract

The asynchronous flows are defined by Boolean functions Φ : {0, 1}n →
{0, 1}n that iterate their coordinates Φ1, ...,Φn independently on each other.
We define for the set A ⊂ {0, 1}n the properties of invariance, connectedness,
path connectedness and we initiate a study of these concepts. 1

1 Introduction and preliminaries

The asynchronous circuits from electronics are modeled by Boolean functions Φ :
{0, 1}n → {0, 1}n that iterate their coordinates Φ1, ...,Φn independently on each
other, giving the so-called asynchronous flows. The bibliography is mainly related
to the (real, usual) dynamical systems theory and we use analogies. The invariance
of a set A ⊂ {0, 1}n is the most important property addressed in the paper and we
define some concepts (connectedness, path connectedness) compatible with it. We
initiate a study in this framework and we show in the end that several other pos-
sibilities of defining invariance exist, giving several other concepts (connectedness,
path connectedness) compatible with them, that require their own study.

We denote in the following with B the Boolean algebra with two elements {0, 1}
and with N = {−1, 0, 1, ...} the discrete time set.

Definition 1 For Φ : Bn −→ Bn and λ ∈ Bn, we define the function Φλ : Bn −→

Bn by ∀µ ∈ Bn,∀i ∈ {1, ..., n},Φλ
i (µ) =

{
µi, if λi = 0,

Φi(µ), if λi = 1.

Definition 2 The sequence α : {0, 1, 2, ...} −→ Bn, whose terms are denoted in gen-
eral with αk, is called progressive if ∀i ∈ {1, ..., n}, the set {k|k ∈ {0, 1, 2, ...}, αki =
1} is infinite. The set of the progressive sequences is denoted by Π̂n.
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Definition 3 We define ∀k ∈ N the function σ̂k : Π̂n −→ Π̂n by ∀α ∈ Π̂n,∀k′ ∈
N,(σ̂k(α))k

′
= αk+k

′
.

Definition 4 Let µ ∈ Bn and α ∈ Π̂n. The (asynchronous) flow Φ̂α(µ, ·) :

N −→ Bn is defined by: Φ̂α(µ,−1) = µ and ∀k ∈ N , Φ̂α(µ, k+1) = Φαk+1
(Φ̂α(µ, k)).

Definition 5 The orbit Ôr
α
(µ) and the ω−limit set ω̂α(µ) are defined by Ôr

α
(µ) =

{Φ̂α(µ, k)|k ∈ N }, ω̂α(µ) = {µ′|{k|k ∈ N , Φ̂α(µ, k) = µ′} is infinite}.

Remark 6 We can prove [2] that Ôr
α
(µ) = {µ} ⇐⇒ Φ(µ) = µ.

2 Invariant set and invariant subset

Definition 7 Let Φ : Bn −→ Bn. The non-empty set A ⊂ Bn is called invariant
if ∀µ ∈ A, ∃α ∈ Π̂n, Ôr

α
(µ) ⊂ A holds.

Remark 8 If the non-empty sets A,B ⊂ Bn are invariant, then A∪B is invariant.

Definition 9 Let Φ : Bn −→ Bn and the sets ∅ 6= A ⊂ X ⊂ Bn. A is said to be an

invariant subset of X if

{
∀µ ∈ X,∃α ∈ Π̂n, Ôr

α
(µ) ⊂ X,

∀µ ∈ A,∃α ∈ Π̂n, Ôr
α
(µ) ⊂ A.

Example 10 For any µ ∈ Bn and any α ∈ Π̂n, the orbit X = Ôr
α
(µ) is an

invariant set satisfying ∀µ′ ∈ X,∃β ∈ Π̂n, Ôr
β
(µ′) ⊂ X, where µ′ = Φ̂α(µ, k′) and

β = σ̂k
′+1(α). Moreover, A = Ôr

β
(µ′) is an invariant subset of X.

Example 11 A = ω̂α(µ) is an invariant subset of X = Ôr
α
(µ). Special case:

µ′ ∈ X exists with Φ(µ′) = µ′ and A = {µ′} (such a µ′ is called rest position).

3 Minimal and maximal invariant subset

Definition 12 Let X ⊂ Bn and we suppose that A ⊂ X is non-empty and in-
variant. We say that A is the minimal invariant subset of X if ∀Y, (Y 6= ∅
and Y ⊂ X and ∀µ ∈ Y,∃α ∈ Π̂n, Ôr

α
(µ) ⊂ Y ) =⇒ A ⊂ Y. The notation of the

minimal invariant subset of X is X. If ∀Y, (Y 6= ∅ and Y ⊂ X and ∀µ ∈ Y,∃α ∈
Π̂n, Ôr

α
(µ) ⊂ Y ) =⇒ Y ⊂ A, then A is called the maximal invariant subset of

X and the notation is X.

Theorem 13 Let X ⊂ Bn, X 6= ∅ and we define X ′ = {µ|µ ∈ X,∃α ∈ Π̂n, Ôr
α
(µ) ⊂

X}. If X ′ 6= ∅, then X ′ = X. In addition, if X is invariant, then X = X.
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Proof. We prove that X ′ is invariant first and let an arbitrary µ ∈ X ′. We have from
the definition of X ′ the existence of α ∈ Π̂n with Ôr

α
(µ) ⊂ X. We take an arbitrary

µ′ ∈ Ôr
α
(µ), meaning the existence of k′ ∈ N with µ′ = Φ̂α(µ, k′). From the fact

[3] that ∀k ∈ N , Φ̂σ̂k′+1(α)(µ′, k) = Φ̂σ̂k′+1(α)(Φ̂α(µ, k′), k) = Φ̂α(µ, k + k′ + 1), we

infer Ôr
σ̂k′+1(α)

(µ′) ⊂ Ôr
α
(µ) ⊂ X, thus µ′ ∈ X ′. As µ′ was arbitrarily chosen, we

have obtained that Ôr
α
(µ) ⊂ X ′.

We prove the maximality of X ′. For this, we consider an arbitrary A ⊂ X, A 6= ∅
fulfilling ∀µ ∈ A,∃α ∈ Π̂n, Ôr

α
(µ) ⊂ A. For any µ ∈ A, we get µ ∈ X and some

α ∈ Π̂n exists with Ôr
α
(µ) ⊂ A ⊂ X, wherefrom µ ∈ X ′. We infer that A ⊂ X ′.

We suppose now that X is invariant. The inclusion X ⊂ X is obvious and the
inclusion X ⊂ X results from the maximality of X. We obtain X = X.

4 Connected set and disconnected set

Definition 14 Let Φ : Bn −→ Bn and the non-empty invariant set X ⊂ Bn. If
∀A, (∅ 6= A and A ⊂ X and A 6= X) =⇒ ∃µ ∈ A, ∀α ∈ Π̂n, Ôr

α
(µ)\A 6= ∅ is

true, we say that X is connected and if ∃A, ∅ 6= A and A ⊂ X and A 6= X and
∀µ ∈ A,∃α ∈ Π̂n, Ôr

α
(µ) ⊂ A holds, we say that the set X is disconnected or

separated and each A like previously is called a separation of X.

Remark 15 X is connected if it has no proper invariant subset. This is the situ-
ation when each proper subset A contains a point µ with the property that no orbit
Ôr

α
(µ) is included in A. X is disconnected otherwise, meaning that it has a proper

invariant subset A; thus A is not connected with X\A.

Remark 16 If X1, X2 ⊂ Bn are invariant and A is a separation of X1, then A
is a separation of X1 ∪ X2. If X1, X2 are invariant and X2\X1 6= ∅, then X1 is a
separation of X1 ∪X2.

Theorem 17 If X ⊂ Bn, X 6= ∅ is connected, then ∀µ ∈ X,∃α ∈ Π̂n, Ôr
α
(µ) = X.

Proof. If some µ exists with X = {µ}, then the statement of the Theorem is trivial,

under the form: Φ(µ) = µ and ∀α ∈ Π̂n, Ôr
α
(µ) = {µ}, see Remark 6.

We put now X under the form X = {µ0, µ1, ..., µp}, p ≥ 1. The invariance of X

shows the existence of α(0), α(1), ..., α(p−1) ∈ Π̂n with Ôr
α(i)

(µi) ⊂ X, i = 0, p− 1.

We takeA = {µ0}. The hypothesis of connectedness ofX implies Ôr
α(0)

(µ0)\{µ0}
6= ∅. We define k1 ≥ 1 be the duration that Φ̂α(0)

(µ0, k) needs to leave {µ0}, and we
can suppose without loosing the generality that{

∀k ∈ {−1, 0, ..., k1 − 2}, Φ̂α(0)
(µ0, k) = µ0,

Φ̂α(0)
(µ0, k1 − 1) = µ1.

(1)
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We take A = {µ0, µ1}. The hypothesis of connectedness of X implies that one of

Ôr
α(0)

(µ0)\{µ0, µ1} 6= ∅, Ôr
α(1)

(µ1)\{µ0, µ1} 6= ∅ is true. We define k2 ≥ 1 be the

duration that Φ̂α(0)
(µ0, k) needs in the first case, and that Φ̂α(1)

(µ1, k) needs in the
second case to leave {µ0, µ1}. We can suppose without loosing the generality that
one of the following statements is true:{

∀k ∈ {−1, 0, ..., k2 + k1 − 2}, Φ̂α(0)
(µ0, k) ∈ {µ0, µ1},

Φ̂α(0)
(µ0, k2 + k1 − 1) = µ2,

(2)

{
∀k ∈ {−1, 0, ..., k2 − 2}, Φ̂α(1)

(µ1, k) ∈ {µ0, µ1},
Φ̂α(1)

(µ1, k2 − 1) = µ2...
(3)

... We take A = {µ0, µ1, ..., µp−1}. The hypothesis implies that one of Ôr
α(0)

(µ0)\
{µ0, µ1, ..., µp−1} 6= ∅, Ôr

α(1)

(µ1)\{µ0, µ1, ..., µp−1} 6= ∅, ..., Ôr
α(p−1)

(µp−1)\{µ0, µ1,
..., µp−1} 6= ∅ takes place. We define kp ≥ 1 be the duration that Φ̂α(0)

(µ0, k) needs

in the first case, that Φ̂α(1)
(µ1, k) needs in the second case,..., that Φ̂α(p−1)

(µp−1, k)
needs in the p−th case to leave the set {µ0, µ1, ..., µp−1}, i.e. it needs to take the
value µp. One of the following properties holds:

∀k ∈ {−1, 0, ..., kp + kp−1 + ...+ k2 + k1 − 2},
Φ̂α(0)

(µ0, k) ∈ {µ0, µ1, ..., µp−1},
Φ̂α(0)

(µ0, kp + kp−1 + ...+ k2 + k1 − 1) = µp,

(4)

{
∀k ∈ {−1, 0, ..., kp + kp−1 + ...+ k2 − 2}, Φ̂α(1)

(µ1, k) ∈ {µ0, µ1, ..., µp−1},
Φ̂α(1)

(µ1, kp + kp−1 + ...+ k2 − 1) = µp, ...
(5)

...

{
∀k ∈ {−1, 0, ..., kp − 2}, Φ̂α(p−1)

(µp−1, k) ∈ {µ0, µ1, ..., µp−1},
Φ̂α(p−1)

(µp−1, kp − 1) = µp.
(6)

We define the sequence β ∈ Π̂n like this:

∀k ∈ {0, ..., k1 − 1}, βk = α(0)k,

∀k ∈ {k1, ..., k2 + k1 − 1}, βk =

{
α(0)k, if (2) is true,

α(1)k−k1 , if (3) is true,...

...∀k ≥ kp−1 + kp−2 + ...+ k1, β
k =


α(0)k, if (4) is true,

α(1)k−k1 , if (5) is true,
...

α(p−1)k−kp−1−kp−2−...−k1 , if (6) is true.

We notice that β ∈ Π̂n indeed. We have Ôr
β
(µ0) ⊂ X, due to the way that

α(0), α(1), ..., α(p−1) were taken. We also infer: Φ̂β(µ0,−1) = µ0, Φ̂β(µ0, k1 − 1) =

µ1, ..., Φ̂β(µ0, kp + kp−1 + ...+ k1 − 1) = µp. We have proved that Ôr
β
(µ0) = X.
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5 Path connected set

Definition 18 Let X ⊂ Bn and µ, µ′ ∈ X. A path in X from µ to µ′ is a flow
Φ̂α(µ, ·) : N → Bn, where α ∈ Π̂n, with the property that k′ ∈ N exists such that
∀k ∈ {−1, 0, ..., k′}, Φ̂α(µ, k) ∈ X and Φ̂α(µ, k′) = µ′.

Definition 19 We say that X is path connected if ∀µ ∈ X,∀µ′ ∈ X,∃α ∈
Π̂n,∃k′ ∈ N , ∀k ∈ {−1, 0, ..., k′}, Φ̂α(µ, k) ∈ X and Φ̂α(µ, k′) = µ′.

Theorem 20 If X is path connected, then ∀µ ∈ X,∃α ∈ Π̂n, X ⊂ Ôr
α
(µ) holds.

Proof. As the statement is obvious for card(X) = 1, we suppose that X =
{µ0, ..., µp}, p ≥ 1 and let µ ∈ X arbitrary. We can suppose without loosing the
generality that µ = µ0. The proof is based on the existence of α(i) ∈ Π̂n and
ki ≥ 1, i = 1, p with Φα(i)

(µi−1, ki − 1) = µi, i = 1, p.

Theorem 21 If X1, ..., Xk ⊂ Bn are path connected, k ≥ 2 and ∀i ∈ {1, ..., k},
∀j ∈ {1, ..., k}, Xi ∩Xj 6= ∅, then X1 ∪ ... ∪Xk is path connected.

Proof. Let µ, µ′ ∈ X1 ∪ ... ∪ Xk arbitrary, thus we have i, j ∈ {1, ..., k} with
µ ∈ Xi, µ

′ ∈ Xj . Then µ̃ ∈ Xi ∩Xj and α, β ∈ Π̂n, k
′
1, k
′
2 ≥ 1 exist such that

∀k′′ ∈ {−1, 0, ..., k′1 − 1}, Φ̂α(µ, k′′) ∈ Xi and Φ̂α(µ, k′1 − 1) = µ̃,

∀k′′ ∈ {−1, 0, ..., k′2 − 1}, Φ̂β(µ̃, k′′) ∈ Xj and Φ̂β(µ̃, k′2 − 1) = µ′.

We define γ : N −→ Bn by ∀k ∈ N, γk =

{
αk, if k ∈ {0, ..., k′1 − 1},

βk−k
′
1 , if k ≥ k′1.

We get

obviously σ̂k
′
1(γ) = β and γ ∈ Π̂n. We can write: ∀k′′ ∈ {−1, 0, ..., k′1 + k′2 −

1}, Φ̂γ(µ, k′′) ∈ Xi ∪Xj ⊂ X1 ∪ ... ∪Xk and on the other hand Φ̂γ(µ, k′1 + k′2 − 1) =

Φ̂σ̂k′1 (γ)(Φ̂γ(µ, k′1), k
′
2 − 1) = Φ̂β(µ̃, k′2 − 1) = µ′.

6 Minimality, connectedness and path connectedness

Theorem 22 Let Φ : Bn −→ Bn and X ⊂ Bn non-empty. The properties:

a) X is the minimal invariant subset of Bn;

b) X is connected;

c) X is path connected

fulfill a) =⇒ b) =⇒ c).
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Proof. a)=⇒b) We suppose against all reason that b) is false. If X is not invariant
there is a contradiction with a), thus we have the existence of A such that A 6= ∅,
A ⊂ X, A 6= X and ∀µ ∈ A,∃α ∈ Π̂n, Ôr

α
(µ) ⊂ A. Then a) implies X ⊂ A. We

have obtained that X = A, contradiction.
b)=⇒c) Let µ, µ′ ∈ X arbitrary and fixed. As X is connected, Theorem 17

shows the existence of α ∈ Π̂n such that Ôr
α
(µ) = X. From µ′ ∈ Ôr

α
(µ), we

have the existence of k′ ∈ N such that Φ̂α(µ, k′) = µ′ and the fact that ∀k ∈
{−1, 0, ..., k′}, Φ̂α(µ, k) ∈ X is obvious.

7 Other definitions of invariance

Remark 23 Let Φ : Bn −→ Bn and the non-empty set A ⊂ Bn. The statements

∀µ ∈ A,∃α ∈ Π̂n, Ôr
α
(µ) ⊂ A, (7)

∃α ∈ Π̂n, ∀µ ∈ A, Ôr
α
(µ) ⊂ A, (8)

∀α ∈ Π̂n, ∀µ ∈ A, Ôr
α
(µ) ⊂ A, (9)

∀ν ∈ Bn,Φν(A) ⊂ A, (10)

∀ν ∈ Bn,Φν(A) = A (11)

fulfill (11)=⇒(10)⇐⇒ (9)=⇒(8)=⇒(7) and they are all of invariance of A, resulted
by analogy with the (usual) dynamical systems. They define new concepts of con-
nectedness, path connectedness etc that may be analized.
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