Some properties of the regular asynchronous systems

Serban E. Vlad

Abstract

The asynchronous systems are the models of the asynchronous circuits from the digital electrical engineering. An asynchronous system f is a multi-valued function that assigns to each admissible input $u: \mathbf{R} \to \{0,1\}^m$ a set f(u) of possible states $x \in f(u), x: \mathbf{R} \to \{0,1\}^n$. A special case of asynchronous system consists in the existence of a Boolean function $\Upsilon: \{0,1\}^n \times \{0,1\}^m \to \{0,1\}^n$ such that $\forall u, \forall x \in f(u)$, a certain equation involving Υ is fulfilled. Then Υ is called the generator function of f (Moisil used the terminology of network function) and we say that f is generated by Υ . The systems that have a generator function are called regular.

Our purpose is to continue the study of the generation of the asynchronous systems that was started in [2], [3].

Keywords: asynchronous system, regularity, generator function

1 Preliminaries

Notation 1. Let be the arbitrary set M. The following notation will be useful: $P^*(M) = \{M' | M' \subset M, M' \neq \emptyset\}$.

Definition 2. The set $\mathbf{B} = \{0,1\}$, endowed with the order $0 \le 1$ and with the usual laws $-,\cdot,\cup,\oplus$, is called the **binary Boole algebra**.

Definition 3. The initial value $x(-\infty + 0) \in \mathbf{B}^n$ of the function $x : \mathbf{R} \to \mathbf{B}^n$ is defined by $\exists t' \in \mathbf{R}, \forall t < t', x(t) = x(-\infty + 0)$.

Definition 4. The characteristic function $\chi_A : \mathbf{R} \to \mathbf{B}$ of the set $A \subset \mathbf{R}$ is given by $\forall t \in \mathbf{R}, \chi_A(t) = \begin{cases} 1, t \in A \\ 0, \ else \end{cases}$.

Notation 5. We use the notation $Seq = \{(t_k) | t_k \in \mathbf{R}, k \in \mathbf{N}, t_0 < ... < t_k < ... is unbounded from above \}.$

Definition 6. A function $x : \mathbf{R} \to \mathbf{B}^n$ is called n-signal, shortly signal if $\mu \in B^n$ and $(t_k) \in Seq$ exist such that

$$x(t) = \mu \cdot \chi_{(-\infty,t_0)}(t) \oplus x(t_0) \cdot \chi_{[t_0,t_1)}(t) \oplus \dots \oplus x(t_k) \cdot \chi_{[t_k,t_{k+1})}(t) \oplus \dots$$
(1)

The set of the n-signals is denoted by $S^{(n)}$.

Remark 7. Let be $x : \mathbf{R} \to \mathbf{B}^n, u : \mathbf{R} \to \mathbf{B}^m$. Instead of $x \times u : \mathbf{R} \times \mathbf{R} \to \mathbf{B}^n \times \mathbf{B}^m$ we define the function $x \times u$, many times denoted by (x, u), as $x \times u : \mathbf{R} \to \mathbf{B}^n \times \mathbf{B}^m$ due to the existence of a unique time variable $t \in \mathbf{R}$. Between the consequences derived from here we have the identifications $S^{(n)} \times S^{(m)} = S^{(n+m)}$ and $P^*(S^{(n)}) \times P^*(S^{(m)}) = P^*(S^{(n+m)})$.

Definition 8. The **left limit** x(t-0) of x(t) from (1) is the $\mathbf{R} \to \mathbf{B}^n$ function defined as $x(t-0) = \mu \cdot \chi_{(-\infty,t_0]}(t) \oplus x(t_0) \cdot \chi_{(t_0,t_1]}(t) \oplus ... \oplus x(t_k) \cdot \chi_{(t_k,t_{k+1}]}(t) \oplus ...$

Definition 9. Let be $U \in P^*(S^{(m)})$. A multi-valued function $f: U \to P^*(S^{(n)})$ is called **asynchronous system**, shortly **system**. Any $u \in U$ is called (**admissible**) **input** and the functions $x \in f(u)$ are called (**possible**) **states**.

Remark 10. The asynchronous systems are the models of the asynchronous circuits. The multi-valued character of the cause-effect association is due to the statistical fluctuations in the fabrication process, the variations in the ambiental temperature, the power supply etc. Sometimes the systems are given by equations and/or inequalities.

Definition 11. The initial state function of f is by definition the function $i_f: U \to P^*(\mathbf{B}^n), \forall u \in U, i_f(u) = \{x(-\infty + 0) | x \in f(u)\}.$

Definition 12. The function $\rho : \mathbf{R} \to \mathbf{B}^n$ is called **progressive** if $(t_k) \in Seq$ exists such that $\rho(t) = \rho(t_0) \cdot \chi_{\{t_0\}}(t) \oplus ... \oplus \rho(t_k) \cdot \chi_{\{t_k\}}(t) \oplus ...$ and $\forall i \in \{1, ..., n\}$, the set $\{k | k \in \mathbf{N}, \rho_i(t_k) = 1\}$ is infinite. The set of the progressive functions is denoted by P_n .

Notation 13. Let be $\Upsilon : \mathbf{B}^n \times \mathbf{B}^m \to \mathbf{B}^n, u \in S^{(m)}, \ \mu \in \mathbf{B}^n \ and \ \rho \in P_n$. The solution of the equation

$$\begin{cases} x(-\infty + 0) = \mu \\ \forall i \in \{1, ..., n\}, x_i(t) = \begin{cases} \Upsilon_i(x(t-0), u(t-0)), if \ \rho_i(t) = 1 \\ x_i(t-0), otherwise \end{cases} \end{cases}$$
 (2)

is denoted by $\Upsilon^{-\rho}(t,\mu,u)$.

Definition 14. The system $\Sigma_{\Upsilon}^-: S^{(m)} \to P^*(S^{(n)}), \forall u \in S^{(m)}, \Sigma_{\Upsilon}^-(u) = \{\Upsilon^{-\rho}(t, \mu, u) | \mu \in \mathbf{B}^n, \rho \in P_n\}$ is called the **universal regular asynchronous system** that is generated by the function Υ .

Definition 15. The system f is called **regular** if Υ exists such that $\forall u \in U, f(u) \subset \Sigma_{\Upsilon}^{-}(u)$. If so, Υ is called the **generator function** of f and we also say that Υ **generates** f.

Remark 16. Equation (2) shows how the circuits compute asynchronously the Boolean function Υ : the computation is made at the discrete time instances $\{t_k|k\in\mathbb{N},\exists i\in\{1,...,n\},\rho_i(t_k)=1\}$ on these coordinates Υ_i for which $\rho_i(t_k)=1$. The models of these circuits, the systems f with the generator function Υ , have the remarkable property that a function $\pi_f:W_f\to P^*(P_n)$ exists, $W_f=\{(x(-\infty+0),u)|u\in U,x\in f(u)\}$ such that $\forall u\in U,f(u)=\{\Upsilon^{-\rho}(t,\mu,u)|\mu\in i_f(u),\rho\in\pi_f(\mu,u)\}$. π_f is called the **computation function** of f. For f regular, Υ and π_f are not unique.

2 Subsystems

Definition 17. The system f is called a **subsystem** of $g: V \to P^*(S^{(n)}), V \in P^*(S^{(m)})$ and we write $f \subset g$, if $U \subset V$ and $\forall u \in U, f(u) \subset g(u)$.

Remark 18. We interpret $f \subset g$ in the following way: the systems f and g model the same circuit, but the model represented by f is more precise than the model represented by g.

Theorem 19. The function Υ and the regular systems $f \subset \Sigma_{\Upsilon}^-$, $g \subset \Sigma_{\Upsilon}^-$ are given. We denote by $i_g : V \to P^*(\mathbf{B}^n)$ the initial state function and by $\pi_g : W_g \to P^*(P_n)$ the computation function of g. The following statements are equivalent:

a)
$$f \subset g$$

b) $U \subset V$ and $\forall u \in U, i_f(u) \subset i_g(u)$ and $\forall u \in U, \forall \mu \in i_f(u), \forall \rho \in \pi_f(\mu, u), \exists \rho' \in \pi_g(\mu, u), \Upsilon^{-\rho}(t, \mu, u) = \Upsilon^{-\rho'}(t, \mu, u).$

3 Dual systems

Definition 20. The **dual** function $\Upsilon^* : \mathbf{B}^n \times \mathbf{B}^m \to \mathbf{B}^n$ of Υ is defined by $\forall (\mu, \nu) \in \mathbf{B}^n \times \mathbf{B}^m$, $\Upsilon^*(\mu, \nu) = \overline{\Upsilon(\overline{\mu}, \overline{\nu})}$. Here the bar $\overline{\mu}$ refers to the complement done coordinatewise.

Definition 21. The **dual** of the system f is by definition the system $f^*: U^* \to P^*(S^{(n)})$, where $U^* = \{\overline{u} | u \in U\}$ and $\forall u \in U^*, f^*(u) = \{\overline{x} | x \in f(\overline{u})\}.$

Remark 22. The system f^* models the circuit modeled by f with the AND gates replaced by OR gates etc.

Notation 23. We denote $i_{f^*}: U^* \to P^*(\mathbf{B}^n), \forall u \in U^*, i_{f^*}(u) = \{\overline{\mu} | \mu \in i_f(\overline{u})\}.$

Notation 24. We denote by $\pi_{f^*}: W_{f^*} \to P^*(P_n)$ where $W_{f^*} = \{(\overline{x(-\infty+0)}, u) | u \in U^*, x \in f(\overline{u})\}$ the function $\forall (\mu, u) \in W_{f^*}, \pi_{f^*}(\mu, u) = \pi_f(\overline{\mu}, \overline{u}).$

Theorem 25. The dual system f^* of $f \subset \Sigma_{\Upsilon}^-$ is regular, $f^* \subset \Sigma_{\Upsilon^*}^-$; its initial state function is i_{f^*} and its computation function is π_{f^*} .

4 Cartesian product

Definition 26. The Cartesian product of the systems f and $f': U' \to P^*(S^{(n')}), U' \in P^*(S^{(m')})$ is defined as $f \times f': U \times U' \to P^*(S^{(n+n')}), \forall (u,u') \in U \times U', (f \times f')(u,u') = f(u) \times f'(u')$.

Remark 27. The Cartesian product $f \times f'$ models two circuits that run independently on each other.

Notation 28. For Υ and $\Upsilon': \mathbf{B}^{n'} \times \mathbf{B}^{m'} \to \mathbf{B}^{n'}$, we denote by $\Upsilon \times \Upsilon': \mathbf{B}^{n+n'} \times \mathbf{B}^{m+m'} \to \mathbf{B}^{n+n'}$ the function $\forall ((\mu, \mu'), (\nu, \nu')) \in \mathbf{B}^{n+n'} \times \mathbf{B}^{m+m'}, (\Upsilon \times \Upsilon')((\mu, \mu'), (\nu, \nu')) = (\Upsilon(\mu, \nu), \Upsilon'(\mu', \nu')).$ In this notation we identify $(\mu, \mu') \in \mathbf{B}^n \times \mathbf{B}^{n'}$ with $(\mu_1, ..., \mu_n, \mu'_1, ..., \mu'_{n'}) \in \mathbf{B}^{n+n'}$ etc.

Notation 29. If $i_{f'}: U' \to P^*(\mathbf{B}^{n'})$ is the initial state function of f', we use the notation $i_{f \times f'}: U \times U' \to P^*(\mathbf{B}^{n+n'}), \forall (u, u') \in U \times U', i_{f \times f'}(u, u') = i_f(u) \times i_{f'}(u').$

Notation 30. The regular systems f, f' are given, $f \subset \Sigma_{\Upsilon}$, $f' \subset \Sigma_{\Upsilon'}$ as well as their computation functions: $\pi_f : W_f \to P^*(P_n)$, $\pi_{f'} : W_{f'} \to P^*(P_{n'})$. We denote by $\pi_{f \times f'} : W_{f \times f'} \to P^*(P_{n+n'})$ the function $W_{f \times f'} = \{((x(-\infty+0), x'(-\infty+0)), (u,u')) | (u,u') \in U \times U', (x,x') \in f(u) \times f'(u')\}, \forall ((\mu,\mu'), (u,u')) \in W_{f \times f'}, \pi_{f \times f'}((\mu,\mu'), (u,u')) = \pi_f(\mu,u) \times \pi_{f'}(\mu',u').$

Remark 31. The function $\pi_{f \times f'}$ is correctly defined since $\forall \rho, \forall \rho', \rho \in P_n$ and $\rho' \in P_{n'} \Longrightarrow (\rho, \rho') \in P_{n+n'}$.

Theorem 32. If $f \subset \Sigma_{\Upsilon}^-$, $f' \subset \Sigma_{\Upsilon'}^-$, then the system $f \times f'$ is regular, $f \times f' \subset \Sigma_{\Upsilon \times \Upsilon'}^-$; its initial state function is $i_{f \times f'}$ and its computation function is $\pi_{f \times f'}$.

5 Parallel connection

Definition 33. The parallel connection of f and $f'_1: U'_1 \to P^*(S^{(n')}), U'_1 \in P^*(S^{(m)})$ is defined whenever $U \cap U'_1 \neq \emptyset$ by $f||f'_1: U \cap U'_1 \to P^*(S^{(n+n')}), \forall u \in U \cap U'_1, (f||f'_1)(u) = f(u) \times f'_1(u)$.

Remark 34. The parallel connection $f||f'_1|$ models two circuits that run under the same input, independently on each other.

Notation 35. Let be Υ and $\Upsilon'_1: \mathbf{B}^{n'} \times \mathbf{B}^m \to \mathbf{B}^{n'}$, for which we denote by $\Upsilon||\Upsilon'_1: \mathbf{B}^{n+n'} \times \mathbf{B}^m \to \mathbf{B}^{n+n'}$ the function $\forall ((\mu, \mu'), \nu) \in \mathbf{B}^{n+n'} \times \mathbf{B}^m, (\Upsilon||\Upsilon'_1)((\mu, \mu'), \nu) = (\Upsilon(\mu, \nu), \Upsilon'_1(\mu', \nu)).$

Notation 36. Let $i_{f'_1}: U'_1 \to P^*(\mathbf{B}^{n'})$ be the initial state function of f'_1 . If $U \cap U'_1 \neq \emptyset$, we use the notation $i_{f||f'_1}: U \cap U'_1 \to P^*(\mathbf{B}^{n+n'}), \forall u \in U \cap U'_1, i_{f||f'_1}(u) = i_f(u) \times i_{f'_1}(u)$.

Notation 37. We suppose that the systems f, f'_1 are regular i.e. $f \subset \Sigma_{\Upsilon}^-$, $f'_1 \subset \Sigma_{\Upsilon'_1}^-$ and let $\pi_f: W_f \to P^*(P_n), \pi_{f'_1}: W_{f'_1} \to P^*(P_{n'})$ be their computation functions. If $U \cap U'_1 \neq \emptyset$, then we use the notation $\pi_{f||f'_1}: W_{f||f'_1} \to P^*(P_{n+n'}), W_{f||f'_1} = \{((x(-\infty+0), x'(-\infty+0)), u)|u \in U \cap U'_1, x \in f(u), x' \in f'_1(u)\}, \forall ((\mu, \mu'), u) \in W_{f||f'_1}, \pi_{f||f'_1}((\mu, \mu'), u) = \pi_f(\mu, u) \times \pi_{f'_1}(\mu', u).$

Theorem 38. If $f \subset \Sigma_{\Upsilon}^-$, $f_1' \subset \Sigma_{\Upsilon_1'}^-$ and $U \cap U_1' \neq \emptyset$, then $f||f_1' \subset \Sigma_{\Upsilon||\Upsilon_1'}^-$; its initial state function is $i_{f||f_1'}$ and its computation function is $\pi_{f||f_1'}$.

6 Serial connection

Remark 39. Let be the systems f and $h: X \to P^*(S^{(p)}), X \in P^*(S^{(n)})$. When $\bigcup_{u \in U} f(u) \subset X$, the serial connection of f and h is defined by $h \circ f: U \to P^*(S^{(p)}), \forall u \in U, (h \circ f)(u) = \bigcup_{x \in f(u)} h(x)$. If f and h are regular, this definition means that in the systems of equations

$$\begin{cases} x(-\infty + 0) = \mu \\ \forall i \in \{1, ..., n\}, x_i(t) = \begin{cases} \Upsilon_i(x(t-0), u(t-0)), if \ \rho_i(t) = 1 \\ x_i(t-0), otherwise \end{cases} \end{cases}$$
 (3)

$$\begin{cases} y(-\infty+0) = \lambda \\ \forall j \in \{1, ..., p\}, y_j(t) = \begin{cases} \vartheta_j(y(t-0), x(t-0)), if \ \varpi_j(t) = 1 \\ y_j(t-0), otherwise \end{cases} \end{cases}$$
(4)

where $u \in S^{(m)}, x \in S^{(n)}, y \in S^{(p)}, \mu \in \mathbf{B}^n, \lambda \in \mathbf{B}^p, \rho \in P_n, \varpi \in P_p, \Upsilon : \mathbf{B}^n \times \mathbf{B}^m \to \mathbf{B}^n, \vartheta : \mathbf{B}^p \times \mathbf{B}^n \to \mathbf{B}^p$ we eliminate x. Because this does not give any information of the regularity of $h \circ f$, we choose to work with a slightly different system from $h \circ f$, for which x is not eliminated.

Notation 40. If f and h fulfill $\bigcup_{u \in U} f(u) \subset X$, then we denote by $h * f : U \to P^*(S^{(n+p)})$ the system $\forall u \in U, (h * f)(u) = \{(x,y) | x \in f(u), y \in h(x)\}.$

Notation 41. The function $\vartheta * \Upsilon : \mathbf{B}^{n+p} \times \mathbf{B}^m \to \mathbf{B}^{n+p}$ is defined by $\forall ((\mu, \lambda), \nu) \in \mathbf{B}^{n+p} \times \mathbf{B}^m$, $(\vartheta * \Upsilon)((\mu, \lambda), \nu) = (\Upsilon(\mu, \nu), \vartheta(\lambda, \Upsilon(\mu, \nu)))$.

Remark 42. The point is that, instead of eliminating x in (3), (4) as $h \circ f$ does, we can work with h * f and with the equation

$$\begin{cases} z(-\infty+0) = (\mu,\lambda) \\ \forall k \in \{1,...,n+p\}, z_k(t) = \begin{cases} z(-\infty+0) = (\mu,\lambda) \\ (\vartheta * \Upsilon)_k(z(t-0),u(t-0)), if (\rho,\varpi)_k(t) = 1 \\ z_k(t-0), otherwise \end{cases} \end{cases}$$

where $z \in S^{(n+p)}$.

Notation 43. For $i_h: X \to P^*(\mathbf{B}^p)$ the initial state function of h, we denote by $i_{h*f}: U \to P^*(\mathbf{B}^{n+p})$ the function $\forall u \in U, i_{h*f}(u) = \{(\mu, \lambda) | \mu \in i_f(u), \lambda \in \bigcup_{x \in f(u), x(-\infty+0) = \mu} i_h(x)\}.$

Notation 44. We suppose that $\pi_h: W_h \to P^*(P_p)$ is the computation function of h, $W_h = \{(y(-\infty+0),x)|x\in X,y\in h(x)\}$. We denote by $\pi_{h*f}: W_{h*f}\to P^*(P_{n+p})$ the function $W_{h*f}=\{((x(-\infty+0),y(-\infty+0)),u)|u\in U,x\in f(u),y\in h(x)\}, \ \forall ((\mu,\lambda),u)\in W_{h*f},\ \pi_{h*f}((\mu,\lambda),u)=\{(\rho,\varpi)|\rho\in\pi_f(\mu,u),\varpi\in\bigcup_{x\in f(u),x(-\infty+0)=\mu}\pi_h(\lambda,x)\}.$

Theorem 45. The systems f and h are given such that the inclusion $\bigcup_{u \in U} f(u) \subset X$ is true. If the regularity properties $f \subset \Sigma_{\Upsilon}^-, h \subset \Sigma_{\vartheta}^-$ hold, then $h * f \subset \Sigma_{\vartheta * \Upsilon}^-$; the initial state function of h * f is i_{h*f} and its computation function is π_{h*f} .

7 Intersection

Definition 46. The intersection of $f: U \to P^*(S^{(n)})$ and $g: V \to P^*(S^{(n)}), U, V \in P^*(S^{(m)})$ is defined whenever $\exists u \in U \cap V, f(u) \cap g(u) \neq \emptyset$ by $f \cap g: W \to P^*(S^{(n)}), W = \{u | u \in U \cap V, f(u) \cap g(u) \neq \emptyset\}, \forall u \in W, (f \cap g)(u) = f(u) \cap g(u).$

Remark 47. The intersection of two systems is a model that results by the simultaneous validity of two compatible models.

Notation 48. When $W \neq \emptyset$, we use the notation $i_{f \cap g} : W \to P^*(\mathbf{B}^n), \forall u \in W, i_{f \cap g}(u) = i_f(u) \cap i_g(u)$.

Notation 49. We consider the regular systems f,g for which the generator function $\Upsilon: \mathbf{B}^n \times \mathbf{B}^m \to \mathbf{B}^n$ is given such that $f \subset \Sigma_{\Upsilon}^-, g \subset \Sigma_{\Upsilon}^-$. Their computation functions are $\pi_f: W_f \to P^*(P_n), \ \pi_g: W_g \to P^*(P_n)$. If the set W is non-empty, then we use the notation $\pi_{f \cap g}: W_{f \cap g} \to P^*(P_n)$ for the function that is defined by $W_{f \cap g} = \{(x(-\infty + 0), u) | u \in W, x \in f(u) \cap g(u)\}, \forall (\mu, u) \in W_{f \cap g}, \ \pi_{f \cap g}(\mu, u) = \{\rho | \rho \in \pi_f(\mu, u), \exists \rho' \in \pi_g(\mu, u), \Upsilon^{-\rho}(t, \mu, u) = \Upsilon^{-\rho'}(t, \mu, u)\}.$

Remark 50. We remark the satisfaction of the following property of symmetry: $W_{f \cap g} = W_{g \cap f}$ and $\forall (\mu, u) \in W_{f \cap g}, \forall \rho \in \pi_{f \cap g}(\mu, u), \exists \rho' \in \pi_{g \cap f}(\mu, u), \Upsilon^{-\rho}(t, \mu, u) = \Upsilon^{-\rho'}(t, \mu, u)$ and $\forall \rho' \in \pi_{g \cap f}(\mu, u), \exists \rho \in \pi_{f \cap g}(\mu, u), \Upsilon^{-\rho'}(t, \mu, u) = \Upsilon^{-\rho}(t, \mu, u)$.

Theorem 51. If the regular systems $f \subset \Sigma_{\Upsilon}^-$, $g \subset \Sigma_{\Upsilon}^-$ fulfill $W \neq \emptyset$, then their intersection $f \cap g : W \to P^*(S^{(n)})$ is regular $f \cap g \subset \Sigma_{\Upsilon}^-$; its initial state function is $i_{f \cap g}$ and its computation function is $\pi_{f \cap g}$.

8 Union

Definition 52. The **union** of f, g is defined by $f \cup g : U \cup V \to P^*(S^{(n)}), \forall u \in U \cup V, (f \cup g)(u) =$ $\begin{cases} f(u), u \in U \setminus V, \\ g(u), u \in V \setminus U, \\ f(u) \cup g(u), u \in U \cap V \end{cases}$

Remark 53. The union of the systems represents the validity of one of two models. This is useful for example in testing, when f is the model of the 'good' circuit and g is the model of the 'bad' circuit.

Notation 54. We denote by $i_{f \cup g}: U \cup V \to P^*(\mathbf{B}^n)$ the function $\forall u \in U \cup V, i_{f \cup g}(u) = \begin{cases} i_f(u), u \in U \setminus V, \\ i_g(u), u \in V \setminus U, \\ i_f(u) \cup i_g(u), u \in U \cap V \end{cases}$.

Lemma 55. The sets $W_f = \{(x(-\infty + 0), u) | u \in U, x \in f(u)\}, W_g = \{(x(-\infty + 0), u) | u \in V, x \in g(u)\}, W_{f \cup g} = \{(x(-\infty + 0), u) | u \in U \cup V, x \in (f \cup g)(u)\} \text{ fulfill } W_{f \cup g} = W_f \cup W_g.$

Notation 56. Let be the regular systems f, g and the function Υ such that $f \subset \Sigma_{\Upsilon}^-$, $g \subset \Sigma_{\Upsilon}^-$ are true. The computation functions of f, g are π_f , π_g . We denote by $\pi_{f \cup g} : W_{f \cup g} \to P^*(P_n)$ the

$$function \ \forall (\mu,u) \in W_{f \cup g}, \ \pi_{f \cup g}(\mu,u) = \left\{ \begin{array}{c} \pi_f(\mu,u), (\mu,u) \in W_f \setminus W_g, \\ \pi_g(\mu,u), (\mu,u) \in W_g \setminus W_f, \\ \pi_f(\mu,u) \cup \pi_g(\mu,u), (\mu,u) \in W_f \cap W_g \end{array} \right..$$

Theorem 57. If the systems f, g are regular $f \subset \Sigma_{\Upsilon}^-, g \subset \Sigma_{\Upsilon}^-$, then the union $f \cup g : U \cup V \to P^*(S^{(n)})$ is regular, $f \cup g \subset \Sigma_{\Upsilon}^-$; its initial state function is $i_{f \cup g}$ and its computation function is $\pi_{f \cup g}$.

References

- [1] S. E. Vlad, Teoria sistemelor asincrone, Editura Pamantul Pitesti and WSEAS Press Athens, 2007.
- [2] S. E. Vlad, "Boolean dynamical systems", the 15-th Conference on Applied and Industrial Mathematics CAIM 2007, Mioveni, Romania, October 12-14, 2007.
- [3] S. E. Vlad, "On the generation of the asynchronous systems", the first National Conference of Applied and Fundamental Mathematics, Iasi, Romania, November 9-10, 2007.

Serban E. Vlad Oradea City Hall Computers Department Piata Unirii, Nr. 1, 410100, Oradea, Romania E-mail: serban_e_vlad@yahoo.com Received: December 24, 2007