On the fundamental mode

Serban E. Vlad

ABSTRACT. The asynchronous systems are multivalued applications f from
R — {0,1}™ functions, called (admissible) inputs, to sets of R — {0,1}"
functions, called (possible) states. The fundamental (operating) mode of f
consists in the existence of an input u and of a sequence (u*)ren € {0,1}7
of binary vectors so that u®, ut, u2, ... are accessed by all the states x € f(u)
simultaneously in this order, u is the initial state and (,uk)kzl are ’steady
states’.

1. Introduction

The concept of asynchronous system has its origin in the modeling of the
asynchronous circuits from digital electrical engineering and the asynchronous sys-
tems theory is the theory of modeling such circuits. The uncertainties that govern
these circuits can be surpassed in at least two ways: by using a three-valued logic
and respectively by using a two-valued logic but many-valued functions (i.e. non-
deterministic systems), that give for each cause all the possible effects, our choice.

Several works exist in this moment containing equations and inequalities writ-
ten with R — {0, 1} functions that model the behavior of the asynchronous circuits.
In [1] we present a method of modeling where the fundamental circuit is the ’de-
lay element’, i.e. the circuit that computes (inertially, in real time) the identical
function {0,1} — {0,1}. The technique of modeling is called delay theory. The
‘delays’, i.e. the models of the delay elements are one dimensional asynchronous
systems that fulfill a certain requirement of stability. They were generalized later
in our works (2] and [3].

Let the asynchronous system f that associates to some input u : R — {0,1}™
the set of states x € f(u), where z : R — {0,1}". The fundamental operating
mode of f asks the existence of a sequence (u¥)ren € {0,1}" so that all x €
f(u) run simultaneously through the values u, u', 12, ... in this order, where u°
is the initial state and u', 2, ... are final states (steady states). This concept is
mentioned in many works under a non-formalized manner. We quote [4] where
its characterization is the next one: ’inputs are constrained to change only when
all the delay elements are stable (i.e. they have the input value equal with the
output value)’. 'Note that the fundamental mode excludes’ the existence of ’a cycle
of oscillations’, that is instability. Elsewhere the author refers to the fundamental
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mode where ’the designer has to make sure that the circuit inputs can change only
when the circuit itself is stable and ready to accept them’. The characterization
given by L. Lavagno to the fundamental mode, that agrees with other opinions,
corresponds to our special case from Section 11.

2. Preliminaries

DEFINITION 1. We note with B the set {0, 1} together with the order 0 < 1, the
discrete topology and the laws: the complement '—', the intersection ', the reunion
"U" and the modulo 2 sum ' @' . B is called the binary Boole algebra or the Boole
algebra with two elements.

NOTATION 1. For some interval I C R and x : R — B", we note with x|; the
restriction of x at I.

NOTATION 2. If x is constant on the interval I and equal with p € B™, we write
x|; = W, by identifying the function with the constant.

DEFINITION 2. Let x : R — B" some function. We define the initial value of
x, noted x(—oco + 0) or . lim z(t) to be that vector from B™ satisfying one of the
——00

equivalent statements
Jto € RVt < g, x(t) = x(—00 + 0)

dty € va\(—oo,to) =xz(—00+0)
Dually, the final value of x is noted with x(co — 0) or ltlim x(t) and it is the vector
from B™ satisfying one of
Jdty € RVt > ty,x(t) = x(c0 — 0)
dy e Rax\[tf,oo) = 2(00 —0)
NOTATION 3. For some d € R, we note with @ : R — R the translation
vt e R, T4(t) =t —d.
REMARK 1. For any x, x(—oo + 0) and x(oco — 0) are uniquely defined since
x is a function. On the other hand, the initial and the final value of x and x o 7¢
coincide (we have Vt € R, (x o 74)(t) = z(t — d)).
DEFINITION 3. For any set A C R, we define the characteristic function of A
by x4 : R — B,
[ lifteA
NOTATION 4. We note with Seq the set of the real unbounded strictly increasing
sequences tg < t1 < ta < ... The elements of Seq will generally be noted with (ty).

DEFINITION 4. The function x : R — B"™ is called n—dimensional signal if
x(—oo+0) € B" and (t;) € Seq exist so that

z(t) = (=00 +0) * X(—oo,t0) () B T(t0) * Xjtg,t) (1) B T(t1) - X[ty 1) (1) © -

NOTATION 5. The set of the n—dimensional signals is noted S™).
We note with S the set of these x € S™ for which x(oo — 0) exists.
For some function F : B™ — B"™ we note

ng) = {ulu € S(m),tlim F(u(t)) erists}
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DEFINITION 5. Let z € S™ and the numbers ty,t; € R so that ty < t;.
The restrictions ¥ = T|(—oo,t], ¥ = T|te,t,] are called transitions of x from the
value x(—oo + 0) to the value x(t1), respectively from x(ty) to x(t1). The intervals
(=00, t1], [to, t1] are called the support intervals of the transitions v,~'. The number
t1 — tg is called the duration of the transition ~'.

NOTATION 6. We note with P*(S™) = {X|X c 8™, X # 0} the set of the
non-empty subsets of S,

DEFINITION 6. A function f : U — P*(S™), U € P*(S"™) is called (asyn-
chronous) system, given under the explicit form. It associates to the functions
w € U called (admissible) inputs, sets of functions x € f(u), called (possible) states.

Under the implicit form, the asynchronous system consists in one or several
equations and/or inequalities where the unknown x € S () depends on u € U.

DEFINITION 7. The system f is non-anticipatory if Vt € R, Yu € U, Yv € U,
Ul(=00,) = Vl(~o0,t) = {Z|(~o0,q|T € F(u)} = {Y)(~c0ly € f()}
3. Synchronous access

DEFINITION 8. By the synchronous access of (the states of) f : U — P*(S™),U €
P*(S™), under the input u € U, to the value u € B™ at ty € R it is understood
the next property

(3.1) Va € f(u),z(to) = p
If it is fulfilled, 1 is called synchronously accessible value and tq is called the access
time (instant) of (the states of) f under the input u to the value p.

THEOREM 1. Let the non-anticipatory system f and we fiz to € R,u € U,
w € B™. (8.1) is equivalent with
(3.2) Fv € U, Uj(—o0,tg) = V|(—o0,t0)» VY € f(v),y(to) = 1

PRrROOF. (3.1)=(3.2) is obvious.
(3.2)==(3.1). From uj(—scty) = V|(=cc,ty) and the non-anticipation of f we
infer that {z|(_oo,te)lz € f(u)} = {¥|(=00,to)|¥ € f(v)} in particular we have

{a(to)|x € f(u)} = {y(to)ly € F(v)} = n

i.e. (3.1) holds. O
DEFINITION 9. The next special cases of fulfillment of (3.1)

(3.3) Vo € f(u), o) (—oo,ty) = M

(34) Vo € f(u), o|[y,00) = M

are called synchronous initial access, respectively synchronous final access of f,
under u, to p. The vector u is called (synchronously) accessible initial value, re-
spectively (synchronously) accessible final value' and (—oo,tg), [to, 00) are called the
access time intervals of (the states of) f, under u, to the initial value, respectively
to the final value.

LOther terminologies are: final state of f, or steady state of f. We indicated in the Abstract
and in the Introduction the concept of 'steady state’ because it is the most popular, but we preffer
the indicated terminology due to its precission and due to the fact that it highlights the duality
initial-final.
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DeFINITION 10. If
(3.5) Vo e f(u),z=p

we say that f has, under u, a point of equilibrium and p is called point of equilibrium
of f. The access time interval of (the states of) f, under u, to u is by definition
R.

REMARK 2. The word ’synchronous’ in the previous definitions means the fact
that the number to does not depend on the choice of x € f(u).

The point of equilibrium is a special case of both the synchronously accessible
initial value and the synchronously accessible final value of f.

On the other hand we try to extend, when f is non-anticipatory, the result of
Theorem 1 to the equivalencies between (3.8), (8.4) and respectively

(3.6) v € U, Uj(—o,t0) = V|(=o0,te)s VY € F(V), Y] (—o0,te) = M

(3.7) v € U, U|(—00,t0) = V|(~o0rte)s VY € F(V), Y|tg,00) = 1
We observe that

- (8.8)<=(3.6) is true

- (8.4)<=(3.7) is not true. While (8.4) shows that all x € f(u), starting from
the time instant ty, become equal with p, (3.7) states that oll x € f(u), starting
from to, may become equal with p, if for example u = v.

It is not the case to try such reasoning for the points of equilibrium too.

4. Synchronous consecutive accesses

DEFINITION 11. We suppose that the system f is non-anticipatory. By the
synchronous consecutive accesses of (the states of) f, under u € U, to the values
u, 1’ € B™ at the time instants to < t1 it is understood the property

(4.1) Vo € f(u),z(to) = u and x(t1) = 1/

REMARK 3. In the present work we are interested in two special cases of syn-
chronous consecutive accesses, the one when in (4.1) u is initial value and p' is
final value

(4.2) VI € f(u), )(—ooty) = 1 and |1, o) = w
and respectively when in (4.1) p, ' are both final values
(4.3) Vo € f(u), T|jtg,00) = 1 and |, oo) = p/

Let us replace in (4.2) and (4.3) the synchronous accesses of x to the final values
by (3.7). After some computations that take into account the non-anticipation of f
we get the properties

(4.4) Jv e U, Uj(—o0,t1) = 'U\(—oo,tl)yvy € f(U)7y|(*Oo,t0) = pand Y|[t1,00) = W

(4.5) v € U, Uj(—s0,t0) = V|(—o0rto)s VY € F(V),Y|[to,00) = 1 and

and ' € U, u(—oo,t,) = Uf(_ooﬂgl)avyl € f(U/)vy\/[tl,oo) =
The non-equivalent statements (4.2) and (4.4) describe, each of them, the accesses
of [ first to the initial value u, then to the final value ', with the difference that
in the first case all x € f(u) stabilize at ' and in the second case all x € f(u) may
stabilize at p', for example if u = v.



ON THE FUNDAMENTAL MODE 5

The non-equivalent statements (4.3) and (4.5) give two completely different
manners of accessing synchronously first the final value p, then the final value u',
in the sense that at (4.3) we have necessarily the triviality p = ' while at (4.5)
% ' is possible.

In the properties (4.1),...,(4.5) the possibility p = ' = point of equilibrium
exists, with the trivialities that follow from this situation.

5. Transfers

DEFINITION 12. We suppose that the non-anticipatory system f accesses syn-
chronously, under the input u € U, the values p, i/ € B™ at the time instants
to < t1, i.e. (4.1) is fulfilled. Then we note

(5.1) I'= {x|[t07t1]|x IS f(u)}
T is called the (synchronous) transfer of (the states of) f, that is made under the
nput u from p to p'.

Conversely, if we say that T that is defined by (5.1) represents a transfer of f,
made under the input u, from p = x(to) to ' = z(t1) and p, i’ are independent on
the choice of © € f(u), then we mean that (4.1) is true.

DEFINITION 13. We ask that (4.4) is true and we note

U|(—o0,t1)

(5.2) o = = {2 oo T € flu)}

I g i is called initial fundamental transfer of (the states of) f, under u,

from the initial value p to the final value p'.
U|(=o0,t1)
—

Conwersely, the statement that u w' defined by (5.2) is an initial fun-
damental transfer refers to the existence of tg <ty so that (4.4) is satisfied.

DEFINITION 14. If (4.5) is true, we note

Ulltg,t1)
(5.3) po = {0 T € f(u)}

“lttogr) w is called non-initial fundamental transfer of (the states of) f, made

under the input u, from the final value u to the final value p'.
Ulltg,t1)

Conversely, the statement that p =" ' defined by (5.3) is a non-initial
fundamental transfer means the satisfaction of (4.5).

DEFINITION 15. If (8.5) is fulfilled, we note

(54) (n=p) = {n}
w = p is called trivial fundamental transfer of (the states of) f, made under the
imput u, p being a point of equilibrium.

Conversely, when we state that p = p defined by (5.4) is a trivial fundamental
transfer, this means the truth of (3.5).

DEFINITION 16. If the synchronous transfer I' satisfies Vy € T', v is coordinate-
wise monotonous then it is called hazard-free.

REMARK 4. At (4.4), the synchronism of the access of the states to the initial
value [ is not necessary in many situations and it was asked for the symmetry of
the exposure only.

At the hazard-free transfers, the condition of monotony seems one of economy
and normalization, the coordinates of x do not switch more than necessary, but it
has rather a functional meaning.
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The trivial fundamental transfers are hazard-free.

6. Some simple properties of the fundamental transfers and an example

THEOREM 2. Let the non-anticipatory system f and we fix tg,t; € R,tg <
ti,u € Uyp, ' € B™. If (4.2) is true then u gt ' is an initial fundamental
transfer and if

I € U, Uj(—00,t0) = V|(—o0rte)s VY € F(0),Yllte,00) = pt and Y € fu), 2, o) = 1

then p Hilto:fp) ' is a mon-initial fundamental transfer.

PROOF. The first hypothesis makes (4.4) true for v = u and the second state-
ment makes (4.5) true for v/ = u. O

THEOREM 3. Let f non-anticipatory and u i i a fundamental transfer, where
I C R is an interval of the form (—o0,t1) or [to,t1).

a) If I = (—o0,t1) and u' € U is arbitrary with o s,) = Ui(—oo,tl)’ then
I ik ' is an initial fundamental transfer equal with u i '

/ o u ‘
b) If I = [to,t1), then Vu' € U, uj(—oot,) = Uj(_ oo py) tmplies that p L Wisa
u

non-initial fundamental transfer equal with u Bk w.

u/ — 00, . . .. .
PROOF. a) p ) i/ is an initial fundamental transfer i.e.

Jtg < t1,Fv e U, ui(,oo7tl) = V|(—o0,t1)>

vy € f(v)7y\(—oo,to) =M and Y|[t1,00) = lul
takes place because the hypothesis (4.4) is true as well as u|(—oo,,) = uf(_ooil). We
take into account the non-anticipation of f and we get the second statement of the
Theorem

!
U

Y(=o0,t1) (—00,t1)
po = = {acsonlr € f)} ={a{ syl € fW)}=p ST
b) is proved similarly with a). O
EXAMPLE 1. The system f : S — P*(S) that is defined by the double inequality
(6.1) M w®=<zt)< |J u@©
geft—1,t) geft—1,t)

models the computation of the logical complement of u, made with a delay of one
time unit. We suppose that it is non-anticipatory and we note u = X[p2), ¥ = X[0,00)

for which the inequalities () w(é) <z(t)< U u(€), N v <ylt)<

Eeft—1,t) Eeft—1,t) Eet—1,t)
v(§) become
Eeft—1,t)
(6.2) X(—o0,0]U[3,00) (1) < 2(t) < X(Zoo,1)u(2,00) ()
(6.3) X(=o0,0]) S Y(t) < X(—00,1)(t)

From (6.3) we infer that
Yy € f(0),¥)(~c00) = 1 and yjp,00) = 0
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and because
ul(_ooyl) = v‘(_ooyl)
we have that (1 R 0)=(1 g 0) is an initial fundamental transfer ((4.4)
is true). From the inequalities (6.2), (6.3) we also infer that
Yy € f(v),Y11,00) = 0
vfo( ) x\Soo)*l
Y3

ie. 05V 1 is non-initial fundamental transfer (from Theorem 2).

U| (- oo,
The transitions v € 1 =0 and v €0 Y91 are not monotonous in

general. We ask in what conditions, if we add the (absolute inertia) requests

(6.4) 2(t—0)-z(t)< () =
€[t t+6]

©5) w(1-0)- 70 < () 7O
€[t t+6]

-where § > 0- to (6.1) with u = X 9), i-e. to (6.2), monotony is true. Monotony
means that © switches from 1 to 0 in the interval (0,1] and that it cannot switch
from 0 to 1 and then from 1 to 0 again in this interval. Let 0 < t; <ty <t3 <1
so that

x(t1 —0) - z(t1) = x(ta — 0) - x(te) = x(ts — 0) - x(t3) =1
We have then to —t; > O,t5 —tg > 0 fmm the satisfaction of (6.4) and (6.5)-

meaning that 1 > t3 —t; > 26. Thus if 6§ > 5 , such ty,ta,ts do not exist and any

Y2V 0 ds 0 monotonous transition. Similarly 6 > % implies the fact that

any vy €0 Y59 1 s monotonous.

Another condition is also required here: after having switched from 1 to 0 in
the interval (0,1], x is also allowed to switch from 0 to 1 in the interval (2,3]. This
gives 6 < 3.

The conclusion is the following: for 6 € [%,3), the system g that is obtained

by intersecting (6.1), (6.4), (6.5) where uw = X[o9) has the transfers 1 R 0,

0% 1 hazard -free.

vyel

7. The composition of the fundamental transfers

THEOREM 4. Let the non-anticipatory system f : U — P*(S™), U e P*(S(™)
satisfying the conditions:
i) U is closed under translations and under ’concatenation’

VdeR,VueUuor? el
Vie R,Vue UVYveU,u- X(=o00,t) BV Xt,00) € U
i) non-anticipation® ¥t € R, Yu € U, Vv € U,
(W[t,00) = Vl[t,00) and {z(t)|z € f(u)} = {y(t)ly € f(v)}) =

:>{x|[too|x€f }*{y\[toowef( )}
i11) time invariance

Vd € R,Vu € U, f(uo7?) = {z otz € f(u)}
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a) We suppose that to < tq, to < t3, u®,ul,v' € U and p, ', ;> € B™ are
arbitrary with
Vo € f(u°), 2)(—oote) =
Vo € f(uo),x‘[tl,oo) =
1 1
U(—o0,t2) = Y|(—oo,t2)
Y € S0 Yta,00) = M
va' € f(u1)7xi[t3,oo) = M”
We note with d = t1 — t2 and

Ue = U’ X(ootr4e) ® (u' 0 7)

* X[t1+e,00)
for e > 0. We have
VI € f(ﬂs)ail(—oo,to) =p
vz € f(ﬂ€)7§‘[t3+d+€,oo) =H

0 1
. o Ul(=o0,01) o “llt2,t3) . Sy
meaning that if . — "y’ is initial fundamental and 1/ "7 @ is non-initial

”

uE — 00, € . . oy .
fundamental, then p (Zontptate) w” is anitial fundamental. In other words if

f(u®) transfers synchronously the initial value p in the final value ' and if f(u')
transfers synchronously the final value ' in the final value p” then f(i.) transfers
synchronously the initial value p in the final value p”.

b) Let us suppose that tg < ti, ta < t3, u®, v ul,v* € U and p, ', u” € B" are
given so that

(7.1) Uf(—oo,t0) = U(—o0,t0)
(7.2) VY € F(0°), Yjfto,00) = H
(7.3) Vo € f(u”), Tjjt,,00) = 1
(7.4) Ui(—o0,t2) = Vi(=o0.t2)
(7.5) VY € F(01), Utg00) = 1
(7.6) va' € f(uh), 2]y, 00) = 1
With the notations d = t, — t2, v = v° and
(7.7) Ue = U X(—ootige) ® (W 0T X e o)
€ > 0, we have
(7.8) Ue|(—00,t0) = Ul(—o0,to)
(7.9) Vy € f(0), Yjjto,00) = K
(7.10) VT € f(Ue), Tty +dte,c0) = K
e 1) ;o Uity t3)

This means that if p =" ', ' =37 p’ are non-initial fundamental, then

aE € . . oy .
Tt tarare) u” is mon-initial fundamental (if f(u®) transfers synchronously the

final value p in the final value ' and if f(u') transfers synchronously the final
value 1’ in the final value p” then f(ue) transfers synchronously the final value p
in the final value p”).
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PROOF. b) Let us observe first that u. given by (7.7) belongs to U, from i).
(7.8) is satisfied because for any ¢ > 0 we have t; + & > t1 > ¢y and also from
the definition of v:

~ (7.7 o (7.1 o _~
Ue|(=o0,t0) = Uj(—oo,te) = Yl(—oo,ta) = Y|(—oo,to)

(7.9) is true because it coincides with the hypothesis (7.2).
We prove (7.10). From (7.4) and from the non-anticipation of f we infer

{Yl(—oota [V € F(01)} = {2](_ooy)l2” € F(u')}
and if we take into account (7.5) also, we can see that
(7.11) ' (t2)ly’ € fo)} = {2/ (t2)]a" € f(ul)} =/
The time invariance of f implies that
(@7 € f(u' 07%)) = o’ o r I’ € )}
thus
(7.12) {2/ (t2)|2" € f(u')} = {2"(t1 +&)[2” € f(u' o T7T€)}
From
Ue|(—oo,ty+¢) = U?(—oo,t1+a)
and from the non-anticipation we get
{2 (Cootr 44 [T € fUe)} = {2 (Cooty o]l € S}
in particular we have
(7.13) {Z(ty +e)|T € f(u)}y = {x(ty + )|z € f(u®)}

Then

(7.13) (7.3) o

{3t +2)[7 € f()} | {dh+dw€f()} -
1y ()l € foh)} B {2/ (8a)]a! € Flut)) =

(7.14) T2 1ty + o) |27 € flud o r8+e)}

Because

(7.15) Ug|[t) 4e,00) = (u'o Td+€)|[t1+s,oo)

(7.14), (7.15) and the non-anticipation* of f show that

(7.16) (Tt +e,00) [T € f(e)} = {27, 4e,00) |27 € flul 079%%)}

But the fact that t3 +d+¢ > t; + ¢ and

(7.17) {27 |t 4e.00) |77 € fluh 0 7)) = {(&/ 0 T79) 11, e 00 |2 € f(u')}

indicate the truth of

-~ -~ ~ (7 6) 7 9 1
{xl[t3+d+a,oo)|x € f(ua)} = {1’ |[t3+d+8,00)|x € f(ul o7t )} =

(7.17) e
=@ ot )|itatdte.00)|t” € flu }*{x| [ts, oo)|x € f(u)} M
(7.10) is proved. O

(7.6)
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DEFINITION 17. We use the notations from the previous theorem and we sup-
pose that the requests stated there are fulfilled. We have the next partial law of
composition of the fundamental transfers:

0 1 ~
Ul(=oo,t1) 4 p Yt ) Ue|(—oco,tz+d+e)
(b =) v ST )= -
u\o[to,tl) ’ /u\l[fQ,t?,) ) aé\[foyta+d+€) s
(b =)V =)= =

8. The composition of the fundamental transfers, special case

THEOREM 5. We know about the system f that it is non-anticipatory. The
next statements are true: N
a) For anyty < te, u € U and p, 1/, 1/’ € B™ so that the transfers p ) w,

y Wllty,t2) U|(—o0,t3)
=

1’ are fundamental, the transfer p —~ —"=" u” is fundamental.
b) We suppose that t, < to < t3, uw € U and p, ', € B™ are arbitrary and

. Ul[ty,ta) ; Ult2,t3)
satisfy the property that the transfers p == p', /' = u’ are fundamental.

. . . u‘[tlvt?:) ”
In this situation the transfer p =" u

is fundamental.
PROOF. a) The hypothesis states the existence of tg < t1,v € U and v' € U so
that

Uj(—o0,ty) = V|(—o0,t1)> VY € F(V), Yj(—oo,te) = 1 and Y|, 00) = ft'

2

Uj(—o0,t2) = V(=o0,t2) VY € () Yfjta,00) = 1

Because v|(—co,1y) = v"( from the non-anticipation of f we have

7oo,to)7

{U1(—c0,to) |y € F(0)} = {Y(coo)l¥' € F(V)} =1
thus

)

Uj(—o0,t2) = V(—o0ta)> Y € F(U),U(“oot) = 1 and Yj1y, o) = I
i.e. the transfer u gt u” is fundamental.
b) is made similarly with a). O

DEFINITION 18. In the conditions and with the notations from the previous
theorem, we have the next partial law of composition of the fundamental transfers:

(M “\(*;)Ocyh) M/) Vi (M/ u\[ifz) /1/”) =4 u\(*j,fz) M”

(M “\[gtz) MI) Vi (MI “\[gtz’)) M”) _

REMARK 5. Theorem & restates the results from Theorem 4 under a simplified

form, for example at Theorem 4 a) we have u® = u' and for this reason the requests

of closure of U under the concatenation of the inputs and of non-anticipation®

disappear, respectively t1 = to and for this reason the requests of closure of U under
translations and of time invariance disappear too.

Ui[ty,t3) 5
1
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9. The fundamental mode

THEOREM 6. We consider the system f that is supposed to be non-anticipatory
and let w € U a fized input. The next statements are equivalent
a) (tr) € Seq, (u*) € U and (%) € B™ exist so that

Va € f(u°),2)(—ooty) = 1° and @, o) = 1

_,0 _ .1 )
Ul(—oo,t1) = U(—o0,t1)r W|(—oo,t2) = Uj(—o0,ts)r U|(—o0,tz) = U|(—o0,tz) "

Vo € f(ul), @|jy.00) = 12, V2 € F(U?), Z|[t5,00) = 1%, VT € F(U?), 2)11,00) = 17, ...

b) (tr) € Seq and (uF) € B exist so that the transfers 0 =3yt pt )

2 9 Ylta.t3)
s p - u
¢) (te) € Seq and (p¥) € B™ exist so that the transfers p° ' —=" b

0 Yl(—ooita) o U|(—oo,t3)

po =,

w,... are fundamental.

w3, ... are initial fundamental.
PROOF. a) = b) Let (t), (u") and (1*) like at a). Because

(91) U|(—o0,ty) = u(|)(foo,t1)7 Vr € f(u0)7x|(foo,t0) = p,o and T|[ty,00) = Ml

is true, ©0 =" 41 is an initial fundamental transfer. The fact that

(92) U|(—o0,ty) = u?(7m7t1), Vx € f(’U,O),JJchoo) = p,l

(9.3) Ul(—o0,t) = Uf(—oots) VT € F(U1), T|[t3,00) = 12

Ullty.ta) o . c e
—>"" p® is non-initial fundamental etc.

Ul(—o0,t1) 1 1 Yllt1,t2) o o Ullta,t3)

b) = ¢) (t) and (u*) exist so that p® —="" pl, pbt =252 42 pu
, ... are fundamental. Like in Theorem 5 and Definition 18

implies that !

13

U|(—oo0,t2) Ul (—o0,t1) Uilty,t2)
//’0 otz MZZ(MO gkt Ml)v(ﬂl ;2 MZ)

0 Yl(—oo,t3) 3

U|(—ooy.t2) Ulta,t3)
po ST = (S ) v (T )

are initial fundamental.

¢) = a) We consider the sequences (t;) and (u*) like at ¢). The fact that

0 1= )1 g initial fundamental shows the existence of u® € U so that (9.1)

Ul (=o00,tz)

holds and because p® "—=*" p? is initial fundamental we obtain the existence of
u! € U with (9.3) true etc. The statement from a) is true. O

DEFINITION 19. We say that f is, under the input u, in the fundamental (oper-
ating) mode if one of the previous properties a), b), c¢) from Theorem 6 is satisfied.

THEOREM 7. If f is non-anticipatory and to < ty,u € U, u, ' € B™ are fized,
then the fact that

Vr € f(u), T)(—oote) =t and T|[t, o0) = 4’

implies that f is, under u, in the fundamental mode.
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PrOOF. The sequences (,) € Seq and (u*) € B™ exist satisfying
ty = to,ty = t1,t), k > 2 arbitrary

W =ppt=p*= =y
Ul(=oosth) , Ui(=eoth) . UY(—ooith) N
We observe that y = — " p/,p  — " p/;p  — 7 4/, ... are initial fundamental
transfers. m

REMARK 6. The fundamental mode may be interpreted as a discrete time sym-
bolic evolution of a deterministic system (i.e. f is uni-valued) of the form

k uk+1

1
W=z S pt=2()S .St =gk +1) "> ..

0
U(—oo,t1)

where the initial fundamental transfer p° pt is identified with the sym-

0
bolic transfer x(0) % (1) and a non-initial fundamental transfer of rank k > 1,
ult k
kM) L s dentified with the symbolic transfer (k) "> x(k + 1).
If we are in the hypothesis of the previous Theorem, then the symbolic evolution
may be considered to be given by a finite sequence

I

= 2(0) L pt = 2(1) w P =k +1)
where k can be 0.

EXAMPLE 2. In Example 1 both systems f, g are in the fundamental mode under
the inputs u and v.

EXAMPLE 3. The deterministic system f : S — S,

B l,u= X[0,1)U[2,3)U[4,5)U...
Yu €5, flu) = { 0, otherwise

satisfies the next properties: w = X[o1)uj2,3)u[4,5)u..., the unbounded sequence 0 <
2 < 4 < ... of real numbers, the family
u’ =Xy ¥ = Xpulzay @ = Xpaupauis) -

of inputs and the binary null sequence 0, € B,k € N exist so that
FO)|(—o0,0) = 0 and f(u°)|2,00) = 0
0 1
Uj(—00,2) = U|(~00,2)7 Ul(—00,4) = U|(~00,4) "

F@)00) = 0, F(4?)16,00) = 0; ...
The statements
f(u)\(foo,Z] = f(uo)\(fooﬂ]; f(u)l(foo,él] = f(ul)\(fooA]a
are false, since f is anticipatory. f is not in the fundamental mode under u.
THEOREM 8. Let the non-anticipatory system f be in the fundamental mode
under u. Then the families (t,) € Seq and (u¥) € U exist so that

k
vk € N,u\(—oo,tk+1) = Y

—00,tk+1)

and for all k € N, f is in the fundamental mode under u¥.



ON THE FUNDAMENTAL MODE 13

PRrOOF. From Theorem 6 item c), (tk) € Seq and (u*) € B" exist so that the

transfers p° o) ut, pf ooy T Hl(zoogrs) p?, ... are initial fundamental,

i.e. the sequence (u*) € U exists with
Ul(—ootr) = U(—ooty)r VT € F(U),2)(Coorte) = H” and @1, o0) = 1

Ul(—o0,t2) = Uf(—ooty)s VT € F(U),2)(—oo,t0) = 1 and z 1, o) = 1

U|(—oco,tz) = \2 —o0,t3)? Vz € f(uz)axl(—oo,to) = ,uo and L[ts,00) = M

0 1 2
u u u
[(=o0t1) (=00, t2) (oo t3) s
thus 0 == gt p® TR 42, x0T 43, are initial fundamental and

from Theorem 7 we obtain that f is in the fundamental mode under all u*, k €
N. O

THEOREM 9. Let f non-anticipatory and we suppose that U has the next closure
property: for any u € S and any sequences (ty) € Seq, (uF) € U, from
(9.4) VE € N Uj(—ootir) = Ul

—00,tk41)

we infer u € U. Then the next statement is true: for any (u¥) € U so that f is in
the fundamental mode under all u*, a sequence (t;) € Seq exists so that

k _ k+1

00,tk+1) [(—00,tk+1)

implies that f is in the fundamental mode under the unique u satisfying (9.4).

PROOF. Let (u*) € U a sequence of inputs having the property that f is in the
fundamental mode under all v* and let us take an arbitrary 6 > 0. We have the
existence of tg,t; € R and u° u* € B™ so that to + 6 < t; and

Vo € f(u°), 2)(—co ) = 1

Vo € f(u ) T[4, ,00) =ut

of to € R and p? € B" so that t; + 6 < ty and

Vo € f(u'), T|jty00) =
of t3 € R and p? € B" so that to + § < t3 and

Vr € f( ) T|[ts,00) =

0 2
Obviously Hltzeegt) pt, pt ity u?, p? “litz t9) w3, ... are fundamental transfers
(see Theorem 2) and (tx) € Seq. The relation (9.4) may be written for some u €
S(m) due to (9.5); it defines a unique function u € S and moreover we have that

u u
\( 1) ] 1 ltt2) 9 9 Tllta,t3) ‘ug

u € U. From Theorem 3, the transfers ;° [T TR S A e
are fundamental, thus f is in the fundamental mode under w. O
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10. A property of existence

THEOREM 10. Let the non-anticipatory system f. We suppose that the next
properties are fulfilled

a) for any (t,,) € Seq and any sequence (u*) € U of inputs we have u
X(=ooite) DU Xitg,t1) DU Xty 1) B o €U

b) f satisfies the next property of race-free initialization with bounded initial
time:

0.

Vue U, 3u e B", 3ty € R,Vr € f(u), T|(—oo,tg) = 1
¢) f is absolutely race-free stable with bounded final time, i.e.
Vue U, 3" € B", 3ty € R,Vx € fu), x|, 00) = 1

Then for any sequence (u¥) € U of inputs, the time instants (t,) € Seq exist
so that f is in the fundamental mode under the input

u=u’ X(~o0,t1) @ ut - X[t1,t2) D - B ut - X(ti,tr) D -

PRrOOF. We consider some real number § > 0 and the arbitrary sequence (u*) €
U of inputs. From b) we infer the existence of u® € B™ and ¢y € R so that

Va € f(u°), (—oote) = 1

and from c) we have the existence of u' € B" and t; € R with ¢; >ty + 6 and

Vo € f(u°), @4 00) = 1

Furthermore, from a) we have that u" - X(=oo,t1) P ul - X[t1,00) € U and from c) the
existence of 42 € B™ and t5 € R so that ¢t > t; + 6 and

Vz € f(uo " X(—o0,t1) D Ul ! X[tl,oo))vx\[tmoo) = ,UZ
is inferred. The construction of (¢;) and the fact that () € Seq are obvious. On
the other hand @ obtained this way belongs to U taking in consideration a). The
statement that f is in the fundamental mode under the input u is inferred from the
equalities

Ul(—00t1) = U(— ooty Ul (—oots) = (U X(ooity) DU~ Xty 00) )| (—o0rta) s -+

O

THEOREM 11. If the non-anticipatory system f satisfies the next properties:
a) race-free initialization with bounded initial time:

Vu € U,3pu € B", 3ty € R,Vr € f(u), T)|(—oo,tg) = 1
b) absolute race-free stability with bounded final time
Vue U, 3 € B",3t1 € R,Va € f(u), iy ,00) = I
then
Yu e U,3p € B", 3’ € B, 3ty € R, Ity > 1o,
Vo € f(u), Z)(—oo,ty) = K and T, o) = '
Uj(—o0,ty
=

i.e. for any u, some p, i’ and tg < t1 exist so that u : ' is initial funda-

mental.

PROOF. From the first part of the proof of Theorem 10, where 1% = u. O
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THEOREM 12. We suppose that the mon-anticipatory system f is absolutely
race-free stable with bounded final time, i.e.

VueU,3ueB", 3t e R, Ve € f(u), T|jt,00) = 1
Then Yu € U, the vectors u, i’ € B™ and the numbers tg < t1 exist so that the

Ulto.t1)

transfer u 1 is mon-initial fundamental.

ProOF. It is sufficient to consider the next property: for any v € U, p and tq
exist so that Va € f(u), |j,00) = p; then p/ = p and t; > to arbitrary make the
conclusion of the theorem be fulfilled. O

11. Fundamental mode, special case

DEFINITION 20. For any t, € R, the prefix of u € S is the function Us, €
SM) given by
_ u(t),t <ty
u, (t) = { u(ty —0),t >t
THEOREM 13. Let the non-anticipatory system f and the input w € U. For
any (t) € Seq and (%) € B™ so that ug, , uty, Uy, ... € U and

Vo € f(ug,), T)(—oo,ty) = u° and [y ,00) = ut

Vo € f(ug,), T|[ty,00) = u?, Vr e J(uty), T|tg,00) = wd, Va e JF(uey), Tty,00) = JTR
f is, under the input u, in the fundamental mode.

PROOF. We define the sequence (u*) € U by u* = uy,,,,k € N. Because for
any k > 0 we have u|(_oo 1, ;) = u‘k(_oo tei1) the statement from Theorem 6 a) is
true. ]

COROLLARY 1. We suppose that the non-anticipatory system f and the input
we U are given. If the sequences (t,) € Seq, (1) € B™ and (\*) € B™ satisfy

u(t) = A% X(Coon) () B AL Xty 10y () B A% Xgg0) (D) © ..
A% A% X Cootn) @ AT Xitnioo) A X(coostn) B AT Xftr i) @ A Xtgr00) - € U and
Ve € f(N°), 2)(—o0,t0) = 1 and 2|1, o) = 1
Vo € f(/\0 “X(—ooyt) ® AL 'X[tl,oo))>$|[t2,oo) = 1>
Vo € f()\o “X(—o0,ty) P A Xty ta) P 22 'x[two)),x‘[tam) =13

then f is, under the input u, in the fundamental mode.

Proor. This is a special case of the previous theorem when u;, = AY, Up, =
A? X(coot) AT Nty o0y Uty = AV X(coot) A Xferte) @A Njig ooy O

REMARK 7. Theorem 18 gives a new perspective on the fundamental mode,
when Vk > 1 the stabilization of x to the value x(ty) is a direct consequence of the
fact that u has stabilized before ty, to the value u(ty —0). Thus at the time instants
ty,to,t3,... uw and all x € f(u) are in equilibrium

Vk > 1Vt > tg,ug, (1) = u(ty — 0) and Vo € f(uy, ), z(t) = x(tk)
and we consider the equilibrium be true at the time instant ty also under the form
Vit < to,u(t) = u(to — 0) and Vo € f(uy ), x(t) = x(tg — 0)
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by a suitable choice of tg.

The situation that is described in Theorem 18 includes the possibilities Ik >
L ug, = ug, ., and respectively Ik > 1,u = uy, .

Corollary 1 represents that special case of Theorem 13, when u is constant in
the intervals (—oo,t1), [t1,t2), [t2,t3), ...

The next theorem is an adaptation of Theorem 10 for the present context.

THEOREM 14. The non-anticipatory system f is given and let H C B™ a
non-empty set. If

o) U={\ X(—oo,t1) P Al “Xt1,ts) D z° “Xta,ts) D ~|(\F) € H, (tx) € Seq}

b) f has race-free initial states with bounded initial time

Vue U, 3u e B", 3ty € R,Vr € f(u), T(—oo,te) = 1
¢) f is relatively race-free stable with bounded final time
VueUNS™ 3/ € B",3t, € R,Va € F(w), 2y 00) = 1/

then for any (\*) € H, the time instants (t;) € Seq exist so that f is in the
fundamental mode under the input

u = AO . X(—oo,h) D Al . X[tl,tz) D )\2 . X[t27t3) D ...
PROOF. We just remark that the closure property from Theorem 10 a) is ful-
filled and that A%, A% X (_ oo 1) A" X(t,00) A° X(—o0,60) A Xt1,12) BAT Xta,00)1 -+ €

UNS™ for any (\") € H and any (t;) € Seq. The proof is similar with that of
Theorem 10. O]

12. Accessibility vs. fundamental mode

THEOREM 15. Let the non-anticipatory system f : U — P*(S(™), U € P*(S(™)
and we suppose that the next requests are fulfilled:
a) for any (t;) € Seq and any (u*) € U we have u

U X[ty 1) D - €U
b) f has race-free initial states and bounded initial time, i.e.
Vue U, Ipe B", 3t € R,Vr € f(u), 2)(—oot) = 1t

¢) any vector from B™ is final state under an input having arbitrary initial
segment

o X(*Oovto) ® ut - X[to,tl) ®

Vp e B",Vu e UVt e R,3v € U, 3t > t,
U|(—o0,t) = V|(—o0,t) and Vy € f(U)>y\[t/,oo) =
Then some 1i° € B" exists so that for any sequence pu* € B™ k > 1 of binary
vectors, a sequence (ty) € Seq and an input w € U exist having the property that

Uj(—oo,t1) Uity ,t0) U|[ty,t3)
pO T ot S 2?25 0B, L are fundamental transfers.

PROOF. Let an arbitrary input v° € U. From b) we get the existence of u° € B®
and tg € R depending on v so that

(12.1) Vx € f(vo),x‘(,ooyto) = uo

We fix the sequence ¥ € B”, k > 1 and an arbitrary number § > 0. The property
c) implies in this moment the existence of u® € U and t; > to + § so that

v|0(700,t0) - u?(foo,to) and Vx € f(u0)7x|[t1,oo) = ,U*l
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of u' € U and ty > t; + 6 so that
Ul(—ooyt) = Ul(oo,ty) AN YT € (), Tfty.00) = 7
of u> € U and t3 >ty + 6 so that

Ul —oorty) = Ul(—ooty) and Y € f(U?), 2|1, 00) = 1°

0 1 2
u u u
I(—o0t1) I[¢1,t2) I[t2,t3) .
The transfers p® —=" pb, pt 25 2 2 225 43, .. are obviously funda-

mental.
The way that (tx) was constructed guarantees the fact that this sequence be-
longs to Seq, thus the input u defined in the next manner

T=u"- X(—cort1) @ ul Xt t2) D u? “Xtarts) D -

belongs to U, from a). We have

~ _ .0 ~ _ .1 ~ .2
Ul(—oo,t1) = U(—o0,t1)r W|(—oo,t2) = Uj(—o0,ts)r U|(—o0,tz) = U|(—o0,tz) "

. Uj(=oo,t) CICES) Ujts t3)
from where we infer that the transfers p0 "—=" pl, pt =527 2, p? 2250 43,
0 1 2
. Ul(=o0,t1) “lt1t2) Ult2,t3)
equal with p0 == gt =S p2 2 225 3 (see Theorem 3) are
fundamental. O

THEOREM 16. The non-anticipatory system f : U — P*(S(”)) s given and we
suppose that the conditions

a) for any (tx) € Seq and any sequence (u¥) € U of inputs we have u® -
X(=o0,to) DU Xjtot1) DU Xty 1) @ €U

b) f has race-free initial states and bounded initial time

Vu € U,3u € B", 3t € R,V € f(u), T|(—oot) = i
c) the vectors from B™ are accessible final states in the next manner
Ve B Yu e UVt e R,IN € U, Tt > t,

Vy € f(u " X(—o0,t) DA X[t,oo))? Y[t ,00) = K
(we have identified A € B™ with the constant input A\ € U). Then u° € B™ exists so
that for any sequence u* € B™, k > 1 of binary vectors, the time instants (t;) € Seq

l(moo,t1) 1 1 Ullty,ta)

and the constants ()\k) € B™ exist with the property that j° Hllzey Wy

2 2 ’a‘[t2’t3> 3
W e =57 p, ... are fundamental transfers and we have noted
~ 0 1 2
u=A- X(=co,t;) P A X[ty ,t2) D AT X[ta,ts) D -
PROOF. Special case of Theorem 15. O

THEOREM 17. We suppose that the non-anticipatory system f is given so that
a) for any (t;) € Seq and any (u*) € U we have u® - X(=oorto) D U X(to,t1) P
U X[ty 1) D - €U
b) f has race-free initial states and bounded initial time
Vu e U,3u € B", 3t € R,V € f(u), T|(—oot) = 1
¢) f has accessible final states in bounded time under the form
36> 0,YueB",Vue UVt e R,Fv e U, 3t € (t,t +9),

Uj(—o0,t) = V|(—oo0,t) aNd VY € f(V),Y|[t',00) = 1
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Then 6 > 0 and p° € B™ exist so that for any sequence ¥ € B" k > 1, we

Ul(—oo,tg+6) 1

have the existence of to € R and u € U with the property that p° — o,

U[tg+6,t0+26) U[0+26,0+36)
LOOT™ ™ 2w ST B, L are fundamental transfers.

PRrROOF. Similar with Theorem 15. O

THEOREM 18. The non-anticipatory system f satisfies the requests
a) f has race-free initial states and bounded initial time

Vue U, Iue B", 3t c R,Vr € f(u), 2)(—0ot) = 1t
b) the vectors from B™ are accessible final states
VueB",Juc U3t cR,Vr € f(u), |00 = 1
Then
V' € B",3u € B",Ju € U, 3ty € R, Ity > 1o,
Vo € f(u), Z)(—oo,te) = K and T, o) = p/
I

i.e. for any p', we have the existence of u,u,tq and t; > tg so that u iz s

initial fundamental.

PRrOOF. Let i/ € B™ arbitrary, fixed. b) shows the existence of v € U and
t1 € R so that
Vo € f(u), 2| ,00) = K
Because of a) we infer the existence of ;4 € B™ and tg € R that can be chosen < 1
with
Vi € f(u), 2)(—o0,te) = 1
O

REMARK 8. In the theorems of this section the mext accessibility properties
occurred:
a) any vector from B™ is final state under an input having arbitrary initial

segment
Ve B, Yu e UVt € R,Jv e U, 3" > t,

Uj(—o0,t) = V|(=o0,t) ANd VY € f(V),Y|jtr,00) = 1

b) version of a) where the access in a final state is made under a constant input
Vue B Vu e UVte R,IN e U, 3’ > ¢,
VY € fU X(—oot) & A" X[t,00))s Yl[#/,00) = H
c) version of a) where the access in a final state is made in the next way
36> 0,YueB",Yue UVt e R,Jv e U, 3t € (t,t +9),

Uj(—o0,t) = V|(=o0,t) aNd VY € f(0), Y[tr,00) = 1

d) wversion of a) where the inputs under which the vectors from B™ are final
states do not have an arbitrary initial segment

Ve B", Jue U, 3t € R, Ve € f(u), T|jt,00) = 1

We have the implications:



ON THE FUNDAMENTAL MODE 19

13. The fundamental mode relative to a function

DEFINITION 21. Let the system f : U — P*(S™), U € P*(S"™)) and the
Boolean function F : B"™ — B™. When the next property is fulfilled: vVt € R,
Vu e U, Yv € U,

V€ <t, F(u(§)) = F(v(§) = {2)(—c0glz € f(W)} = {y)(~c0yly € f(v)}
we say that f is non-anticipatory relative to the function F.

DEFINITION 22. We suppose that the system f is non-anticipatory relative to
the function F and that (t) € Seq, u, (u*) € U and p° € B™ exist satisfying the
properties

V€ f(u?), 2)(—ooty) = 1° and T, o) = F(u(ts — 0))

F(u(te4r —0)), € = teya
Vk > 1,Vz € f(uF), 2., 00) = Flu(teps —0))
Then we say that f is, under the input u, in the fundamental (operating) mode
relative to F'.

REMARK 9. Let the function w € U and the number t € R. We make the
observation that the functions v € U having the property that

wenro={ £

act here as prefizes of u, in other words v is the prefix of u relative to F. Definition
22 follows the idea from Theorem 13, where u* = F(u(tx—0)),k > 1 and we observe
that u* = Uty ..,k € N from there are prefives of u relative to F' also.

We state now the version of Theorem 10 that is valid in this context.

THEOREM 19. Let the function F' and the system f that is non-anticipatory
relative to F'. We suppose that the next properties are fulfilled:

a) for any (tx) € Seq and any sequence (uF) € U of inputs we have u
X(—o0,to) P u' “Xto,t1) D u? - Xtr,t2) - €U

b) race-free initialization with bounded initial time

Vue U, Ipe B", 3t c R,Vr € f(u), 2)(—0ot) = 1t
¢) F—relative race-free stability with bounded final time

Yue UNSEY, 3t € R,Vx € f(u), 2,00 = Jim F(u(¢))

vk € N,V¢ € R, F(u¥(€)) = { Fu(©)),€ < ti

0.

Then for any sequence (u¥) € U N Sg? of inputs, the time instants (t) € Seq
exist so that f is in the fundamental mode relative to F' under the input

u=u’ X(~o0,t1) ut - X[t1,t2) D - B ut - X(ti,tr) D -
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