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Abstract The R® B, functions may be inter preted to represent
- subsets of R
- models of the electrical signals
- propositions having a logical value that depends on time
Our purpose isto define and characterizethe R® B, differentiable functions.

1. Introduction. Basic Definitions

1.1 The R® B, differentiable functions are important for at least two reasons:

- they model the behavior of the inertial digital devices and the study of the models, called
asynchronous automata, has been afield of interest for us.

- they have strong resemblance with the real differentiable functions, making possible
analogies. We shall give comparisons between theorems characterizing these functions and the
corresponding theorems referring to real functions.

It isinteresting to leave the study open, making use of the ideas presented here:

- of the subsets of R (or of any ordered set)

- of asuitable temporal logic

1.2 B, ={0,1 isendowed with the laws:
Alo1 x/0o1 EJ|O01

0(0 1 0|0 O 0(0 1
1|1 0 1/0 1 1|11 1
table 1.2

anditisafield relativeto A, . It has the discrete topology and the order 0 £1.
1.3 A sequence a: N ® B,,a(n) =a,,nl N convergestothelimit a1 B, if
$NT N,"n>N,a,=4a
For example, the increasing sequences and the decreasing sequences are convergent.
1.41f (a,),(b,) areconvergent, then (a, A b,), (a, %,) are convergent and

lim (ay Ab,) = lima, A lim b,
n® ¥ n® ¥ n® ¥
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lim (a, X,)=(lim a lim b
n®¥( n *0n) (n®¥ n)>(n®¥ n)

15Let x: R® B,. Thereare defined for Al R:
i Lif $xT A x(x) =1

XIUAX(X)Z%o,if “x1 AX(x)=0’ )&U/EX(X) =0
| x(x)=‘%0'lf B Ax(=0 I x(x) =1

g A 1Lif " x1 A,x(x)=1'X”E
Wehavefor Bl R:
Al BP Ux(X) £ Ux(x)and | x(x)2 [ x(x)
xi A Xl B xi A xi B

1.6 The support of x isthe set: A
supp x={t|tl R,x(t) =1
We notewith ¢ 5 : R® B, the characteristic function of theset A. Itistrue:
X(t) = cgupp x (), tT R
1.7 We have the next properties:
(xA y)(t) = x() A y(t) = C supp x (DA Csupp y (t) = Csupp x D supp y (1)
(xxy)(t) = x(t) xy(t) = ¢ sypp x (t) *C sypp y (t) = C supp x U supp y (1)
Al BU c(t)Ecg(t)
where x,y:R® B,,t1 Rand ABI R.
B§ and {A|Al R} areisomorphic commutative unitary rings.
1.8 A& isafinite set having 0 elements, where O is considered to be an even natural number.
Gt ={A|Al R,Ais finitg isan abelian group relativeto D and 4 isthe neuter

element.
1.9 It isdefined for x: R® B, and Al R sothat AUsupp xI G - condition of convergence

of a generalized series - the modulo 2 summation
i1if |[AUsu isodd
X x(x)=}l'_| \ pDXII_
X A 10,if | AUsupp x |iseven
resulting
X x(x)=0
X £

2. TheLimit

21Let x:R® B, and e, 1 R,nT N areal positive sequence that is strictly decreasing

convergent to 0. For any ti R, thesequence  |Jx(x),nT N isdecreasing so that it is
X (t- en.t)
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convergent. Itslimit - which does not depend on (e,) - is called theleft superior limit of x int
and it isnoted with x(t- 0), lim  |J x(x) or limsup x(x) . We have:

g@i%xf(t—e,t) x® t
o o):}lif "e>0,%x1 (t- et),x(x)=1
10, else

2.2 Let us suppose now that (e'n) isareal sequence that is strictly increasing convergent to ¥ .
Thesequence  |J x(x),nT N isdecreasing and convergent. Its limit — that does not depend on

A (en.¥)
(e'n) - iscalled the (left) superior limit of x in ¥ anditisnoted with lim  |J x(x) or
ER¥ 5 .
Xl (€¥)
limsup x(x) . It istrue:
X® ¥
i .f " I) > Il :1
Iimsupx(x):%]"l e, $x> €, x(X)
X® ¥ 10, else

2.3 In asimilar manner to 2.1, 2.2 there are a so defined:
X(t-0)=1lim [ x(x) =liminf x(x); lim | x(x) =liminf x(x)
ngi%xi (t- et) X® t eO¥ (€¥) x® ¥

x(t+0)=lim  Ux(x) =limsup x(x); lim U x(x) =limsup x(x)

€004 (ttre)  x@ t* CO-¥(¥e) x@-¥
X(t+0)=lim | x(x) =liminf x(x); lim | x(x) =liminf x(x)
e>%XT tt+e)  x@ t* CO-¥xi(-xe) x@ -¥

2.4 Remark There are two categories of dual notionsin this theory:

- superior and inferior, becauseof |J, I , respectively ® g, ,£p,

- left and right, because of >, <R.

Sometimes, the dual notions will be only mentioned, not defined and/or studied - the way
that we have aready done at 2.3.
2.5a) For x:R® B, and tT RU{¥}, thefollowing statements are equivalent:

- the left superior limit and the left inferior limit of x in t are equa

- $x°7 By, st'<t," xT (', 1), x(x) = x°

If one of them is satisfied, we say that x hasaleft limitin t, or that the left limit of x in
t exists. Thisleft limit x° is noted

-with x(t- 0) or lim x(x),if tT R
xX® t°

-with lim x(x),if t =¥ .
X® ¥

a*) In asimilar manner we refer, for tT RU{- ¥}, to theright limit of x in t noted:
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-with x(t+0) or lim x(x),if tT R
x® t*

-with lim x(x),if t=-¥.
X® - ¥

2.6 The following situations are a so interesting:

not
- X(t- 0) =x(t+0) = lim x(x) . x hasalimitin tT R
X® t
not =
- X(t- 0) =x(t+0) = limsup x(x) : X hasasuperior limitintl R
X® t
not -
- X(t- 0) =x(t+0) = liminf x(x) : X hasaninferior limitin tl R
X® t

2.7 The existence of the left limit of x in t isequivalent to the fact that for any real sequence
(Xp) that isstrictly increasing convergent to t, the sequence (x(Xp)) isconvergent.

The existence of the limit of x in t isequivalent to the situation when for any real
sequence (X,,) that isconvergentto t and x,,  t,nT N, the sequence (x(x,)) isconvergent.

2.8Let x: A® B,, Al R and we refer to the previous types of limits, under some conditions

stated on A:
- the left (superior, inferior) limitin t: tT A", where
def
A ={t|tT RU{¥},"tT R,if t'<t, then AU(t',t) ¢ A andweask that A'* &
- the right (superior, inferior) limitin t: tT A*, where
def
A* ={t|tT RU{-¥},"tT R,if t'>t,then AU(t,t') * /B andweask that A* 1 /&

- the (superior, inferior) limitin t: tT AUA* and weask that AUA* 1 /4.

For example, R'= RU{¥},R* = RU{- ¥}.

The point isto let, in these new definitions, x run not in subsets of R, but in subsets of
A. The definitions of the limitsof x relative to subsets of R are obvious now.

2.9 All the previous definitions refer to binary numbersif t isfixed and to binary valued
functions, if t runsin asubset of R.

2.10 We have the following notations:
Lima(t) ={x|x: A® By, xhasalimitint},tT AUA*
Lima(t) ={x|x: A® B, x hasa superior limitint},tT AUA*
Lim,(t) ={x[x: A® By, x hasaninferior limitint},tT AUA*
Lim'A(t)={x|x:A® B,, x hasaleft limitint},tT A
Lim;(t):{x|x:A® B,, x hasaright limitint}, tT A*
If, in the previous notations, the subscript * A’ ismissing, thenwetake A=R andif 't
iIsmissing, then we refer to all possible t. For example
xI Lim O xT Limg(t)," tT RU{¥}.
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2.11 Examplesa) Let Hi R beasetwith " a<b,(a,b)UHT Gy, forexample H = /&, H is

finite, H=N or H=Z.Thelimitof cAcy :R® B,, where cl B, isthe constant function,
existsinany tT R andisequal to ¢ and, asaspecial case, thelimit of ¢ is c. Let us also remark

that:
ic,if Hissuperiorly bounded
Iim(cAcH)(x)::' .p y .
X® ¥ 1 does not exist, otherwise
b) X=C11/21/3,..} : R® By hasnull limit everywhere, except for the origin. In t =0,
we have:

X(0- 0) =0, x(0+0) =1, x(0+0) =0
c) Let x beoneof ¢ (a1),Clab) C(ab]:C[ab] - R® By.Because
X(t- 0) =c(ap(t),tT R and 'G'JQ x(t) =0
t

x(t+0)=c t),tT Rand lim x(t)=0
(t+0) =C[ap) (1) Jim (1)

we infer that x haslimit everywherebut in t1 {a,b} .
d) The function of Dirichlet x: R® B,
X®) :‘%Lif tisrational
10, else
has limit (left limit, right limit) inno point tT R (tT RU{¥},tT RU{-¥}). However:
limsup x(x) =1, tT R and limsup x(x) =limsup x(x) =1

X® t X® ¥ X® - ¥
liminf x(x) =0,t1 R and liminf x(x) = liminf x(x) =0
X® t X® ¥ X® - ¥

2.12 Limp (), Lim'A(t), Lim;(t), respectively Limp, Lim'A, Lim} are commutative unitary rings
and the limit operators act as binary valued morphisms (see also 1.4).
Lima(t), Lim, (t), respectively Lima, Lim, are not rings.

3. The Derivative and the Variation

3.1 The following numbers or functions are defined, depending on the fact if t isfixed or
variable:

3.1.1 thederivativeof x1 Lima(t) int (of xI Limpy)
Dx(t) = lim x(x) A x(t)
X® t

3.1.2 thesuperior derivativeof xI Lima(t) int (of xI Lima)

Dx(t) = limsup x(x) A x(t)
X® t

3.1.3 theleft superior derivativeof x: A® B, int (of x: A® B»)

D x(t) = limsup x(x) A x(t)
X® t°
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3.1.4 theright superior derivativeof x: A® B, int (of x: A® B5)
D x(t) = limsup x() A x(t)
x® t*
3.15 theinferior derivativeof xI Lima(t) int (of xI Lim,)

Dx(t) =liminf x(x) A x(t)
X® t

3.1.6 theleftinferior derivativeof x: A® B, int (of x: A® Bj)
D x(t) = liminf x(x) A x(t)
xX® t°
3.1.7 therightinferior derivativeof x: A® B, int (of x: A® Bj)
D x(t) =liminf x(x) A x(t)
x® t*

3.1.8 theleft derivativeof x1 Lima(t) int (of xT Limp)

D'x(t) = lim x(x)A x(t)
X® t°

3.1.9 theright derivativeof xT Lima(t) int (of xT Limp)

D x(t) = lim x(x)A x(t)
x® t*
We explicitly point out that tT A impliesthe fact that t cannot equal ¥ or - ¥ inthese
definitions.

3.2 Let L bearing of derivable functionslikein 2.12 and let d be aderivation operator. The
next equations are true:

d(xA y)(t) = dx(t) A dy(t)
d(x>y)(t) = x(t) >dy(t) A y(t) >ax(t) A dx(t)>dy(t)

where x,yT L and t belongsto asubset of A.
3.3 Let xI Limy and HI AUAUA*. Wesay that x hasafinite variationon H if

{t|tT H,Dx(t) =31 G+
and if so, we define the number

Vyx= X Dx(x)
X H

called thevariationof x on H .
In asimilar manner there are put the conditions and there are defined the numbers

VHXVHXVH XV H x,\[H x,\fH x,V,'_| x,V,f, X.

4. The Continuity

4.1 All the derivatives from 3.1, if equal to 0, defineapoint (aset H 1 A) of continuity for x:
4.1.1 xI Lima(t) iscontinuousin t (xT Limp iscontinuouson H) if
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Dx(t)=0 ("t1 H)
The set of the continuous functionsin t (of the continuous functionson A) is noted with
Cont 5 (t) (with Contp).

41.9 xI Lima(t) isright continuousin t (xT Limy isright continuouson H ) if
D*x(t)=0 ("tT H)
The set of the right continuous functionsin t (of the right continuous functionson A) is
noted with Cont s (t) (with Cont ).

4.2 If A=R then, inthe previous notations, the subscript ' A" ismissing.

4.3 We underline, in order to fix the ideas, what means x1 Cont 4 (t):
a)tl Aand" e>0 AU(t- gt)t A AU(t, t+e) ! A
b) It is satisfied one of the following equivalent conditions:
- xI Limu(t) and Ii®mt X(X) = X(t)
X

- $e>0," xT AU(t- g t+€),x(x) = x(t)
- for any sequence x, 1 Anl N convergentto tT A, the sequence (x(x,,))
convergesto x(t).

4.4 The sets Cont p (1), Contg(t), Cont:;(t), aswell as Cont A,Cont'A,ContZ are commutative
unitary rings (see 2.12), while the other sets are not.

5. The Differentiability

5.1 All the derivatives from 3.1 and all the continuities from 4.1 define different concepts of
differentiability inapoint (onaset H 1 A)of x: A® Bj:

511 x isdifferentiablein ty (x isdifferentiableon H)if (" tgT H) thereexist a',a*1 B,
and wi Cont(tg) so that:

lim w(x) =0
X® tg

X(1) A x(tg) =a% Ly 1) (DA @* 1y vy A W(), tT A
The set of the differentiable functionsin tg (of the differentiable functionson A) is noted
with Diff o(tg) (of Diff 5)

5.1.7 x isrightinferior differentiablein ty (x isright inferior differentiableon H) if
("to] H) thereexist a* B, and wi Cont s (tg) o that
liminf w(x) =0
X® ta
X(t) A x(tg) =a*x (1 x) (O Aw(t), tT A
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The set of the right inferior differentiable functionsin ty (of the right inferior
differentiable functions on A) isnoted with Diff *A(to) (with Diff *A)
5.1.8 x isleft differentiablein ty (x isleft differentiableon H) if (" tgl H) there exist
al B, and wi Conta(tg) sothat
lim w(x) =0
x® tg
X(t) A x(tg) =a% .y 1) (DA w(1), tT A

the corresponding set being noted with Diff o (tg) (with Diff o, when H = A).

5.2 Relative to the definitions 5.1.1,...,5.1.9 we make the next -easy to prove- remarks:
Diff o (to) = Lima(tg) ULima(to)
x| Diffa(tg) P @'=D'x(tg ),a* =D* x(tg) (see5.1.1)
Diff A (to) = Diff A(to)
Diff A (to) = Lima(tg)
x1 Diff (tg) P a'=D'X(tg) (see5.1.8)
Diff a(to) = DIff (to)
Diff A(to) = Lima(tg)
x1 Diff a(tg) P a* = D* x(tg)
Diff A (to) = Diff (to)
The following sets are commutative unitary rings
Diff A (to), Diff A(to), Diff A(to), Diff 5, Diff 5, Diff A
and the following sets are not rings
mA(to),%'A(to),%*A(to), Diff , , Diff 'A, Diff*A

5.3 Like before, if A=R, then the subscript ' A" will be missing.

5.4 Theorem (of representation of the differentiable functions) For x: R® B, the next

statements are equivalent:
a) xI Diff

b) there exist the families a*,b*1 B,,t,1 R, zl Z sothat

b.1) ..<t.q <ty <ty <..

b.2) " a<b, (ab)Uit, |21 Z}1 G,

b.3) x(t) =...A a% ¢ (1 1y A b ey (A at s gy 1) ADZ ey (DA
The proof of the theorem makes use of the first equation 5.2.
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55A family t,1 R,zl Z likeat 5.4.4 iscalled strictly increasing (condition b.1)) locally finite
(condition b.2)), shortly SILF.

5.6 Remarksa) A SILF real family (t,) resembles N or Z :itisdiscrete and it gives, when
related to asynchronous automata, the discrete time. The differentiable functions x1 Diff model

-aswe have said at 1.1- the electrical signals of the digital devices: in any bounded time interval
(a,b), such asignal can switch (change its value) a finite number of times and its model may

have afinite number of points of discontinuity a =ty <ty <...<t, =b.

b) The form of reprezentation of the differentiable functions from 5.4 b) is not unique, for
example:

Ctytpep) () =€ty DA Criy A Crt,,q) ()
istrue, where tT R and t, <t'<t,,q.
c) Thefinitesumsof R® B, functions always make sense, but the countable sums of

such functions do not always make sense. The countable summation 5.4 b.3) gives a convergent
sum for any t1 R because the supports of the functions ¢ (trtr+1) C{t,} zl Z aredigoint (they

form apartition of R).

5.7 Let xI Diff be given by the formula5.4 b.3), where (t,) is SILF. The next equations are
satisfied for t1 R:

x(t- 0)=..Aa’xcq (A at ey A ..
D'x(t) =...A @ TAb%) cpyy (DA (@ Abh) ey (A .

5.8 1f xI Diff , then supp D'x, supp D* x arelocaly finite, i.e.
" a<b,(a,b) Usupp D'x, (a,b) Usupp D* xI G

5.91f x:[a,b]® B, satisfies xT Diffjay (1), t1 (a,b), then x(a+0) and x(b- 0) exist.

5.10 It is convenient to write x1 Limy, p; instead of xT Limy (1), t1 (a,b), xI Lim['a’b]

instead of x1 Li rq abl (t),tT (a,b] etc. The same conventions are true for the sets of continuous
functions and these agree with the last paragraph from 2.10.

6. A Comparison Between Some Theorems Relativeto Real and
Pseudoboolean Differ entiable Functions

6.1 Our purpose is to reproduce theorems relative to real functions, the way they are stated in the
monography "Analiza matematica' by Miron Nicolescu, ed. tehnica, Bucuresti, 1958, volume |1
and then to give the same theorem in the pseudoboolean variant. The comparison will show the
anal ogies between the two theories and the table 6.1 will be understood in the following manner:
any attribute from the left is analogue to any attribute from the right.
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real functions | pseudoboolean functions
continuous constant, continuous
derivable with (left, right) limit
differentiable differentiable
table 6.1

We shall avoid sometimes to write explicitly the dual results.

6.2 Theorem (page 328) Any real, monotonous increasing function f :[a,b]® R on [a,b] is
derivable almost everywhere on this compact.

Theorem Let x:[a,b] ® B,. The next statements are equivalent:

i) X isincreasing

ii) x(a) £ x(b), x1 Diffa,p) and

[{tItT (a,b],D'x(t) =3 |+ |{t|t] [a,b),D*x(t) =3 [ {03
6.3 Theorem (Fubini, page 334) If Sup,(x) isa convergent seriesin [a,b] of monotonous
functions of the same sense and if s(x) isthe sum of the series, then we have almost everywhere
on [a,b]:
Su:n(x) =s'(X)
Theorem If thesum X x,(t) of monotonous functions x,, :[a,b] ® B,,nT N isconvergent
n N

and equal to s(t), then
i) {n|xy 9 O Gy
II) sl Diff[a'b]
iii) D's(t) :nTXN D'x, (1), tT (a,b]
6.4 Theorem (Rolle, page 308) If the function f :[a,b]® R
1) is continuous on the compact interval [a,b]
i) it hasinany point xI (a,b) a (finite or infinite) derivative
iii) f(a)= f(b)
then there existsa point cl (a,b) sothat f'(c) =0

Theorem 1 Let x:[a,b] ® B,. The following statements are equivalent:
i) x iscontinuous (i.e. xT Contpq UContfa’b] (a)l‘JCont['a’b] (b))
i) x isconstant
i) x1 Diff[ a6, D' X(t) =0,t1 (a,b] and D* x(t) =0,t1 [a,b)

Theorem 2 Let x:[a,b]® B,.
i) If x iscontinuous, then xT Limy, 1y}, X(a) = x(b) and
Dx(t) =0,t1 (a,b)
ii) If xT Limpgpp,$cl (a,b) sothat x(a) = x(b) = x(c) and
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Dx(t) =0,t1 (a,b)
then x is continuous.

Theorem 3 Diff(a ) = Limpap ULimpapy (seeds05.2).

Remark The differentiability is the analogue of the continuity here (Ieft) and the existence of the
limits is the analogue of the derivability (right).
6.5 Theorem (Lagrange, page 308) If f :[a,b]® R
1) is continuous on the compact interval [a,b]
i) has a derivative in each point x1 (a,b)
then there exists a point c1 (a,b) so that
f(b)- f(a)=(b- a)>f'(c)

Theorem If x1 Diff{4 5] , then one of the following statementsiis true:
$t1 (a,b], x(a) A x(b) = D' x(t)
$t1 [a,b), x(a) A x(b) = D* x(t)
See also our theorems at 6.4
6.6 Theorem (Scheefer, page 320) If 1 | R isaninterval, f:1 ® R, g:| ® R arecontinuous

and they admit, with the possible exception of an at most countable set H of points, finite and
equal right superior derivative numbers, then f - g isconstanton | .

Theorem If x, yT Diff[a’b] satisfy
D' x(t) = D' y(t),t1 (a,b] and D* x(t) = D* y(t),t1 [a,b)
then x(t) = y(t) A c,t [a,b].

Remarks This result is proved supposing that x, y aretherestrictionsat [a,b] of R® B,
functions of the form 5.4 b.3). Counterexamples show that the weakening of the hypothesisis not
possible.
6.7 Theorem (Zygmund, page 318) Let f : 1 ® R,where | I R isa possibly non compact
interval, so that
limsup f(2) £ f(x)£limsup f(u)

R 2® x° u® x*

ineach point xI Int | .Iftheset f(E), where
E={x|x] I,D"f(x)£0}

contains no interval, then f ismonotonousincreasingin | .

Theorem Let x:[a,b]® B, and the conditions:
i) x(a) £ x(a+0), x(t- 0) £ x(t) £ x(t +0),t1 (a,b), x(b- 0) £ x(b)
)* x(a) £ x(a+0), x(t- 0) £ x(t) £ x(t +0),t1 (a,b), x(b- 0) £ x(b)
Each of i), i)* isequivalent to the fact that x isincreasing.
The b part of the proof consists in showing that the supposition:
thereexist a',b' with a£a'<b'£b sothat x(a') =1 and x(b') =0
is a contradiction with the hypothesisi), or with the hypothesisi)*.
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Remarks a) There surely exist versions of this theorem for the case when the domain of x isnot
compact.

b) We have a corollary, resulted by combining the theorem with its dual where the
inequalitiesarereversed 3 and x isdecreasing:

i) D'x(t) =0,t1 (a,b] and D*x(t) =0,t1 [a,b) O xI Conti 4]

i)’ D'x(t) =0,tT (a,b] and D*x(t) =0,t1 [a,b) U xI Contr, p;

e Cont'[a,b] UContfa,b] = Conta b, Cont'[a’b] UContfa,b] = Cont[a p]

6.8 Theorem (Dini, page 321) If one of the four derivative numbers of a function f:1 ® R isa
continuous function in the point x1 Int 1, then f isderivablein that point.
Theorem Let x:[a,b]® B, and t1 (a,b). We havefor t1 (a,b):

i) D'x,D* X1 Difffap;(t) U xT Contyy (1)

II) D'x,D* x1 Diff[a’b] (t) O xi Cont[a,b] (t)
In order to provethe P part of the theorem, we suppose at i) the existence of € >0 and ¢l B,
sothat (t- €t)1 [a,b] and " xT (t- e,t),B'x(x) =c. Itisshownthat c =0 and wetakein
consideration 6.7 (resulting that it isimpossible to weaken the hypothesis).
6.9 Theorem (Lebesgue, page 326) A function f :[a,b] ® R with bounded variation is almost
everywhere derivable on the compact [a,b] .
Theorem Let x:[a,b] ® B,. Itistruethe equivalence (see also our theorem at 6.2):

{tItT (a,b],D'x(t) =1 |, {ttT [a,b),D*x(t) =T [T G U xI Diff(ap

The b part of the theorem is proved by showing, as a consequence of 6.7, that x is
piecewise constant (piecewise continuous).

6.10 Theorem (page 337) For any function f :[a,b] ® R with a bounded variation, we have
almost everywhere:

D(Va ) =IDf (¥) |
Theorem If x:[a,b]® B, hasafiniteleft superior variation on (a, b] , then \7I(a, x]xT Diff['a,b]
and the formula
D'(V (aX) = D'x(t),t1 (a,b]
istrue.

6.11 Let usfinaly recall that, accordingly to our intentions that were stated at 6.1, we have
avoided to mention some dual results. For example, the missing result at 6.9 refersto the inferior
derivatives.
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