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Abstract The inequations of the delays of the asynchronous circuits are
written, by making use of pseudo-Boolean differential calculus. We consider
these efforts to be a possible starting point in the semi-formalized
reconstruction of the digital electrical engineering (which is a non-
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1. Introduction

Digital electrical engineering® is in present a nonformalized theory,
together with these chapters from computer science that treat topics of
electronics. Our purpose is that of looking for and proposing concepts and a
language that are suitable for the reconstruction of digital electrical
engineering as a semi-formalized theory. Our belief is that the concepts of
Boolean functions and delay elements and the language of the (differential)
equations and inequations on pseudo-Boolean functions (i.e. the R® {01}

functions) satisfy this request.

As revealed in this moment, the main problems and questions arising
are:

- are our definitions of the delay elements acceptable ?

- how accessible is such a theory ?

- how easy is applying the theory in problems of analysis, synthesis
and verification of the asynchronous circuits ?

We do not think of easy or fast steps. In fact, the situation of crisis
recalls the one from mathematics that was generated by the naive sets theory
of Cantor, where capital shortcomings were found: the well known
paradoxes. In our work [11] we have found:

- the paradox that the notion of inertial delay buffer was incorrectly
defined in the literature (by some important authors), i.e. against the
intuition (accepted by the same authors) and a simple counterexample
showed this fact

- the apparent paradox that this elementary notion, after being

Yincluding the asynchronous automata, timed automata, asynchronous circuits, Boolean
circuits, switching circuits, asynchronous systems etc. all these refer to more or less the
same topic treated perhaps differently by different authors



incorrectly defined, did not stop or (strongly) influence the exposure and
thisis afeature of the non-formalized theories

- the paradox that, after a thorough definition of the inertial delay
buffer closely related with the (generally accepted) intuition, the concept did
not offer the expected property of closure: the serial connection of the
inertial delay buffersis not an inertial delay buffer.

Thus, serious reasons existed for increasing the efforts of finding a
good start in digital electrical engineering.

Basically, the delays, respectively the delay elements® are related
with the computation of the identity function on {0,1} and they are the most
simple circuits from electronics. A common sense classification is the
following one:

| Delays on gates, on wires and combined delays, on gates and
wires. We are not interested in this approach, our models may be applied
where necessary

Il @ unbounded delays, ‘if no bound on the magnitude is known a
priori, except that it is positive and finite, [2].

b) bounded delays, a delay is bounded ‘if an upper and lower
bound on its magnitude are known before the synthesis or analysis of the
circuit is begun’, [2]. In [3], he definition and the explanation are the
following: ‘each component is assumed to have an uncertain delay that lies
between given upper and lower bounds. The delay bounds take into account
potential delay variations due to statistical fluctuations in the fabrication
process, variations in ambient temperature, power supply, etc'.

c) fixed delays, special case of bounded delays, when the upper
and the lower bounds of the delays coincide and the uncertainties
characterizing the delays disappear; thus the delays are known.

Il a) pure delays; such a delay is defined in [2] by: ‘it transmits
each event on its input to its output, i.e. it corresponds to a pure trandation
in time of the input waveform”.

b) inertial delays; we refer to [2] once again: ‘pulses shorter than
or equal to the delay magnitude are not transmitted’. This concept is a
simplification however since we have two parameters here: one making the
pulses shorter than or equal to it be not transmitted (called cancellation

2 the delays are real numbers and the delay elements are either circuits, or theoretical
abstractions of these circuits that are used in modeling. Sometimes, the word ‘delay’ is used
as ashort form for any of these meanings.



delay in [1]) and the other representing the delay with which the input is
transmitted to the output (called transmission delay for transitionsin [1]).

We shal present now the informal definition of the inertia delay
buffer that is, in a certain sense, the key definition of our work. By informal
definition we mean presenting the behaviour of the circuit.

In Fig 1, the pairs (u(t), x(t)) represent the input and the output of
the inertial delay buffer at a certain time instant and a,b,c,d are the labels
of the transitions from one pair input-output to another pair. We suppose
that the initial position of the circuit is (0,0) and this position is of
equilibrium, meaning that the circuit can remain indefinitely long in it if the
input remains constant O indefinitely long. The other position of equilibrium
is (1,1), the circuit can remain in it indefinitely long if the input remains
constant 1 indefinitely long. The parameters O <d, yin £ dp max

a: We suppose that at the time instant t; the input switches from O to

b: Let's say that the input is constant 1 from t; until it switches at

)

(0,0) (1,0)
i

c o

(0.1) (1.1)
Figl

the time instant tp1 (., +d;, mx) from 1 back to 0. If



t,1 (4t +d, in) then b is  surdy run  and if
to T [t +d; min.t +dr max) » thenrunning b is possible
c: if the input is constant 1 from t; until it switches at the time
instant t, 1 [ty +dy minst +dp max) from 1 back to O, then running c is
possible too
d: Let's suppose that the input remains constant 1 from t; until the

timeinstant tp 3 t +d, in . If t21 [t +d; min 4 +dp max), running d is
possibleand if ty >t; +d; g, then d was aready run.

Replacing 1 with 0, 0 with 1 and ‘r’ with ‘f* gives the dual behaviour
of the circuit.

The paper is structured in chapters and each chapter has severd
paragraphs. The most important equations, inequations and logical
conditions are numbered with (1), (2),... inside each paragraph. Lists exist
aso: a), b),... ,i), ii),... inside some paragraphs. When referring to them, 2.7
(3), 2.7 b) mean for example item (3), respectively item b) from chapter 2,
paragraph 7. The tables and the figures are numbered continuoudly: 1, 2
3,...

The content of the paper is the following. In chapter 2 we present
some important notions of pseudo-Boolean calculus making the paper self-
contained. In chapter 3 we have the definition of the delays. Chapters
4,5,6,7,8 present the bounded delays, the fixed delays, the inertia delays,
the bounded inertial delays and the deterministic inertial delays. Chapter 9
makes a comparison between the points of view expressed here and in some
previous works of the author. Chapter 10 is of conclusions.

2. Preliminaries

2.1 Definition B={01} is endowed with the discrete topology, where the
open sets are al the subsets, with the order 0£1 and with the usual laws:
the complement ' ', thereunion 'E', the product ' %, the modulo 2 sum ‘A"
etc:



E|lO0 1 x| 0 1 Alo 1

0 1 00 1 0|0 O 0(0 1

1o 111 110 1 1110

a) b) C) d)
Tablel

2.2 Notation 0,1: R® B arethe two constant functions.

2.3 Notations In 'ghe <t ZR of the subsets‘of R, we note with -' the set
difference, with 'U' the set reunion, with 'U' the set intersection and with

'D' the set symmetrical difference. We keep the notations ' ','E","%,'A" for
the laws that are induced by B on the set of the functions R® B.
2.4 Definition ¢ o: R® B isthe characteristic function of theset Al R:
. (t)_‘!l,tT A )
AV Lot A
2.5 Definition The support (set) of the function w:R® B is the set
suppw I R defined in the next manner:

suppw={t [tT R,w(t) =3 ()
2.6 Theorem We have
ce=0 supp0 = /& €y
cr=1 supp1l=R @)
" £, W(t) = C guppw(t) SUPP W = SUPP C gyppw 3
" £,W(t) = CR- supp w(t) suppw= R - supp w €)
" t,W(t) E W (t) = C sypp wlsupp w (1)
supp (WE w') = supp wU supp w' (5
" 1, w(t) W (t) = € gyupp wilsupp w(t)
supp (W>w') = supp w U supp w' (6)
" 1, W(t) A W (t) = ¢ supp wb suppw (1)
supp (WA w') = supp w D supp w' (7)
"t,w(t) EW(t) U suppwl supp w' 8)

2.7 Definition Let the function w: R® B. The left [imit and the right limit



functionsof w, R' t—>w(t- 0)T B,R' t— w(t+0)T B aregiven by:
"t,$e>0" x1 (t- et),mx)=wWt- 0) (1)
"t,$e>0" xI (t,t+e),w(x) =w(t+0) 2)

We say that w has limits or, equivaently, that the limits w(t - 0),w(t + 0)

exist. When t is fixed, the numbers w(t - 0),w(t +0) are called the left

limit, respectively theright limit of w in t.

2.8 Remark w defines in a unique manner the left limit and the right limit

functions w(t - 0), w(t +0) (this happens because w is a function); there

exist functions w for which one or both of these functions do not exist.

2.9 Notation L ={w|w(t- 0),w(t +0) exist} @

2.10 Definition The functions w(t- 0) >w(t), w(t - 0)xw(t), w(t + 0) xw(t),
w(t +0)xw(t) are called the (left, respectively right) semi-derivatives of w
and the functions
Dw(t) = w(t- 0) xw(t)E w(t- 0)>w(t) =w(t- O)Awt) (1)
D*w(t) = w(t + 0)xw(t) E w(t + 0)>w(t) = w(t +0) A w(t) (2)
are called the (eft, respectively right) derivativesof w. By fixing t, the

previous numbers are called the semi-derivatives and the derivatives of w in
t.

2.11 Definitionlf Dw=0 (D*w=0),then w is caled left continuous
(right continuous). When fixing t, we get the left continuity (the right
continuity) of win t.

2.12 Theorem The next conditions are equivalent for w: R® B:
a) the unbounded family O£ty <t; <t, <... exists so that
W(t) = W(to) XCptg,ty) () A Wity *Cpey 1) D A o (D)
b) w satisfies:
bl) wh L
b.2) suppwl [0,¥)
b.3) D*w=0 2
Sketch of theproof a) b b) Itisshownthat " t, three possibilities exist:
i) t<ty;then w(t- 0) =w(t+0) =w(t) =0



N 3

i g(tk' 1);:(: 01, W(t +0) = w(ty)
iii) t3 ty and $K,tT (ty,t 41); then w(t- 0) = w(t +0) = w(ty)

b) P a) It is shown that b.1) implies the existence of an upper and lower
unbounded family ...<t_; <ty <t; <... satisfying the property that " t,

W) = Aw(t. 1)eq ;O AWEE) e 0 (1) A

i) t3 1ty and $k,t =ty ;then w(t- 0) =

A w(to) igy O A WE252) 1) A W) Ty (DA . (3
b.2), b.3) and equetion (3) imply a).

2.13 Definition A function w satisfying one of the equivalent conditions
2.12iscaled signal.

2.14 Remark Our notion of signal corresponds to what is called in [5] and
elsawhere piecewise constant signal or non-zeno signal or finite variability
signal (we refer to the existence in the sketch of proof of Theorem 2.12 of

the consequences that for &l t>0, the sets {k|t, <t} a & and
{k]-t<t, <t} a b) are finite: this is the finite variability; in previous
works, we have called this property local finiteness). We avoid in this
manner modelling nor+inertial circuits.

On the other hand, the signals have limits, they have a non-negative
support and they are right continuous. We associate these conditions with
(strong) non-anticipation, where the output at a moment t does not depend
on the input (at moment t and) at later moments. Dually, the functions with
limits, with a nonpositive support and left continuous are called signals*
and they are associated with (strong) anticipation. We shall not make use of
this duality in the paper.

2.15 Notation S={w|wissignal} @

2.16 Conventions We make the following conventions when drawing
graphicsof R® B functions:

- the two values 0 and 1 are not written on the vertical axis; the low
level is understood to be 0 and the high level is understood to be 1

- the vertical lines are drawn, even if they do not belong to the
graphic

- we put bullets on the graphic, showing which point belongs to it



when the function switches.
2.17 Example We have the situation from the next figure, where wi S:

W) =wit+0)

wit —0)

w(t—0)-wit)

w(t —0)- w(t)

Dw(?) [

Fig2
2.18 Notation We put t9:R® R for thetrandationwith d1 R:
tdt)=t-d (1)

2.19 TheoremLet wi S an arbitrary signal and d1 R. The following
statements are true:

a) wot9 haslimits and is right continuous

b) wot91 SU suppwotdi [0,¥)

Q) if d2 0,then wotd1 S,
Proof @) results from 2.12 a); b) results from 2.12 b) and from a); and for c),
we take in consideration b) and the fact that

suppwot @ ={t [w(t- d) =1 ={t+d [w(t) =31 [0,¥) (1)
2.20 Definition Thesignal wi S is said to have a limit when t tendsto ¥
(wiscalled ultimately constant in [6]) if the next condition holds:

$ty, " t >, w(t) =w(ty) D
We aso say that the limit of w when t tendsto ¥ exists. The number
wW(tq) iscalled the limit of w when t tendsto ¥ .



2.21 Notation The satisfaction of the previous property is noted $ lim w(t)
t® ¥
and the limit w(t7) isnoted lim w(t).
t® ¥

2.22 Definition For w: R® B and Al R, wedefine
10,$xT Aw(x)=0

(W(x) = (w(x) =1 «y
X A ilelse Xl A
12, $xT Aw(x)=1
UW(X) =i UW(X) =0 2
XA i0,ese X /E
2.23LemmaLet wi S and the numbers 0 £m £ d . The functions
F(t) = (w(x) «y
X [t-d,t-d+m]
Y () = Jw(x) 2
Xi[t-dt-d+m]
are signals and they satisfy
F(t- 0)=w(t- d - 0)x (YW(X) (3)
xI [t-d,t- d+m)
Y(t-0)=w(t-d-0)E Jwx) (4)
XI [t-d,t-d+m)

Proof If m=0 then F(t) =Y (t)=w(t- d) and we use 2.19 ¢) and 2.22.
We suppose now that m> 0. We refer to F (t) and to the definition
2.12 b), for which the property 2.12 b.2), i.e. suppF 1 suppwot91 [0,¥)

isobvious. Let t arbitrary and fixed. The left limit of w in t- d shows the
existenceof e; >0 with

"x1 [t- d- e,t-d),w(x)=w(t-d-0) (5)

and the left limit of w in t- d +m showsthe existence of e, >0 so that
"x1 [t- d+m- ey, t- d+m),w(x)=w(t- d+m- 0) (6)
Forany O<e<min( e;,ep,m) weinfer
F(t-¢= wx) = [w(x) wx) =
X [t-d-et-d+m-€] X [t-d-et-d) xI[t-d,t-d+m-¢€]

=w(t- d- 0)x W) =

Xl [t- dt- d+m- €]



=w(t- d- 0)x (W(x) >w(t- d+m-0) =
Xl [t-d,t-d+m- €]
=wW(t- d- 0)x W) x AW =
X [t-dt-d+m- €] xl[t-d+m-et-d+m)
=w(t-d-0)x  (w(x) 7
i [t- d,t- d+m)
Because the value of F(t- e does not depend on e, we get
F(t- € =F(t- 0) and because t was arbitrary, (3) is proved.
The right continuity of w in t- d shows the existence of e3>0 so
that
"x1 [t-d,t- d+es],w(x)=wt- d) (8)
and on the other hand the right continuity of w in t- d+m shows the
existenceof e4 >0 with
"x1 [t- d+mt-d+m+eyq],W(x) =w(t- d+m) 9)
We take some 0<e'<min( e3,e4,m) for which we have
F(t+e)= we = Nwe x we =
X [t- d+e't-d+m+e] X [t- d+e,t- d+m] X [t- d+m,t- d+m+e]
= (W) >w(t- d+m)= W) =
Xl [t- d+e t- d+m] A [t-d+€ t- d+m]
=w(t- d)x AwWx) =
XI [t- d+et- d+m]
= [Wx) wx) = W) =F () (10)
X [t-d,t-d+e] A [t-d+e't-d+m] X [t- d,t- d+m]
The fact that F(t+€) does not depend on €' shows that F(t+¢€)=
=F(t+0)=F (t) and because t was arbitrary, 2.12 b.3) is true. Moreover,

212b.1)istrue. F issignal.
Proving the same propertiesfor Y is made analoguely by duality.

3. Stability. Delays
3.1 Definition Let u,xI S. The property
$lim u(t) P $lim x(t) and (lim u(t) = lim x(t))
t® ¥ t® ¥ t® ¥ t® ¥
is called the stability condition (SC); u iscaled input (or control) and X is
called state (or output). We say that the couple (u, x) satisfies SC.



3.2 Definition A delay condition (DC) is a function that associates to each
input ul S a nonempty set of states Sol(u)l S so that " xI Sol(u),
(u,x) satisfies SC.

3.3 Remark SC states that if atime instant t; from which the input becomes
constant exists, then a time instant t, from which the state becomes
constant exists and moreover X(to) =u(t;) and DC restricts for each u the
st {x]|(u,x) satisfies SC} to Sol(u) , generaly by a system of equations or
inequations with the solutions x1 Sol(u). Thus SC is related with the
computation of the identity function B' lim u(t) —~ lim x()T B that is

t® ¥ t® ¥
made by accident, anticipatory, if to <ty and on purpose, noranticipatory,
if to3 tq. In the first case, the transmission delay for transitions or shortly
the delay in the computation of the identity on B is considered to be 0 and
inthe last case, thedelay is to - t12 0.

3.4 Example InFig 3:

id
¢
xX
£
fr B4
Fig3
I
¢
x
£
£y £o



we have ty <ty and lim u(t) = lim x(t) =0, while the case from Fig 4 is
t® ¥ t® ¥

the one of adelay t, - t1 3 O in the computation of the identity function ard
lim u(t) = lim x(t)=1.
t® ¥ t® ¥

3.5 Remark The input-output association u+> x is not of (uni-valued)
function type, in genera, because of 'delay variations due to statistical
fluctuations in the fabrication process, variations in ambient temperature,
power supply etc [3].
3.6 Notation We note with

Sol g (u) ={x | (u, X) satisfies SC} (@)
the set of these x that satisfy SC.

3.7 Remark If lim u(t) doesnot exist, then Solg-(u) =S.
t® ¥

3.8 Definition A delay element (DE) (or delay circuit or delay buffer) is a
subset DI S” S fulfilling the following conditions:

D" u,$x(uxT D

i) " (u,x)T D,wehave x1 Solg-(u)

i) "u"x"dl R

uot9T Sand (u,x)7T D)P (xotT Sand (uot9,xot%)T D)
3.9 Definition The identity function A
I ={(uu)|ul § D

iscaled thetrivial DE, or thewire.
3.10 Definition If in Definition 3.8 we replace i) with the more restrictive
request

i) " u,dx U X1 D
- $x is the notation for ‘a unique x exists — then the DE D is called
deterministic. A DE that is not deterministic is called non-deterministic.

3.11 Remark 3.8 i) means that a DE is a total relation and the sense of 3.8
ii) was discussed at 3.3. In fact, 3.8 i), ii) state that the function



u{x|(u,x)] D} isaDC. 3.8iii) statesthat D istime invariant®. Let us

observe that the identity function | =1g satisfies the conditions 3.8, so that
Definition 3.9 has sense. On the other hand, Definition 3.10 contains that
special casewhen D is a functiona (i.e. uni-valued) relation and the sets
{x|(u,x)| D} have one element (generally the solution of a system is
unique) for al u.

3.12 Notations In electrical engineering, the nonttrivial DE is symbolized
under one of the forms from Fig 5

| |
i) b)
Fig5
and the wireis noted like in Fig 6
I
a) b)
Fig6
3.13Lemma Let D bean arbitrary DE. We have the next equivalence:
"u,xT S"d30,(ux)i DO (uot9,xot9)7 D (1)
Pr oof u,xl Sandd3 0 (hypothesis) (2)
b uotdi s ((2)+2.19 ¢)) 3)
(u,x)1 D (hypothesis b ) (4)
xot97 Sand (ust9,x0t4)T D ((3+(@)+38ii)))  (5)
U uotdot 97 s ) (6)

3 InRE. Kalman, P. L. Falb, M. A. Arbib, Topicsin Mathematical System Theory,
McGraw-Hill Inc. 1969, the notion of constant, or time invariant systemis used. The DE’s
are systemsin the sense of the system theory.



uotd xotNHT D (hypothesis U ) ©)
(xot9ot 97 Sand (u,x)T D ((B)+(7)+38iii))  (8)
3.14 Notation For the DE's D,D', we notewith D"= DD the set
D"={(u,y)|$x,(u,x)T Dand (x,y)] D} (1)
representing the composition of the relations D*,D (in this order).
3.15 Definition D" iscalled the serial connection of theDE's D' and D.

3.16 Theorem D" is a DE and if D,D' are deterministic, then D" is
deterministic.
Proof The requests 3.8 are verified step by step. We prove 3.8 iii) and we
must show that for any u,yT S,d1 R, we have the implication:

(uotdT Sand (u,y)7 D) P (yot9T Sand (uot?,yot)T D)
Let xI S, whose existence is guaranteed by the definition of D", so that
(u,x)T D and (x,y)1 D'. By applying 3.8 iii) to D, because u-t9T S,
we havethat xot97 S and (Uotd,x0t9)] D. We apply again 3.8 iii) to
D' ad we get yotd1S and (xot9,yot9)T D'. Thus
(Uotd,yotd)T D" and this completes the proof of 3.8 iii).

The assertion concerning the determinism is equivalent with saying
that the composition of two functionsis a function.

3.17 Corollary ForaDE D
Dol =1D=D (1)
istrue, i.e. the wireisthe neuter element relative to the serial connection.

4. Bounded Delays

4.1 Definition Let the signals u,x and the numbers OE£m £d,,
O£ ms £dy . The system:
u ExME Jux) (1)
Xl [t-dp t-dp+mg] Xl [t-dg t-df +mg¢]
is called the bounded delay condition (BDC); u,x are the input (or the
control), respectively the state (or output); m,,m; are the (rising, falling)
memories (or the thresholds for cancellation or the inertia parameters) and



d,,d¢ are the (rising, falling) upper bounds of the (transmission) delays

(for trangitions). The differences d¢ - ms , respectively d, - m, are called
the (rising, falling) lower bounds of the (transmission) delays (for
transitions). We say that the tuple (u,m,,d,,m,d¢,x) satisfies BDC. A
DC that is not bounded is called unbounded.

4.2 Notation We put
Solgpc(u,my,d,,ms,d¢) ={x]|(u,m,,d;,m¢ ,d¢,x) satisfiesBDC} (1)

for the set of the solutions of BDC.
4.3 Theorem Let O£Em £d,,0£Ems £ds be given. The following
statements are equivalent:

g "u ue) £ Jux) D)

Xl [t-dpt-dp+m.] X [t-d g t-dg+mg]

b) "u, ux)  x Aux) =0 )

Xl [t-dp t- dp+mp] ¥ [t-df t-dg +mg ]

C) di-m; £df and ds - m¢ £d, 3
d) " u, Solgpc(u,my,dp mg,dy) * A (4)
Proof a)U b): " u, ux) £ Jux)

X [t-dp t-dp+me] X [t-df,t-d g +mg ]

U"u, ux) E Nux) =1

Xi[t-dpt-de+me] X [t-d¢t-df+mg]

U "u, ux)  x ux) =1
Xl [t-dp t-dp+me] X [t-dg,t-dg +mg]
0 "u, u  x ux) =0 (5

Xl [t-dp t-dp+me] X [t-dg,t-df +mg]

b)U c): ", ux)  x (ux) =0

X [t-dp t-dp+me] Xl [t-dg,t-dg +mg]
U"t[t-d,,t-d +m.JU[t-ds,t-ds +ms]t £
(becauseif $t,[t- d,t- dp +m JU[t-d¢,t- df +ms] =4, then u exists
so that " xI [t-d,t-d, +m],u(x) =1 and " xI [t- df,t- df +ms],



u(x)=0; conversdy, if "t[t-d,,t-d, +m]U[t-d¢,t- df +ms] L A,
then "u,"t," xT [t- d;,t- d, +m,JU[t-d¢,t- df +ms], u(x)=1 and
u(x) =0 cannot be both true)

U"t@(t-d +m <t- ds ort-ds +ms <t-d,)

U"tt-d,+m;3t-ds andt-ds +ms 3 t-d,

Ud -m £dsandds - ms £d, (6)

a) U d) isobviousif we take into account Lemma 2.23.
4.4 Definition The properties 4.3 are called the consistency condition (CC).
45 Remark For any OE£m £d,, O£ms £ds we have
Solgpc(0,m,d,,m¢,d¢)={0} and if ut 0 and CC is fulfilled, then
Solgpc(u,my,dy,m¢,d¢) iseither aone element set or an infinite set.

4.6 Remark The situation expressed by BDC is shown in the following
figure

u(®)

Eelt—d p t—dy +iny ]

| Juc®)

E_,e[z—df,z—df g ]

X

|
|
|
I
—
||
| | |
| I |
| o |
df—mf d..?' "E ’c+d,—mr T+df
Fig7
where we have supposed that m, <t and that CC is fulfilled:
d- m £d¢, df - m¢ £d,. Weobserve that if u is1 for more than m,

time units then x becomes 1 with adelay of d [df - ms,d,] time units

and, in a dual manner, that if u is O for more than ms¢ time units then X



becomes 0 with a delay of dT [d, - m,,df] time units. See aso the

informal definition of the bounded delays from [2], [3] in our Introduction at
the classification of the delays, item |1 b).

4.7 Remark Two interpretations of BDC exist, the positive and the negative
interpretation.

The positive interpretation of BDC is the following: it is natural that
the value of the output be arbitrary when the input is not sufficiently
persistent (in Fig 7 from 4.6, for t1 [df - ms,d,)U[t+d, - m,,t +d¢)).
This fact could also be modelled by the replacement of the set {01} with

{O,%,J} -some authors do so- but this has algebraical disadvantages,

because the set {0,%,]} is poorer algebraically than {0,3} . Non-determinism

is another way (ours!) of solving this problem.

The negative interpretation of BDC: it is not natural that at some
time moment, t; for example, we may have x(t; - 0)»x(t;)=1, while
"tEh,u(t- 0)xu(t) =0 inthe sensethat x is allowed to switch in a manner
that is not compatible with the (more or less) (left) local behaviour of u.

Fig8
In other words, pulses on the output may exist that do not reproduce
the pulses on the input.
On the other hand, we observe that the pulses that are shorter than or

equal to m,, respectively shorter than or equal to ms on the input are not

necessarily transmitted to the output, thus BDC implies inertiawhen m, >0
or ms >0; we have called this type of inertia ‘trivalent’, because it may be



interpreted in the trivalent logic and ‘relative because it relates x with u.
4.8 Remark Let us suppose that in BDC the upper and the lower bounds of
the delays coincide:

dr =df - Mg D

df =d - my )
representing the situation when, see Fig 7 from 4.6, in 4.1 (1) and in 4.3 (1),
(3) theinequalities are replaced by equalities.

Weadd (1) and (2) and weget m; +ms =0, i.e.

m, =m¢ =0 ©))

d, =ds =d 4)
and BDC takes the form

X(t) =u(t- d) ®)

We shall treat this specia case called the fixed delay condition in the next
chapter. We shall also meet equation (5) as a specia case of bounded
inertial delay condition, more specifically of deterministic inertial delay
condition (chapter 8) where there is no inertia (equation (3)) and the
transmission delays for transitions are equal (equation (4)).

49TheoremForany u andany O£m £d,,0£ m; £d; , we have:

CCP (Solgpc(um,.dr.mf,df)l Solcu) ()

Pr oof If CC is fulfiled and if $lim u(t), then
t® ¥

x1 Solgpc(u,my,d,,ms,ds) and t 3 O exist so that
"3y, ux)  =x(t)= Yux)  =lim ut) (2

A [t- dy,t-dp +my ] A [t-dft-dg+mg] ©F
4.10 Theorem (of representation of the solutions of BDC). Let ul S and
the numbers O£m, £d,,0£ m¢ £d; sothat CCisfulfilled. The following
statements are equivalent:

a) x1 Solgpc(u,my,dy,mg,dy)
b) $yl S sothat x isgiven by
X(t) = (u(x)  E y(t)x Ju) D

X [t-dp,t-dp +mp ] Xl [t-df t-dg+mg]



Proof The satisfaction of the consistency condition makes that, at a certain
time ingtant t, we have one of the casesi), ii), iii) true:

i) Nux) = Uux) =0 @)
Xl [t-dy t-de+me] X [t-dg t-dg+mg]

i) Nux) =0, Uux) =1 (3
Xl [t-dp t-de+me] X [t-dy,t-dg +mg]

i) Nux = Uux® =1 (4)

Xl [t-dp t-dp+me] X [t-dg t-dg +mg]
a)p b) Let xT Solgpc(u,my,d;,ms,d¢). In the cases i), iii) y(t) hes
arbitrary values and in caseii) y(t) = x(t).
b) P a) Inall the casesi), ii), iii) BDC is obvioudly fulfilled for any vy.
411 TheoremlIf O£Em, £d, and O£ ms £d; satisfy CC, then the set
D={(u,x)|ul S,x Solgpc(u,m,,d,,ms,ds)} (1)

isaDE.
Proof 3.8 i) is true because CC is fulfilled and 3.8 ii) was proved in
Theorem 4.9. We check 3.8 iii).

We prove that

(uotd7 Sand (u,x)1 D)p x0t97 S

and let di R fixed The statement uot®l S, equivaent with
u(t- d)=0,t<0 gives

ut) =0,t<-dU u(t) £cp. qy)(t) @)
Uux) £
xi [t-d¢ . t-df+mgs ]
£ Uct-a)®) =cras-me-ap)y O Ecaxy® 3

Xi[t-df t-df+my]
Because xI Solgpc(u,my,d,,ms,ds) we have

X(t) £ Uuk)  £cpgy)@® 4
xi [t-df.t-df +my ]

ie x(t)=0t<-d thus xot97 S.
We prove now that



Uot97 Sand (u,x)7 D)b (uotd, xot9)T D

N(uot)(x) = Nu(x- d)=
XT [t-dr,t-dr+mr] XT [t-dr,t-dr+mr]
= ux) = (u(x) £x(t-d)=
X+dT [t-dr - dr +mr] XT [t'd-dr Jt- d- dr +mr]
= (xot)(V) £ Uux = Uux) =
xi [t-d-df t-d-df-mgs] x+dI [t- df,t-df-mg¢]
= Ju(x- d) = ot )

XT[t-df,t-df-mf] Xi[t-df,t-df-mf]

4.12 Definition Any DE D'l D, wheretheset D was defined at 4.11 (1) is
caled bounded delay element (BDE) (circuit, buffer). The BDE D itself is
caled full. A DE that is not bounded is called unbounded.

413 TheoremlIf D,D' are BDE's, then their serial connection D"=D%D
is BDE with

dy =d, +d,,df =d +d; (1)

my = m e = m @
Proof Let us observe at first that the satisfaction of the consistency
condition

dp- my £df,ds - ms £d, 3)

d - m £d;,dy - mg £d; (4)
implies

d,-m £df,d;- ms £d, (5)

where drdf mr mf are given by (2), (2).

Furthermore, u being theinput of D and D", x being the state of
D and theinput of D' and respectively y thestateof D' and D", from

ue) ExMHE Jux) (6)
Xl [t-dp t- dp+m;] Xl [t-ds t-df +mg ]
(X)) £y E Ux() (7)

xi [t-d},t-d}+m'r] xi [t-dlf ,t-d‘f+m|f]



we have for exanple
yoe o xe ®)
Xl [t- d t-dp +my]
3 ﬂ o ux) = u®)
X [t- dy t- dy +my ] X7 [x- dp ,x-dp +mp ] X [t- dy - dp ,t- dp - dy +my +my ]
4.14 Remark The inclusion defines an order in the set of the BDE's. If
D,D" arefull BDE's, then DI D' iff
"u, ux) £ Aux) £
Xl [t-dp t-dp+mp] X [t-dp,t-dp +my]
£ Yux) £ Ju (1)
X [t-dg t-dg +me] A [t-d t-df +mg ]
equivaently iff
" u,Solgpc(u,my, dr,my,d¢) T Solgpe (u,my, dy,my ,dy)
with the interpretation: D,D' are asked to delay the input with at least
d¢ - ms 2 df - my, respectively d, - my 2 d, - my time units and with at
most d, £ d, , respectively d; £d} time units.

4.15 Remark By passing to the left limit in BDC, we use Lemma 2.23 and
we obtain the next inequalities:

u(t- d, - 0) x ((u(¥) E£x(t-0)£
A [t-dp,t-dp+ny)
£u(t- d; - OE Jux) (1)
X [t-d t-df +mg)
that are fulfilled by any x1 Sol gpe(umy,dy,mys.dy).

5. Fixed Delays. Constant Delays

5.1 Definition For u,xT S and d 3 0, the relation (see Remark 4.8)

X(t) =u(t- d) (@)
is called the fixed delay condition (FDC) (or the ideal delay condition or the
pure delay condition). u,x have the same names as mentioned before and
d is called fransmission) delay (for transitions). We say that (u,d,x)



satisfies FDC.
5.2 Remark In FDC, CC isfulfilled for any d 3 O under theform d3 d.
5.3Remark If ul Sand d3 0,then xI S likeat 2.19¢).

5.4 Notation The one element set consisting in the solution x of FDC is
noted with

S0l epc (u,d) ={x]|(u,d, x) satisfies FDC} @
55Theorem ) "u," d3 0, Solgpc (u,d) 1 Solg: () (@)
b) For any u and any numbers O£ m, £d,,0£ ms £d¢ , we have:
di [d; - my,d,]U[d¢ - m¢,df]P
P (Slppc(u.d)] Solgpc(u,ny,dy,my,ds)) 2
Proof a) If $t; sothat " x3 t1,u(X)=u(ty), then for any d 3 0 we have
" X3 t1+d,x(x) =u(x- d) =u(ty) . This property is a consequence however

of Remark 5.2 and of Theorem 4.9.
b) If d1 [d, - m,,d,]JU[d - ms,d], then the next statements are

true:
"tt-d £t-dEt-d,+m,andt-df £t-d E£t-ds +m¢ 3
(u) Eu(t-d)£ Jux) (4)
Xl [t-dp t- dp+m;] Xl [t-dgt-dg+mg]

5.6 Remark At 55 b) the condition [d, - my,d,JU[ds - ms,df]t A&

occurs in the hypothesis; this condition coincides with CC and consequently
with the fact that Sol gpc(u, my,d;,m¢,d¢)* A fordl u.

5.7 Theorem The set
lg ={(uuct®)|ul g} (D)
where d 3 0 isadeterministic DE.
Proof 3.8 1) is obvious, 3.8 ii) was shown at 5.5 @) and 3.8 iii) means that
(see Theorem 2.19) for al ul Sand d'l R, the obvious implication
{tlutt- d)=11 [0¥)P {t|ut- d-d)=11 [0,¥)
istrue. All these follow from Theorem 4.11 however.
Determinism means exactly that Solgpc (u,d) isaone element set.



5.8 Definition 14 previously defined is called the fixed delay element
(FDE) (or the ideal delay element or the pure delay element).

59TheoremFordl d,d'3 0

lgelg =lgelg=lg+q D
i.e. by the serial connection of two FDE's having the delays d,d' we get a

FDE, having thedelay d +d'. Moreover, the serial connection of the FDE's
IS commutative.
Proof Follows from the property

(Uotd)otd =yotd*d )

5.10 Remark The set of the FDE's is organised by the serial connection as
commutative monoid, where the unit is the wire.

5.11TheoremLet D anarbitrary DE and | 4 some FDE. We have:
Dolg=lgoD={(uxot9)|(u,x7 D} (1)

and if D isdeterministic, then Dol isdeterministic.

Proof Doly = 2

={(u,y) |$x(ux)T 14 and (x,y) D}  (thedeterminismof I4)

={(u,y) |$xx=uot% and (x,y)T D}

={(u,y) I(ut?,y)1 D}

={(u,y) | yot"HT D} (Lemma3.13)

={(u,y) |9 % (ux)] Dand x=yot 9

={(u,y) |$x(u,x)T Dand (x,y)T 14}

=lgqe°D (the determinismof | 4)

5.12 TheoremIf D isBDE and |4 isFDE, then D'=Doly =14°D is

BDEwith m, =m,,d, =d, +d, m¢ =m,d¢ =d +d.

Proof D'=Do |y isaBDE with m},d},m'f,d'f like in the statement of the

Theorem 4.13. The commutativity Doly =14 oD was proved at Theorem
5.11.

5.13 Definition The DC u Sol (u) is called constant if d, 2 0,d¢ 3 O



exist sothat " u," xI Sol (u) the next inequalities are fulfilled
x(t- 0) () £u(t - d) (1)
X(t- O)xx(t) £ u(t- d¢) 2
A DC that is not constant is called variable
5.14 Remark The fixed delays are constant, because
X(t- 0)xx(t) £ x(t) =u(t - d) (@)
X(t- 0)»xx(t) £ x(t) =u(t - d) 2
5.15 Remark For the informal definitions of the fixed delays, respectively

of the pure delays from [2] see also the classification of the delays in our
Introduction, item Il c), respectively I11 a).

6. Bivalent Relative Inertial Delays
6.1Lemmalet OEm £d, and O£y £d; be arbitrary numbers. When
u, X runin S, the next statements are equivalent:

a) X(t- 0)xx(t) £ u(x) N
Xl [t- dy ,t- dp +ny ]
b) X(t- 0)xx(t) £ x(t- 0) x u(x) 2

XT [t' dr - dr +|'T]’]
and the next statements are also equivalent

a)  x(t- 0)xx(t) £ u) ©)
XI[t-dg t-dg+mg]
b)  x(t- 0)xx(t) £ x(t- 0)x u) (%)

XI[t-dg t-df+mg]
Proof a) P b) Follows by multiplying (1) with x(t- 0).
b) P a) We have
X(t- 0) xx(t) £ x(t - 0)x ux) £ (u(x) (5)
XT [t'dr,t' dr'H'T}’] X’I\[t' dr t- dr+|’T}‘]
6.2 Definition We consider the signals u, x and the numbers 0£ m £ d;,
0 £m £ ds . The property expressed by

i) $lim u(t)P $lim x(t) and (lim u(t) = lim x(t))
t® ¥ t® ¥ t® ¥ t® ¥



i) X(t- 0) %x(t) £ ux) «y

XT [t' dr - dr 'HT}']

X(t- 0)»x(t) £ MNux) )

i [t- df t-dg+ms]
is caled the pivalent) relative inertial delay condition (RIDC). u,x have
the same names like before and my,d,,m¢ ,d¢ are caled inertia parameters.

We say that the tuple (u,m,d,,ms,d¢,X) satisfiesRIDC.

6.3 Remark The relative inertial delays are constant, because 6.2 ii) imply
x(t- 0)(t) £u(t - dy) (1)
X(t- 0) xx(t) £ u(t- d¢) 2
This example of constant delays is less trivia than the one of the FDC's,
because we have generaly d, * ds.

6.4 Notation Let
Solgipc(u,m . dr,mg,df) =
={x| (u,m,d,,m ,ds,X) satisfies RDC} @
the set of the solutions of RIDC.

6.5 Remark Because 6.2 i) coincides with SC, for any numbers
O£m £d,,0Em; £ds andany signal ul S we have

Solripc(u, M, dy,my,di ) 1 Sol g (u) (1)

6.6 Remark We interpret the dual inequations 6.1 (1), 6.1 (3) in the spirit of
the informal definition from [2], see in our Introduction the classification of
the delays, item Il b), that we rewrite in the following manner: 'pulses

shorter than or equal to m, (respectively ms ) are not transmitted and
pulses strictly longer than m, (respectively m; ) may be transmitted'. This
interpretation results from the fact that for example u=cg¢) implies

whenever 0<t £m that ﬂu(x) =0 and x cannot switch
Xl [t- dy t-dy +ny ]

(inequation 6.1 (1)) from O to 1. Such pulses are not transmitted to the

output, bivalent inertia unlike the trivaent inertia from BDC where the



pulses u =cpgt) with 0<t £m sometimes were transmitted, sometimes
were not.

6.7 Example We show by an example the meaning of

dr- m £d¢, df - my £, 1)
analogue with 4.3 ¢) whose satisfaction was not asked so far, in RIDC. Let
d> 0 some number and U = C[om +d) 9iving

U  =cpg, d, +a) ) 2

XT [t- dr - dr +m]
u)  =Ciy.dr-m DA Cm+as+a)® B

xi [t-d¢,t-df +my ]
Case 1 (1) istrue, thus df - mf £d, <d; +dE£m +d¢ +d and RIDC has
solutions of two forms:

a) x(t)=0 (4)

b) X(t) = Cg,ay () (5
where d1 [d,,d, +d) and d'T [m} +ds +d,¥).
Case 2 (1) is not satisfied and, in order to make a choice, we suppose that
[d,d; +d)] [m +ds +d,¥). Then the solutions of RIDC are of the forms

a) x(t) =0 (6)

b) X(t) =C[dy,dp) (DA Clag,ag) DA A Cldy, 1.d0y) @) (D)
where n3 1 and

d, £dy <d, <..<dp.1 <d; +d£dy, (8)

From this point of view, we conclude that our choice for the
satisfaction or not of the inequalities (1) is that -case 1 - a pulse on the input
be transmitted to the output under the form of at most one pulse or -case 2 -
a pulse on the input be transmitted to the output under the form of at most a
finite number of pulses, having the switching moments situated in the range
indicated at (8)

This undesired situation is similar with what we have called the
negative interpretation of BDC at Remark 4.7.

6.8 Remark We avoid the previous property (of density or of zenoness),
written under the general form:

"e>0,%u,$x1 Solgpc(u,m,dy,m,ds),$d,d">0,



x(d- 0)>xx(d) =1and x(d- 0)x(d') =1and |d- d'ke (1)
by asking that in RIDC the request d, - m £ds,d¢ - m¢ £d, be fulfilled.
This condition has the same form like CC, but the content is different.
6.9 Definition In RIDC 6.2 the property d,-m £d¢,ds - mg £d; is
caled the non-zenoness condition (NZC). NZC is by definition trivial if
dy - m =d¢,ds - my =d, andnon-trivial otherwise.
6.10 Theorem We consider ul S and x1 Solgpc(u,m,d,,ms,df) o
that NZC be true. Then for al d,d'® 0, the next implications hold:

x(d - 0) xx(d) =1and x(d'- 0) xx(d') =1and d <d'P

b d-d>ds- dy +m 0
x(d - 0)xx(d) =1land x(d'- 0)xx(d') =1land d <d'p
b d-d>d, - df +my )
Proof We show (1). The hypothesis states
ux) = Aux) =1 3)

X [d-d,d-dp+m] X [d-dg,d-d¢+mg]

meaning that
[d-d,,d-d +m]U[d"-ds,d-di +m¢] =AU

U d-d +m <d-ds or d-ds +ms <d- d, U

U d-d>df-d, +mor d-d<ds-ms-d, U

U d-d>d;-d +m 4

6.11 Remark Let OE£m £d,, O£m; £d; abitrary. We have
SOlRpcO.m,de,me,df)={0} and if ut0 and NZC is true, then
Solgpc(u,m,de,mg,d¢) ={C} and Solgpc(u,m,d,,ms,ds) is infinite
are both possible, to be compared withRemark 4.5.

6.12 Theorem For O£m £d, O£ my £d; arbitrary so that NZC is true,

the set X X
D ={(u,9)|ul SxI Solgpc(u,m,dy,ms,ds)} 1)

isaDE.



Proof The satisfaction of 3.8 1) is aconsequence of 6.11 and the satisfaction
of 3.8 ii) coincides with the inclusion 6.5 (1) and we show 3.8 iii). Let
d1 R arbitrary. The trandation of 6.2 ii) with d is

(xotd)(t- 0)x(xotd)(t) =x(t- d- O)xx(t- d)£ Nux =

¥ [t-d-dp t-d-dp+my]
= Nuey = et )
X+dT [t-dr,t- dr +rT]*] XT [t-dr,t- dr‘ +rﬂ"]
together with the dual statement. The hypothesis states that u otd7 S, thus

(see 2.23) we have that ﬂ(uOtd)(x)T S and we infer that
Xl [ dp, % dy +ny ]
min supp RC ot9)(x) 3 0. From (2) we get

Xi [ dp, % dp +ny]
min supp xot9d =min supp (Xotd)( X- O)X(Xotd)(x)3
*mnsupp  [uet)x)3 0 ©
0 [ % dp, % dp +ny ]
implying xot97T S from 219 b). (2) and its dual shows that
(uot9,xot9)1 D. 3.8iii) is proved.
6.13 Definition Any DE D'l D, wherethe set D is defined by 6.12 (1) is

called the (ivalent) relative inertial delay element (RIDE) (or circuit or
buffer).

6.14 Theorem Let RIDC described by 6.2 i), i) where
O£m £d,,0Em; £ds and NZC is satisfied. The next property is true:

" U,$XT Sol R|Dc(u,n},dr,mf ,df )"t

X(t- 0) xx(t) = x(t - 0) x (u(x) (1)
Xl [t- dy t- dp +ny ]
X(t- 0)>x(t) = X(t - 0)x Mu(x) )

X [t-dg,t-df +mg]

The solution of the system (1), (2) is unique.
Proof We define



1, (ux) =1

N [t' dr - dr ‘HT]']
0, ue =1 (3)

Xl [t- df,t-df +my ]

fXx(t- 0),dse
and, due to NZC —see the analogy from 4.3 b)- this definition is correct.
From Lemma 2.23 we know that
- ((ux) isasigna
xI [t- dr - dr +n}']

- ﬂu(x) = Uu(x) is the complement of a
xi [t-d¢,t-df +ms ] XT[t-df t-df+ms]
signal, satisfying the properties 2.12 b.1), 2.12 b.3) but not
2.12h.2)
and the conclusion is that x given by (3) satisfies supp x1 [0,¥) and on
the other hand that it has limits and only left discontinuities, given by the

|eft discontinuities of Aux) u(x)
Xl [t-dp t-de+m ] X [t-d g t-dg+mg]
x(t- 0)xx(t) £u(t - d, - 0) x ux) (4)
Xl [t- dy ,t- dp +my]
X(t- 0)>x(t) £u(t- ds - 0)x MNux) (5)

xi [t-df t-df+myf]
in other words x isasignal. Moreover, x satisfies (1), (2) in both situations
- if Aux) ((u(x)  aenull and in this case (1),
X [t-dp t-de+mp] xI[t-dg t-dg+mg ]
(2) have dl the four terms null, from (4), (5)
- if one of ux) (u(x) is1and the other is
X [t-dp t-dp +mp] X [t-d g t-dg+mg ]
null, from (3).
We have proved that (3) implies (1), (2). The equivalence of these
statements will be proved at 8.1, by following a different line of

demonstration.
We prove the uniqueness of the solution (3) and let us suppose that



(1), (2) has two distinct solutions x, X' that necessarily satisfy the property

that t'3 O exists so that
"t<t,x(t) =x'(t)
X)) =0,x'(t")=1

(), (2) become at the timeinstant t', taking into account (7):
0= x(t"- 0) x u(x)

Xl [t-dp t-dp +my]
X(t'- 0) = x(t- 0) x u)

xI[t*- df t-ds+ms ]

X' (t'- 0) = X'(t*- 0) x u(x)

XT [t" dr - dr +ny ]

0=X'(t"- 0) u)
X [t-dg t-dg+mg]
and on the other hand (6) implies
X(t'-0) =x'(t'- 0)
(8), (10), (12) and respectively (9), (11), (12) give
X'(t'-0)=1
X(t'-0)=0

(6)
()

(8)
)
(10)

(11)

(12)

(13)
(14)

(12), (13) and (14) are contradictory and this ends the proof of the fact that

the solution of (1), (2) is unique.

6.15 Counterexample If D,D' are RIDE's, then their serial connection
D"=D'D is not in genera an RIDE. We give in this sense the
counterexample from Fig 9, for which the inequations are given by

2),...,(4):
X(t- 0)>x(t) £ X(t- 0)x [ )u(x)

X [t- 2,t-1]

X(t- 0)x(t) £ x(t- 0)x [|u(x)

X [t- 2,t-1]

y(t- 0)xy(t) £ y(t- 0)x [ )x(X)
I [t- 3t-1]

y(t- 0yt £ y(t- 0)x  []x(X)
Xl [t- 3t-1]

@
2)
3
(4)

and from the rising-falling symmetry conditions, the serial connection



should satisfy the inequations:

y(t- 0>y £y(E- 0)x  (u() )
Xl [t- dt- d+ni
y(t- 0)xy(t) £ y(t- 0)x [ u(x) (6)

I [t- dt- d+m
where O£ mE d are parameters to be identified from the request that
1),...,(6) ae al  satisfied as equalities. Such  solutions
x1 Solgpe (UL212), Yyl Solgpc (%2323 adways exigt in a unique
manner by 6.14 since NZC is fulfilled twice and if D"=D%D is aRIDE,
then such a solution yT Solgpe (u,md,md) should aways exist since
NZC isfulfilled and moreover we should have y'=y.
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We have
t=5: y(t- 0)xy(t)=1b ((u(x) =land d=5and2>m (7)

X [t-dt-d+m

t=9: y(t- 0)xy(t)=1p (ux) =1land 3>m ©)
¥ [t-dt-d+m

t=12: y(t- 0)xy(t)=0b (u(x) =0and 2£m 9)
I [t- d,t- d+nj

But (7) and (9) are cortradictory, thus (5) and (6) are not true. This has

occurred because the pulse u(x)=1xlI [0,2) has produced

y(5- 0)xy(5)=1, but the ‘similar’ pulse u(x)=1xI [7,9) has not

produced y(12- 0)xy(12) =1. The source of the situation consists in the

fact that the system (1), (2) identifies u(x)=}1’X|A[O’2)U[3'4)
10, x1 [23)

u(x) =1,x1 [0,4) and this results by looking in Fig 9 at the form of x.

with

6.16 Example of RIDC: m, =m¢ =0 and, NZC being satisfied, d £d,,

MO v & | g ) a4
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Fig 10
d £dgs ,thus d; =d¢ =d. 6.1 (1) and 6.1 (3) are written under the form:
X(t- 0) xx(t) Eu(t - d) (1



x(t - 0)»xx(t) £ u(t - d) 2)
Taking into account SC also, we have the situation from Fig 10,
where we have supposed that d =1.
7. Bounded Bivalent Relative Inertial Delays

7.1 Definition Let uxT S and the rea numbers O£m, £d,,
OEms £d¢, 0Em £d,, 0OEm £ds . The next system of inequations:

i) Nu)  EXE Jux) 1)
xI [t- dp t-dp - m] Xi[t-df,t-df +mg]
i) X(t- 0) %x(t) £ ux) )
Xl [t- dy t- dp +ny ]
X(t- 0)»x(t) £ MNu) ©)

Xl [t-df t-dg+mg]

is caled the bounded (bivalent) relative inertial delay condition (BRIDC);
u,X,me,d,,m¢,d¢,m,d,,ms ,ds have the previous names We say that the
tuple (u,my,d; ,m¢,ds,m,d,,ms,ds,X) satisfies BRIDC. A RIDC that is
not bounded is called unbounded.
7.2 Notation We note with

Solgripc(U, My, dr Mg, dg,mp, dp My, df ) =

={x|(u,my,d; ,m¢,ds,m,d,,ms,ds, X) satisfies BRIDC} (1)
the set of the solutions of BRIDC.
7.3 Remark The meaning of BRIDC results from Fig 11.

7.4 Theorem BRIDC has solutions for any u if and only if one of the next
requests is satisfied:

dr-m £ds £ds £df - mp +ms

df -mg +my £d¢ £d, - m £d¢



T =i,

T
B |
Eelt—dy t—d p iy ] |
Uu(%) | v dp+T— M, :
F:E[.t—df,.ﬁ—df+me] |
|
N dy-my s+t
Eele—Bp £—Ep+ilp ]

Me® ’
I

Op + T— LUy

E_,E[I—Bf,z—Bf +|-‘-f]

x O —Wy

Fig 11

dr - my Edf Edf - My + Mg £df
di £d,- m £d¢ +mg - m; £d¢
Proof Solutions exist iff whenever x must have the value 1, respectively
the value 0 in t ( ((u(¥)  switchesin t from O to 1, respectively
XT [t' dr - dr +mr]
Uu(x) switchesin t from 1 to 0), RIDC gives this possibility
X [t-d¢ t-df +mg¢]
(t" exists so that (ux) =1, respectivdly so that
XT [tl'dr - dr +|'T]']
ux) =1) in time (tT[t- d; +df - m¢,t], respectively
xi [t df . t'-df+ms]



4.
¥
(e(® L
teli—d, i—d ,+m, ]
)
| Juc® %y
E_,E[.ﬁ—df,.ﬁ—df +P?2f]
)
dy—my
Fig 12

This happens for example in Fig 12 for t =d, . We can write

u(t- d, - 0)x ux) £ U ux)

Xl [t-dp t-dp +me]  tT[t-dp +d ¢ - mg t]xT[t'-dp b= dyp +my ]
inequality that istrue for any u. The next statements are all equivalent with
the previous one:

$t1 [t- d +ds - mg t][t- dp,t- d, +m ] E[t-d,,t"-d, +m}]
'it- dr+df-mf £t it'Et
t'i and j_
it-d; +d; £t it'Et-d,+m, +d, - m
one of the next possibilitiesis true:

j) - dp +df - m¢ £-d; +d;
) - dp +ds - m¢ 3 -d; +d;

- dr+df - Mg £0
jii) - dp +df - mg £-d; +d;



0% -dy +m; +d; - m
-dp +d £-dp +my +dp - m
jv)  -dp+dg-mg3-do+dy
0% -dy +m; +d; - m
-dp +df-mp £-dp +my +dp - m
It is shown that ), jj), jii), Jv) are equivalent with the first statements of a),
b), c), d).

7.5 Definition The condition
743 or74b)or 7.4c)or7.4d)
iscalled the consistency condition (CC) associated with BRIDC 7.1.

7.6 Example We suppose that the following conditions, stronger than CC
(they imply 7.4 @)) are fulfilled:
df-mf £df-mf£dr£dr (1)
dr - m £dy - m £d¢ £ds )
In this case, BRIDC with u having sufficiently long pulses (u is1
srictly longer than m, and then u is O strictly longer than mg) is

characterized by time intervals of the following kind:

- tT (-¥,df - mf); x(t)=0 and the only possible switch -that
does not happent isfrom 1to 0

- tT [df - mg,df - m¢); x(t)=0. x(t) could be 1, but it is
allowed to switch only from 1 to 0 and this does not happen

-t [df - m¢,d;); x(t)=0. x(t) could be 1, but no switch is
alowed

- t1 [d,,d;]; x(t)=0 and x(t)=1 are both allowed, switching
from 0 to 1 is alowed to happen and exactly one such switch takes place

- t1 (d;,d; +t- my); x(t)=1 and the only possible switch -that
does not happent isfrom0to 1

- t1 [dy +t-my,de +t-m); x(t)=1, x(t) could be O, but it is
allowed to switch only from 0 to 1 and this does not happen

-t [d; +t- m,df +t); x(t) =1, x(t) could be 0, but no switches
are possible in this time interval

- tT [df +t,df +t]; x(t)=1 and x(t)=0 are both possible,



switching from 1 to O is allowed and exactly one such switch takes place

i
T M,
T ¢
(u(®
Eelt—dp t—dp i, ]
Uu(%) i, dp+T— M, t
ﬁe[i—df,z—df-l-.wef]
t
nu(%) dy-my dr+t
Eelt—8p t—Bp +ip |
¢
n@ 3 0y +T- Uy
F,E[é—ﬁ-f,z—ﬁf ""U-f]
a_f_l'l“f 6f+’5 t

Fig 13

-t (ds +1,¥); x(t)=0 and the only possible switch -that does

not happen isfrom 1to 0.
This succession of time intervalsis repetitive if u is suitable chosen.

7.7 Theorem (Special case of BRIDC) When d, =d,,d; =dsy and
my =m,ms =m¢ andif d¢ 2 d; - m,,d; 3 df - ms istrue, then the next
systems:

ux)  ExE Jux) (1)
xI [t- dy,t-dp - mp] xI[t-d¢,t-df +mg]
X(t- 0)x(t) £ ue )
Xl [t-dp,t-dp+mp]
X(t- 0)(t) £ ut) )

xi [t-d g t-dp+m]
and respectively



X(t- 0x(t) =x(t- 0)x  [u(x) @
Xl [t-dp t-dp +my ]
X(t- 0)x(t) = x(t - 0) ue ®)
xT[t-df,t-df+mf 1
are equivalent, in the sense that the signals u,x satisfy the first system if
and only if they satisfy the second system.
Proof By multiplying both the left inequality of (1) and the inequality (2)
with x(t- 0), we have:
X(t- 0) xx(t) £ x(t - 0) x ﬂu(x) £ x(t- 0)xx(t- 0) (6)

XT [t- dr - dr +mr]
from where we get (4).
The complementation of the right inequality of (1) gives

uk)  £x(t) @)
xi [t-d; t-d+m]

By the multiplication of (3) and (7) with x(t- 0) we have

X(t- 0) %x(t) £ x(t - 0)x u(x)  £x(t- 0)x(t) (8
i [t- det-dg+m]

thus we have obtained (5).

Conversdly, (4) implies (2) and (5) implies (3). In order to show that
the system (4), (5) implies (1), we suppose that ﬂu(x) =1 for

XT [t- dr,t' dr +mr]

some arbitrary t. If x(t- 0) =1, then x(t)=1 from (4) thus the left
inequality of (1) is proved and if X(t- 0) =0, then (5) becomes x(t)=0,
thus x(t) =1 and the left inequality of (1) is proved again. Proving the fact
that (4), (5) imply the validity of the right inequation of (1) is similar.

78 Remark Let OE£m £d,,0Em; £d; ,0EM £d,,0Em £ds be
arbitrary. We have Solgrpc(0,my,dy,m¢,d¢,m,d.,ms,d¢) ={0}; ut O
and CC imply that Solgrpc(u,my,d;,ms,d¢,m,d,,m¢,ds)={0 and
Solgripc(u, My, dy,ms,ds,m,d,,ms,d¢) isinfinite are both possible.




7.9 Remark From the manner in which BRIDC was defined we have, if CC
is satisfied:
Sl gripcU, My, dy,my¢,dg ,m,dy,mg ,dg) =

= Solgpc(u,my,dy,m¢,d¢) USol gpc(u,my,dy, g ,dg) (1)

710 Theorem For O£m £d,,0Ems £d¢ ,0£Em £d,,0£ m £d¢

arbitrary so that CC is fulfilled, the set
D ={(ux)|ul SxI Solgripc(u,m.dr,ms,ds,m,dr,mg,dg)} (1)

isaDE.
Proof The satisfaction of 3.8 a) results from 7.8, the satisfaction of 3.8 b)
from 7.9 because

Solgripc(Us My, dr, My, d g, M, dp My, dg)
I Solgpc(u,my,dy,m¢,df) 1 Sol go(u)

and the validity of 3.8 ¢) may be shown by combining the similar properties
for BDE'sand RIDE's.

7.11 DefinitionAny DE D'l D, wherethe set D was defined at 7.10 (1) is
caled the bounded (bivalent) relative inertial delay element (BRIDE)
(circuit, buffer). D itsdf is cdled the full BRIDE. A RIDE that is not
bounded is called unbounded.

7.12 Let the BRIDE's D, D' and their serid connection D"=D%°D. D" is

not a BRIDE in general, but a BDE due to the fact that the serial connection
of the RIDE's is not a RIDE.

8. Deterministic Bivalent Relative Inertial Delays

8.1 Theorem Let the real numbers O£m, £d,,0£ ms £d¢ arbitrary with
d,- m £ds, ds - mg £d;. The next systems are equivalent, in the sense
that if u,x] S satisfy one of them, then they also satisfy any other.

3 X(t- 0% =x(t- 0%  [Ju(¥) (1)
Xl [t- dyp,t-dp +my]
X(t- 0)xx(t) = X(t - 0) u(x) 2

xi [t-d¢,t-df +my ]



b) u®)  £x(1) 3

Xl [t-dp,t- dp +my ]
ue) £ x(t) (4)

XT[t-df,t-df+mf]

u®  x Nux) £

Xl [t-dp t-dp+mp] XI[t-dg t-d +mg ]

£ x(t - 0)xx(t) E x(t- 0) xx(t) (5)
i1, ux) =1
D Xit- dpot-dp +my]
o) xv=10 ue) =1 (6)
| xi [t- df t-d§ +my ]
'Tl'x(t- 0), otherwise
d x(t)= ((u(®) Ex(t- 0)x Ju (7
X [t-dp,t-dp+my ] Xl [t-df t-df +mg ]

€) Dx(t) = x(t - 0) x ux) E
N [t' dr - dr+n']f]
E x(t- 0) u() ®
xi [t-df,t-df+mgs]
f) X(t- 0) xx(t) x u)  E x(t- 0)xx(t) x Nux) E
Xl [t- dp t- dp +mp] XI[t-d¢ t-dg+mg]
E x(t- 0)xx(t)x Nux) E
A [t-dy t-dp +ny]
E x(t- 0) *x(t) Nux) =1 )
X [t-dg t-df +mg ]
Proof We shall show the implications a)P b)p c)b d)b €) b a) and
the equivalence a) U f) (some of the previous implications prove to be
equivalences during the proof)
a)p b) If MNu® =1, then (u(x) =0 from CC
Xl [t-dp,t- dp +my] X [t-dg,t-dg+mg]
and x(t) =1 isthe unique solution of the system (1), (2):




x(t- 0) xx(t) =X(t - O) (10)

X(t - 0)xx(t) =0 (12)
(3) is proved.
(4) may be proved in adua manner.
The supposition Aux) = (u(x) =0 gives

Xl [t-dyt-de+me] X [t-dg,t-dg+mg]
the conclusion that x(t- 0)xx(t)E x(t- 0)xx(t) =0, from where

X(t- 0)xx(t) E x(t- 0)»x(t) = x(t- 0)xx(t) E x(t- 0)>x(t)=1. (5 is
proved.
b)p ¢) If (u =1, then x()=1 and if
XT [t- dr - dr +mr]
u(x) =1, then x(H)=1 and thus x(t)=0. Otherwise,
xi [t-d,t-df +mg]
x(t- 0)xx(t) E x(t- 0)xx(t) =1,i.e. x(t) =x(t- 0).
c) b d) Because ux) £ Ju) , we have the
Xl [t-dyt-dp+me] XTI [t-dg t-dg+mg]
three possibilities 4.10 (2), 4.10 (3), 4.10 (4).
Case i), 4.10 (2) is true. Then Yux) = ﬂﬁ =1
xi [t-d¢,t-df +m¢] xi [t- df t-df +mg ]
and x(t) =0. (7) represents the equation x(t) =0 too.
Caseii), 4.10 (3) istrue. Then (u(x) =0 and (6), (7) coincide
xi [t-df.t-df+mg]
both with the equation x(t) = x(t- 0).
Caseiii), 4.10 (4) istrue. In this situation (6), (7) become both x(t) =1.
d) b e) We have the same three possihilities.
Case i), 410 (2) is true and d) means that x(t)=0. Because
u(x) =1, e gives x(t)A x(t- 0) =x(t- 0) thus x(t) =0 and
xi [t-d.,t-df +mg]

(7), (8) coincide.
Case ii) 4.10 (3) is true and d) means that x(t) = x(t- 0), in other words




Dx(t) =0. On the other hand ((u(x) =0 and €) becomes
X [t-dg,t-dg+mg]

Dx(t) =0 too.
Case iii) 410 (4) is true and d) means that x(t)=1. Because

ux) =0, o implies  x(®)Ax{t-0)=xt-0)=
xi [t-df.t-df+mg]
=x(t- 0)A1,ie x(t)=1.
e) P a) We make use once again of the three casesii), ii), iii).
Case i), 410 (2) is satisfied. Because Yux) =

Xl [t-dg,t-df +mg]
= (u(x) =1, e means Dx(t)=x(t- 0) i.e. x(t)=0; on the
X [t-df t-df+ms]
other hand, the equations (1), (2) become
X(t- 0)xx(t)=0 (12
X(t- 0)xx(t) = x(t - 0) (13)
The system (12), (13) isuniquely satisfied by x(t) =0.
Case ii), 410 (3) is true. € shows that Dx(t)=0 and &) gives
X(t- 0)xx(t) = x(t- 0)>x(t)=0 ie  X(t- 0)>x(t)E x(t - 0) x(t) =0=
= Dx(t) .
Case iii), 410 (4) is saisfied. €) gives Dx(t)=x(t-0), i.e
X(t- 0) A x(t)=x(t- 0)A1 and x(t) =1. a) is equivalent with the system
(20), (11) whose unigque solution is x(t) =1.
a)U f) We observethat a) is equivalent with the system
X(t- 0)xx(t) %(t - 0)x ux) E
X1 [t'dr,t'dr+mr]
E x(t - 0) xx(t) xx(t - 0) x ﬂu(x) =1
XT[t- dr,t- dr+n']’]
X(t - 0)x(t) *x(t - 0)x Nux) E
XT[t-df,t-df+mf]




E x(t- 0)xx(t)>x(t - 0)x ux) =1
Xi[t-df,t-df +my ]
thus with the equations
1= (x(t- 0)x(t) x ux) E
A [t-dp,t-dp+my]
E (x(t- 0 E X() {x(t- O E U )x
X1 [t- dp,t-dp+my ]

M X(t- 0)x(t)x ux) E

xi [t-df,t-df+mg]

E (x(t- 00 E (1) XX(t- O E u) )=

xT[t-df,t-df+mf]

= (x(t- 0)xx(t)x ux) E

XT [t' dr,t' dr+mr]

E (x(t- 0) E x(t)) x MNux) Ex(t- 0)x
X [t-dp,t-dp+my]
X X(t- 0)xx(t)x Nux) E

Xl [t-df,t-df +mg]

E (x(t- 0) E x(t))x ux) EXxt-0)=
Xi[t-df,t-df+mf]
= x(t- 0)xx(t) x Nux) x Nux) E
N [t-dpt-dp+me] X [t-dg.t-ds +ms ]
E x(t- 0) »xx(t) x Nux) E
Xi[t-df,t-df+mf]

E x(t- 0) xx(t) x ux) x ux) E

Xl [t- dp,t-dp +mp] xi[t-d¢,t-d ¢ +mg]
E (x(t- 0)>x(t) E x(t- 0)xx(t))x ux) (u(x)
Xl [t-dp t-dp+me] X [t-dg ,t-dg +mg]

E X(t- 0)xx(t) x Nux) E
Xl [t- df t-ds +mg¢]




E x(t- 0) xx(t) x Nux)  Ex(t- 0)xx(t)x Mu)
XT [t' dr,t'dr +mr] XT [t'dr,t' dr+mr]

= X(t - 0)xx(t) Nux)  x Nux) E

X [t-dpt-dp+me] X [t-dg t-dg +ms]
E x(t- 0) »x(t) x Nux) E
X [t-df t-df +ms ]
E x(t- 0) xx(t) ux) x Nux) E
Xl [t-dpt-dp+mp] X [t-dg,t-dg+mg]
E x(t - 0) xx(t) ux) E
XT [t' dr - dr +mr]

E x(t- 0)xx(t) x u)  x Nux) E
X [t-dp t-dp+mp] XT[t-d t-df +mg ]
E X(t- 0)xx(t) x Nux) E
Xi[t'dr,t'dr+mr]

E x(t- 0) xx(t) x ux) x ux) E

X [t-dp t-dp+m] X [t-dg,t-ds +m¢]

E x(t- 0)x(t) ue)
xi [t-df,t-df +mg ]

= x(t - 0) xx(t) x ux)  Ex(t- 0)xx(t)x Nux) E

X [t-d¢ t-df +mg] X [t-dp t-dp+m]
E x(t- 0) *x(t) NuX)  E x(t- 0)xx(t) x (u(x)
Xl [t- dy,t- dp +my] Xl [t-dg,t-df +mg ]

8.2 Remark The equations 8.1 @) have occurred for the first time at 6.14
and at 6.15 they were used as a counterexample showing that the seria
connection of the RIDE’sis not in general an RIDE. We have also met them

a 7.7 as a gspecial case of BRIDC, where d, =d,,df =d¢,m, =m},
ms =my aretrue.

8.3 Remark In any of the equivalent conditions 8.1 a),...,8.1 f), CC from
7.4 coincideswith d; 2 d¢ - m¢, df 2 d, - m.. We snall refer to it as the



consistency condition CC too.

8.4 Remark The implications of the possible violation of CC in one of 8.1
a),...,.8.1f) are the following. Let u and t' so that

[t'-d, t-d; +mJU[t- d¢ ,t'-ds +ms] =/ 1)
"x1 [t-d,,t'-d, +me]u(x) =1 2)
"x1 [t-d¢,t-df +ms],u(x)=0 (3)

Let us suppose, in order to make a choice, that t'-d, +m, <t'-dj .
From (2), (3) and from the right continuity of u in t'-d, +m, t'-d¢ +mx
we get the existence of d>0 sothat t'-d, +m, +d<t'-d; ad

"x1 [t-d,t-dp +m +d],u(x) =1 4)
"xI [t-ds,t-ds +ms +d],u(x) =0 (5)
8.1 &) becomesfor any t1 [t',t"+d]
x(t- 0)xx(t) = x(t - 0) (6)
X(t - 0)xx(t) = x(t - 0) ()

and the system accepts two possibilities x(t) =0,x(t- 0)=1 and x(t) =1,
X(t- 0)=0; no signa x satisfies such requests. 8.1 b) has no solution
either, because 8.1 (3), 8.1 (4) show that x(t) =0 and x(t) =1 are both true
for t1 [t',t'+d] and this is the case of 8.1 ) also, where x(t) is not awell
defined function for t1 [t',t'+d]. 8.1 d) gives x(t) =1, tT [t',t'+d].8.1¢€)
and 8.1 f) become both A
Dx(t) =1,t1 [t',t'+d] (8)

and this equation represents a nonsense, because the et
{t|tl [t',t'+d], Dx(t) =3 should be finite (x has resulted to be
‘everywhere discontinuous’ in [t',t'+d]).

8.5 Theorem We suppose for the numbers OE£m £d,,0£ m; £d; that

CCissdtisfied. Then any of 8.1 a),...,8.1 f) has a solution, that is unique.
Proof Thisfollows from 8.1 and 6.14.

8.6 Definition For u,xI S and 0£m £d,,0£ m; £d; so that the

consistency condition is satisfied, any of the equivalent properties8.1 a), ...,
8.1 f) and respectively 7.7 (1), (2), (3) is called the deterministic (bivalent)
relative inertial delay condition (DRIDC). We say that the tuple



(u,my,d,;,m¢,d¢,x) satisfies DRIDC.

8.7 Remark We give an interpretation for the statements from 8.1.

a) x was0and u was 1 for sufficiently long iff x switches from O
to 1 + the dual statement

b) if u was1 for sufficiently long, then x is1 + the dual statement; if
u was not sufficiently persistent in order that it is reproduced at the output,
then x keeps its previous value

c), d) similar with b)

e) the switches of x occur exactly when either x was 0 and u was 1
for sufficiently long, or x was 1 and u was O for sufficiently long

f) a any moment in time we have one of the next situations true:

- X switches from 0 to 1 and u was 1 for sufficiently long + the dua
Statement

- X keeps the 0 value and u was not 1 for sufficiently long + the dual
statement

8.8 Notation We suppose that O£m, £d,,0E ms £d¢ and that CC is

satisfied. The set consisting in the unique solution x (see Theorem 8.5) of
DRIDC is noted with

Solpripc(U, My, dr, Mg, ds) =
={x|(u,my,d;,m¢ ,d¢,Xx) satisfies DRIDC} Q)

89 TheoremFor dl u andal m,,d,,ms,d¢ likeat 8.8, we have

Sl pripc(U My ,dp, My, dg ) =

= Solgripc(U, My, dr, Mg, dg .My, dy, g, dg) D
Proof Thisis the result expressed by 7.7.

8.10 Remark We have the special case of DRIDC when m; =mjs =0,
d, =df =d:

X(t - 0)xx(t) =x(t- O)>u(t- d) (@)
X(t - 0)xx(t) = x(t - 0)u(t - d) 2

The solution of (1), (2) isunique and it is:
X(t) =u(t - d) ©)

i.e. we have obtained FDC 5.1 (1).



8.11 TheoremLet O£m £d,,0£ m; £d; arbitrary with d, - m; £d+,
df - mf £d,. Theset
D ={(ux)|ul SxI Solpripc(u, My, dr,m¢,d¢)} D

isadeterministic DE.
Proof This follows from 7.10, taking into account 8.9.

8.12 Definition D previoudy defined is called the deterministic (bivalent)
relative inertial delay element (DRIDE) (or circuit or buffer).

8.13 Theorem Let the DRIDE D and the FDE 14, where d 2 0. Then
D'=Dolg =lgoD={(uxot%)|(uxT D} (1)
isaDRIDEwith d, =d, +d,m =m.,d; =ds +d,m; =m; .

Proof Formula (1) takes place for any DE's D, |4 like in Theorem 5.11.
The equations are:

x(t) = ((u(®) Ex(t- 0)x Ju (2)
X [t-dy,t- dp+m ] Xl [t-dg t-df +mg]

y(t) =x(t - d) (3

y(t) = ux)  Ey(t- 0)x Juk) (4)
Xl [t-dp-dt-dp-d+m] X [t-df -d,t-dg-d+mg]

8.14 Remark The serial connection of the DRIDE’s is a BDE, but not a
DRIDE, as known from 6.15, for example.
9. A Comparison with Other Works of the Author

9.1 Remark Because differences exist between the points of view from this
paper and other points of view that have been expressed in previous works,
the purpose of this chapter is to make a comparison between them.

9.2LemmaFor 0£m £d,,0Ems £d¢ and ul S the next formulas are
true:

(u)  =u(t-d, +m)x |JDu(x) (1)

XT [t-dr,t- dr+mr] XT (t' dr,t-dr +mr]

(u(x)  =u(t-d¢ +mg)x Ubux)

XT[t-df,t-df+mf] XT(t-df,t-df+mf]




Proof (1), (2) aretrivia if m,, respectively m are null and the reunions

are null too. If m, >0, the equality (1) is a consequence of the fact that

(ue) =10 u(t- d; +m) =1and Upr. g, - d, +m, ] iSCONStaNt

XT [t' dr,t' dr +mr]
U u(t- dr +my) =1and yg.- g, t-d, +m,] IS constant
(from theright continuity of u in t- d;)
U u(t- dy +my) =1and Duyg. g, t- d, +m,] 1S ull
Such equivalencies, that are easy to accept intuitively, follow from [13] 6.4
Theorem 1 however.
9.3 Example We rewrite 8.1 (8) in the special case when
d, =d¢ =d 1)
my=ms =m>0 2
and we apply Lemma 9.2
Dx() =x(t- 0)x  (Jux) Ex(t-0)x [Ju® @
A [t- d,t- d+m] X [t-d,t- d+m]
=(x(t- 0)>xu(t- d+m)E x(t- 0)>xu(t- d +m)) x UDu(x)
xI (t-d,t-d+m]

In [12], the equation of the inertial delay circuit with null initia

conditions was written under the form
Dx(t) = (x(t- 0)Au(t- 0))x [ JDu(x) (4)
xi (t- d,t)

By comparing (3), (4) we reach the conclusion that they are
‘equivalent’ if we make m<d infinitely closeto d . Thisfact corresponds to
the ideas exposed in [1] and elsewhere showing that the cancellation delay
m and the transmission delay for transitions d are usually taken to be
equal.

9.4 Theorem The next properties are equivaent in the sense that the
arbitrary signals u, x satisfy one of them if and only if they satisfy the other
one.

a my,d,,ms,d¢,m,d,,m,ds are given and the next inequalities
are fulfilled (see also Example 7.6)

Ofm £d,,0£ ms £d; (@)



0£m £d, ,0£ms £d; )

df-mf Edf-medrEdr 3
dr - m £d; - m £dy £ds 4
ux)  £xt)E Jux) (5)
X [t-dp,t-dp+my] XI[t-dg t-df +mg]
X(t- 0) %x(t) £ u(x) (6)
Xl [t- dp t- dp +my ]
X(t- 0) *x(t) £ Mu(x) (7)

i [t- df t-dg+mg]

b) The numbers M¢ min,dr min, M max: Ar max> M, min: A min» Mf, max.

df max aregiven and we have

O£ M max £ dr max:0 £ Mt max £ df max (8)
O£ My min £ dr min O£ Mf min £df min ©
dt max - Mf max £dt min - Mf,min £dr min £dr max ~ (10)
dr max = M max £dr,min - Mr min £df min £d§ max (11)
X(t- 0)x ux) £ X(t- 0)x(t) £ (12)
X1 [t- dr max t- dr,max +Mr, max ]
£ x(t- 0) (u(x)
Xl [t-dr min .t- dy min +Mr min]
X(t- 0)x u® £ x(t- 0)xx(t) £ (13)
X [t-df max t-df max *Mf max]
£ x(t- 0)x u(x)

M [t-d  min t-df min +Mf min]
Proof The next equalities take place

M min =M, dr min =dy (14)
My max =My, max = d (15)
M¢ min =Mf,df min =df (16)
Mt max =Mf,df max =df (17)

under the form 'equal by definition with' in both directions a) b b) and



b) b a) resulting that (1),...,(4) and (8),...,(11) coincide.
a) b b) The left inequality of (5) multiplied with x(t- 0) gives the left
inequality of (12) and (6) multiplied with x(t- O) gives the right inequality
of (12). The rest results by duality.
b) P a) We suppose that ﬂu(x) =1 and we have the next
Xl [t-dp,t- dp+my]
possibilities
i) x(t-0)=0
Then the left inequality of (12) shows that x(t) =1 and the left inequality of
(5) is satisfied.
i) x(t- 0)=1
and the right inequality of (13) becomes
X(t) £ ue) (18)
X [t- df t-df +mg]
(20), (11) are written under the form (3), (4) and thisimplies

t-df +mg 3 t-d; (19)
t-d+m 3t- ds (20)
i.e ‘
[t- dr,t- d +m JU[t- df t- dgp + ¢ ]t A (21)
and thus (u(x) =0. From (18) we get x(t)=1 and the left

xi [t-d¢ t-df +my ]
inequality of (5) is satisfied in this case too.
On the other hand, the right inequality of (12) gives
X(t- 0) %x(t) £ x(t- 0) x ux) £ uX) (22)

XT [t' dr gt- dr 'H'T}'] XT [t' dr - dr 'H'T]’]

i.e. (6).
The other implications result by duality.

9.5 Remark We compare 9.4 b) with the inequations
X(t- 0)x  [JuX) £x(t- 0)xx@®) £ x(t-0)x  [Jux) (1)
X [t- dr max t) xI [t-dr min t)

X(t-0)x  [Jux) £x(t-0)x(MExXE-0x  [Jux) (2

X [t-df maxt) X [t-df mint)



from [11]. We suppose that for some sufficiently small e>0 and for
0<d; mmin £dr max » 0<d§ min £dt max given, we have:

My max = dr max - & Mf max =df max - © ©)
My min = min -~ &Mf min =df min - € (4)
When e® 0, the two systems of inequations are ‘equivalent'.

10 Conclusions

The central idea of the theory is represented by SC, DC and the
Definition 3.8 of the DE’s. They are strengthened sometimes under the form
BDC, BDE and interfere with (bivalent) inertia and occasionally with
determinism. It is interesting and important to observe the manner in which
the serial connection of the DE’s preserves the properties of boundness,
inertia, CC, NZC and determinism because certain ‘failures occur, caused
by inertia
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