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Abstract The inequations of the delays of the asynchronous circuits are 
written, by making use of pseudo-Boolean differential calculus. We consider 
these efforts to be a possible starting point in the semi-formalized 
reconstruction of the digital electrical engineering (which is a non-
formalized theory). 
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1. Introduction 

 Digital electrical engineering1 is in present a non-formalized theory, 
together with these chapters from computer science that treat topics of 
electronics. Our purpose is that of looking for and proposing concepts and a 
language that are suitable for the reconstruction of digital electrical 
engineering as a semi-formalized theory. Our belief is that the concepts of 
Boolean functions and delay elements and the language of the (differential) 
equations and inequations on pseudo-Boolean functions (i.e. the }1,0{→R  
functions) satisfy this request. 

 As revealed in this moment, the main problems and questions arising 
are: 
 - are our definitions of the delay elements acceptable ? 
 - how accessible is such a theory ? 
 - how easy is applying the theory in problems of analysis, synthesis 
and verification of the asynchronous circuits ? 

 We do not think of easy or fast steps. In fact, the situation of crisis 
recalls the one from mathematics that was generated by the naive sets theory 
of Cantor, where capital shortcomings were found: the well known 
paradoxes. In our work [11] we have found: 
 - the paradox that the notion of inertial delay buffer was incorrectly 
defined in the literature (by some important authors), i.e. against the 
intuition (accepted by the same authors) and a simple counterexample 
showed this fact 
 - the apparent paradox that this elementary notion, after being 

                                                 
1 including the asynchronous automata, timed automata, asynchronous circuits, Boolean 
circuits, switching circuits, asynchronous systems etc. all these refer to more or less the 
same topic treated perhaps differently by different authors 



incorrectly defined, did not stop or (strongly) influence the exposure and 
this is a feature of the non-formalized theories 
 - the paradox that, after a thorough definition of the inertial delay 
buffer closely related with the (generally accepted) intuition, the concept did 
not offer the expected property of closure: the serial connection of the 
inertial delay buffers is not an inertial delay buffer. 
 Thus, serious reasons existed for increasing the efforts of finding a 
good start in digital electrical engineering. 

 Basically, the delays, respectively the delay elements2 are related 
with the computation of the identity function on {0,1} and they are the most 
simple circuits from electronics. A common sense classification is the 
following one: 
 I Delays on gates, on wires and combined delays, on gates and 
wires. We are not interested in this approach, our models may be applied 
where necessary 
 II a) unbounded delays, ‘if no bound on the magnitude is known a 
priori, except that it is positive and finite’, [2]. 
      b) bounded delays, a delay is bounded ‘if an upper and lower 
bound on its magnitude are known before the synthesis or analysis of the 
circuit is begun’, [2]. In [3], the definition and the explanation are the 
following: ‘each component is assumed to have an uncertain delay that lies 
between given upper and lower bounds. The delay bounds take into account 
potential delay variations due to statistical fluctuations in the fabrication 
process, variations in ambient temperature, power supply, etc’. 
      c) fixed delays, special case of bounded delays, when the upper 
and the lower bounds of the delays coincide and the uncertainties 
characterizing the delays disappear; thus the delays are known. 
 III a) pure delays; such a delay is defined in [2] by: ‘it transmits 
each event on its input to its output, i.e. it corresponds to a pure translation 
in time of the input waveform”. 
      b) inertial delays; we refer to [2] once again: ‘pulses shorter than 
or equal to the delay magnitude are not transmitted’. This concept is a 
simplification however since we have two parameters here: one making the 
pulses shorter than or equal to it be not transmitted (called cancellation 

                                                 
2 the delays are real numbers and the delay elements are either circuits, or theoretical 
abstractions of these circuits that are used in modeling. Sometimes, the word ‘delay’ is used 
as a short form for any of these meanings. 



delay in [1]) and the other representing the delay with which the input is 
transmitted to the output (called transmission delay for transitions in [1]). 

 We shall present now the informal definition of the inertial delay 
buffer that is, in a certain sense, the key definition of our work. By informal 
definition we mean presenting the behaviour of the circuit. 
 In Fig 1, the pairs ))(),(( txtu  represent the input and the output of 
the inertial delay buffer at a certain time instant and dcba ,,,  are the labels 
of the transitions from one pair input-output to another pair. We suppose 
that the initial position of the circuit is (0,0) and this position is of 
equilibrium, meaning that the circuit can remain indefinitely long in it if the 
input remains constant 0 indefinitely long. The other position of equilibrium 
is (1,1), the circuit can remain in it indefinitely long if the input remains 
constant 1 indefinitely long. The parameters max,min,0 rr dd ≤< , 

max,min,0 ff dd ≤<  are given. 

 a: We suppose that at the time instant 1t  the input switches from 0 to 
1 
 b: Let’s say that the input is constant 1 from 1t  until it switches at  
 

 
Fig 1 

the time instant ),( max,112 rdttt +∈  from 1 back to 0. If 



),( min,112 rdttt +∈  then b is surely run and if 

),[ max,1min,12 rr dtdtt ++∈ , then running b is possible 

 c: if the input is constant 1 from 1t  until it switches at the time 
instant ),[ max,1min,12 rr dtdtt ++∈  from 1 back to 0, then running c is 
possible too 
 d: Let’s suppose that the input remains constant 1 from 1t  until the 
time instant min,12 rdtt +≥ . If ),[ max,1min,12 rr dtdtt ++∈ , running d is 

possible and if max,12 rdtt +> , then d was already run. 
 Replacing 1 with 0, 0 with 1 and ‘r’ with ‘f’ gives the dual behaviour 
of the circuit. 

 The paper is structured in chapters and each chapter has several 
paragraphs. The most important equations, inequations and logical 
conditions are numbered with (1), (2),… inside each paragraph. Lists exist 
also: a), b),… ,i), ii),… inside some paragraphs. When referring to them, 2.7 
(3), 2.7 b) mean for example item (3), respectively item b) from chapter 2, 
paragraph 7. The tables and the figures are numbered continuously: 1, 2, 
3,… 

 The content of the paper is the following. In chapter 2 we present 
some important notions of pseudo-Boolean calculus making the paper self-
contained. In chapter 3 we have the definition of the delays. Chapters 
4,5,6,7,8 present the bounded delays, the fixed delays, the inertial delays, 
the bounded inertial delays and the deterministic inertial delays. Chapter 9 
makes a comparison between the points of view expressed here and in some 
previous works of the author. Chapter 10 is of conclusions. 

2. Preliminaries 

2.1 Definition }1,0{=B  is endowed with the discrete topology, where the 
open sets are all the subsets, with the order 10 ≤  and with the usual laws: 
the complement '' , the reunion ''∪ , the product '' ⋅ , the modulo 2 sum ''⊕  
etc: 
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         a)         b)        c)        d) 
    Table 1 

2.2 Notation BR →:,10  are the two constant functions. 

2.3 Notations  In the set R2  of the subsets of R , we note with '-' the set 
difference, with ''∨  the set reunion, with ''∧  the set intersection and with 

'' ∆  the set symmetrical difference. We keep the notations '','','','' ⊕⋅∪  for 
the laws that are induced by B  on the set of the functions BR → . 

2.4 Definition BR →χ :A  is the characteristic function of the set R⊂A : 

    




∉
∈

=χ
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tA ,0
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)(    (1) 

2.5 Definition The support (set) of the function BR →:w  is the set 
R⊂wsupp  defined in the next manner: 

   }1)(,|{ =∈= twttwsupp R    (1) 

2.6 Theorem We have 
0=χ∅     ∅=0supp    (1) 

1=χ R     R=1supp    (2) 
)()(, ttwt wsuppχ=∀    wsuppsuppwsupp χ=  (3) 

)()(, ttwt wsupp−χ=∀ R   wsuppwsupp −= R   (4) 

  )()(')(, ' ttwtwt wsuppwsupp ∨χ=∪∀  

   w'suppwsuppwwsupp ∨=∪ )'(   (5) 
  )()(')(, ' ttwtwt wsuppwsupp ∧χ=⋅∀  

   w'suppwsuppwwsupp ∧=⋅ )'(   (6) 
  )()(')(, ' ttwtwt wsuppwsupp ∆χ=⊕∀  

   w'suppwsuppwwsupp ∆=⊕ )'(   (7) 
  ')(')(, wsuppwsupptwtwt ⊂⇔≤∀   (8) 

2.7 Definition Let the function BR →:w . The left limit and the right limit 



functions of w , BRBR ∈+∋∈−∋ )0(,)0( twttwt aa  are given by: 
  )0()(),,(,0, −=ξε−∈ξ∀>ε∃∀ twwttt   (1) 
  )0()(),,(,0, +=ξε+∈ξ∀>ε∃∀ twwttt   (2) 
We say that w  has limits or, equivalently, that the limits )0(),0( +− twtw  
exist. When t  is fixed, the numbers )0(),0( +− twtw  are called the left 
limit, respectively the right limit of w  in t . 

2.8 Remark w  defines in a unique manner the left limit and the right limit 
functions ),0( −tw  )0( +tw  (this happens because w  is a function); there 
exist functions w  for which one or both of these functions do not exist. 

2.9 Notation   })0(),0(|{ existtwtwwL +−=   (1) 

2.10 Definition The functions ),()0(,)()0(),()0( twtwtwtwtwtw ⋅+⋅−⋅−  

)()0( twtw ⋅+  are called the (left, respectively right) semi-derivatives of w  
and the functions 
 )()0()()0()()0()( twtwtwtwtwtwtDw ⊕−=⋅−∪⋅−=  (1) 

 )()0()()0()()0()(* twtwtwtwtwtwtwD ⊕+=⋅+∪⋅+=  (2) 
are called the (left, respectively right) derivatives of w . By fixing t , the 
previous numbers are called the semi-derivatives and the derivatives of w  in 
t . 

2.11 Definition If 0=Dw  ( 0=wD * ), then w  is called left continuous 
(right continuous). When fixing t , we get the left continuity (the right 
continuity) of w  in t . 

2.12 Theorem The next conditions are equivalent for BR →:w : 
 a) the unbounded family ...0 210 <<<≤ ttt  exists so that 

  ...)()()()()( )2,1[1)1,0[0 ⊕χ⋅⊕χ⋅= ttwttwtw tttt  (1) 

 b) w  satisfies: 
  b.1) Lw∈  
  b.2) ),0[ ∞⊂wsupp  
  b.3) 0=wD *       (2) 
Sketch of the proof )) ba ⇒  It is shown that ,t∀  three possibilities exist: 
  i) 0tt < ; then 0)()0()0( ==+=− twtwtw  
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iii)  0tt ≥  and ),(, 1+∈∃ kk tttk ; then )()0()0( ktwtwtw =+=−  
)) ab ⇒  It is shown that b.1) implies the existence of an upper and lower 
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b.2), b.3) and equation (3) imply a). 

2.13 Definition A function w  satisfying one of the equivalent conditions 
2.12 is called signal. 

2.14 Remark Our notion of signal corresponds to what is called in [5] and 
elsewhere piecewise constant signal or non-zeno signal or finite variability 
signal (we refer to the existence in the sketch of proof of Theorem 2.12 of 
the consequences that for all ,0>t  the sets }|{ ttk k <  at a) and 

}|{ tttk k <<−  at b) are finite: this is the finite variability; in previous 
works, we have called this property local finiteness). We avoid in this 
manner modelling non- inertial circuits. 
 On the other hand, the signals have limits, they have a non-negative 
support and they are right continuous. We associate these conditions with 
(strong) non-anticipation, where the output at a moment t does not depend 
on the input (at moment t and) at later moments. Dually, the functions with 
limits, with a non-positive support and left continuous are called signals* 
and they are associated with (strong) anticipation. We shall not make use of 
this duality in the paper. 

2.15 Notation   }|{ signaliswwS =    (1) 

2.16 Conventions  We make the following conventions when drawing 
graphics of BR →  functions: 
 - the two values 0 and 1 are not written on the vertical axis; the low 
level is understood to be 0 and the high level is understood to be 1 
 - the vertical lines are drawn, even if they do not belong to the 
graphic 
 - we put bullets on the graphic, showing which point belongs to it 



when the function switches. 

2.17 Example We have the situation from the next figure, where Sw∈ : 
 

 
Fig 2 

2.18 Notation We put RR →τ :d  for the translation with R∈d : 

    dttd −=τ )(     (1) 

2.19 Theorem Let Sw∈  an arbitrary signal and R∈d . The following 
statements are true: 

 a) dw τo  has limits and is right continuous 

 b) ),0[ ∞⊂τ⇔∈τ dd wsuppSw oo  

 c) if 0≥d , then Sw d ∈τo . 
Proof a) results from 2.12 a); b) results from 2.12 b) and from a); and for c), 
we take in consideration b) and the fact that 

 ),0[}1)(|{}1)(|{ ∞⊂=+==−=τ twdtdtwtwsupp do  (1) 

2.20 Definition The signal Sw∈  is said to have a limit when t  tends to ∞  
(w is called ultimately constant in [6]) if the next condition holds: 
   )()(,, 111 twtwttt =>∀∃    (1) 
We also say that the limit of w  when t  tends to ∞  exists. The number 

)( 1tw  is called the limit of w  when t  tends to ∞ . 



2.21 Notation The satisfaction of the previous property is noted )(lim tw
t ∞→

∃  

and the limit )( 1tw  is noted )(lim tw
t ∞→

. 

2.22 Definition For BR →:w  and R⊂A , we define 
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2.23 Lemma Let Sw∈  and the numbers dm ≤≤0 . The functions 
   I

],[

)()(
mdtdt

wt
+−−∈ξ
ξ=Φ     (1) 

   U
],[

)()(
mdtdt

wt
+−−∈ξ
ξ=Ψ     (2) 

are signals and they satisfy 
  I

),[

)()0()0(
mdtdt

wdtwt
+−−∈ξ
ξ⋅−−=−Φ   (3) 

  U
),[

)()0()0(
mdtdt

wdtwt
+−−∈ξ
ξ∪−−=−Ψ   (4) 

Proof If 0=m  then )()()( dtwtt −=Ψ=Φ  and we use 2.19 c) and 2.22. 
 We suppose now that 0>m . We refer to )(tΦ  and to the definition 

2.12 b), for which the property 2.12 b.2), i.e. ),0[ ∞⊂τ⊂Φ dwsuppsupp o  
is obvious. Let t  arbitrary and fixed. The left limit of w  in dt −  shows the 
existence of 01 >ε  with 
  )0()(),,[ 1 −−=ξ−ε−−∈ξ∀ dtwwdtdt   (5) 
and the left limit of w  in mdt +−  shows the existence of 02 >ε  so that 
 )0()(),,[ 2 −+−=ξ+−ε−+−∈ξ∀ mdtwwmdtmdt  (6) 
For any ),,min(0 21 mεε<ε<  we infer 

=ξ⋅ξ=ξ=ε−Φ
ε−+−−∈ξ−ε−−∈ξε−+−ε−−∈ξ

III
],[),[],[

)()()()(
mdtdtdtdtmdtdt
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I
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)()0(
mdtdt

wdtw  



=−+−⋅ξ⋅−−=
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)0()()0(
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mdtwwdtw
mdtdt

I  

=ξ⋅ξ⋅−−=
+−ε−+−∈ξε−+−−∈ξ

II
),[],[

)()()0(
mdtmdtmdtdt

wwdtw  

I
),[

)()0(
mdtdt

wdtw
+−−∈ξ
ξ⋅−−=       (7) 

Because the value of )( ε−Φ t  does not depend on ε , we get 
)0()( −Φ=ε−Φ tt  and because t  was arbitrary, (3) is proved. 

 The right continuity of w  in dt −  shows the existence of 03 >ε  so 
that 
  )()(],,[ 3 dtwwdtdt −=ξε+−−∈ξ∀   (8) 
and on the other hand the right continuity of w  in mdt +−  shows the 
existence of 04 >ε  with 
 )()(],,[ 4 mdtwwmdtmdt +−=ξε++−+−∈ξ∀   (9) 
 We take some ),,min('0 43 mεε<ε<  for which we have 

=ξ⋅ξ=ξ=ε+Φ
ε++−+−∈ξ+−ε+−∈ξε++−ε+−∈ξ

III
]',[],'[]','[

)()()()'(
mdtmdtmdtdtmdtdt

wwwt  

=ξ=+−⋅ξ=
+−ε+−∈ξ+−ε+−∈ξ

II
],'[],'[

)()()(
mdtdtmdtdt

wmdtww  

=ξ⋅−=
+−ε+−∈ξ

I
],'[

)()(
mdtdt

wdtw  

)()()()(
],[],'[]',[

twww
mdtdtmdtdtdtdt

Φ=ξ=ξ⋅ξ=
+−−∈ξ+−ε+−∈ξε+−−∈ξ

III   (10) 

The fact that )'( ε+Φ t  does not depend on 'ε  shows that =ε+Φ )'(t  
)()0( tt Φ=+Φ=  and because t  was arbitrary, 2.12 b.3) is true. Moreover, 

2.12 b.1) is true. Φ  is signal. 
 Proving the same properties for Ψ  is made analoguely by duality. 

3. Stability. Delays 

3.1 Definition Let Sxu ∈, . The property 
))(lim)(lim()(lim)(lim txtuandtxtu

tttt ∞→∞→∞→∞→
=∃⇒∃  

is called the stability condition (SC); u  is called input (or control) and x  is 
called state (or output). We say that the couple ),( xu  satisfies SC. 



3.2 Definition A delay condition (DC) is a function that associates to each 
input Su ∈  a non-empty set of states SuSol ⊂)(  so that ),(uSolx ∈∀  

),( xu  satisfies SC. 

3.3 Remark SC states that if a time instant 1t  from which the input becomes 
constant exists, then a time instant 2t  from which the state becomes 
constant exists and moreover )()( 12 tutx =  and DC restricts for each u  the 
set }),(|{ SCsatisfiesxux  to )(uSol , generally by a system of equations or 
inequations with the solutions )(uSolx ∈ . Thus SC is related with the 

computation of the identity function BB ∈∋
∞→∞→

)(lim)(lim txtu
tt

a  that is 

made by accident, anticipatory, if 12 tt <  and on purpose, non-anticipatory, 
if 12 tt ≥ . In the first case, the transmission delay for transitions or shortly 
the delay in the computation of the identity on B  is considered to be 0 and 
in the last case, the delay is 012 ≥− tt . 

3.4 Example In Fig 3: 

 
 

Fig 3 
 

 
 

Fig 4 



we have 12 tt <  and 0)(lim)(lim ==
∞→∞→

txtu
tt

, while the case from Fig 4 is 

the one of a delay 012 ≥− tt  in the computation of the identity function and 
1)(lim)(lim ==

∞→∞→
txtu

tt
. 

3.5 Remark The input-output association xu a  is not of (uni-valued) 
function type, in general, because of 'delay variations due to statistical 
fluctuations in the fabrication process, variations in ambient temperature, 
power supply etc' [3].  

3.6 Notation We note with 
   }),(|{)( SCsatisfiesxuxuSolSC =   (1) 
the set of these x  that satisfy SC. 

3.7 Remark If )(lim tu
t ∞→

 does not exist, then SuSolSC =)( . 

3.8 Definition A delay element (DE) (or delay circuit or delay buffer) is a 
subset SSD ×⊂  fulfilling the following conditions: 
 i) Dxuxu ∈∃∀ ),(,,  
 ii) Dxu ∈∀ ),( , we have )(uSolx SC∈  
 iii) ,,, R∈∀∀∀ dxu  

)),(()),(( DxuandSxDxuandSu dddd ∈ττ∈τ⇒∈∈τ oooo  

3.9 Definition The identity function 
    }|),{( SuuuI ∈=    (1) 
is called the trivial DE, or the wire. 

3.10 Definition If in Definition 3.8 we replace i) with the more restrictive 
request 

i’) Dxuxu ∈∃∀ ),(,!,  
- x!∃  is the notation for ‘a unique x exists’ – then the DE D  is called 
deterministic. A DE that is not deterministic is called non-deterministic. 

3.11 Remark 3.8 i) means that a DE is a total relation and the sense of 3.8 
ii) was discussed at 3.3. In fact, 3.8 i), ii) state that the function 



}),(|{ Dxuxu ∈a  is a DC. 3.8 iii) states that D  is time invariant3. Let us 

observe that the identity function SI 1=  satisfies the conditions 3.8, so that 
Definition 3.9 has sense. On the other hand, Definition 3.10 contains that 
special case when D  is a functional (i.e. uni-valued) relation and the sets 

}),(|{ Dxux ∈  have one element (generally the solution of a system is 
unique) for all u . 

3.12 Notations  In electrical engineering, the non-trivial DE is symbolized 
under one of the forms from Fig 5 
 

 
Fig 5 

 
and the wire is noted like in Fig 6 
 

 
Fig 6 

3.13 Lemma Let D  be an arbitrary DE. We have the next equivalence: 

 DxuDxudSxu dd ∈ττ⇔∈≥∀∈∀ ),(),(,0,, oo   (1) 
Proof   0, ≥∈ dandSxu   (hypothesis)  (2) 

⇒         Su d ∈τo    ((2)+2.19 c))  (3) 
        Dxu ∈),(    (hypothesis ⇒ ) (4) 

 DxuandSx ddd ∈ττ∈τ ),( ooo  ((3)+(4)+3.8 iii)) (5) 

⇐   Su dd ∈ττ −oo )(   (2)   (6) 

                                                 
3 In R.E. Kalman, P. L. Falb, M. A. Arbib, Topics in Mathematical System Theory, 
McGraw-Hill Inc. 1969, the notion of constant, or time invariant system is used. The DE’s 
are systems in the sense of the system theory. 



            Dxu dd ∈ττ ),( oo   (hypothesis ⇐ ) (7) 

 DxuandSx dd ∈∈ττ − ),()( oo  ((6)+(7)+3.8 iii)) (8) 

3.14 Notation For the DE’s ',DD , we note with DDD o'"=  the set 
  }'),(),(,|),{(" DyxandDxuxyuD ∈∈∃=   (1) 
representing the composition of the relations DD ,'  (in this order). 

3.15 Definition "D  is called the serial connection of the DE’s 'D  and D . 

3.16 Theorem "D  is a DE and if ',DD  are deterministic, then "D  is 
deterministic. 
Proof The requests 3.8 are verified step by step. We prove 3.8 iii) and we 
must show that for any R∈∈ dSyu ,, , we have the implication: 

)"),(()"),(( DyuandSyDyuandSu dddd ∈ττ∈τ⇒∈∈τ oooo  
Let Sx∈ , whose existence is guaranteed by the definition of "D , so tha t 

Dxu ∈),(  and '),( Dyx ∈ . By applying 3.8 iii) to D , because Su d ∈τo , 

we have that Sx d ∈τo  and Dxu dd ∈ττ ),( oo . We apply again 3.8 iii) to 

'D  and we get Sy d ∈τo  and '),( Dyx dd ∈ττ oo . Thus 

"),( Dyu dd ∈ττ oo  and this completes the proof of 3.8 iii). 
 The assertion concerning the determinism is equivalent with saying 
that the composition of two functions is a function. 

3.17 Corollary For a DE D  
    DDIID == oo    (1) 
is true, i.e. the wire is the neuter element relative to the serial connection. 

4. Bounded Delays  

4.1 Definition Let the signals xu,  and the numbers ,0 rr dm ≤≤  

ff dm ≤≤0 . The system: 

 UI
],[],[

)()()(

fmfdtfdtrmrdtrdt

utxu
+−−∈ξ+−−∈ξ

ξ≤≤ξ   (1) 

is called the bounded delay condition (BDC); xu,  are the input (or the 

control), respectively the state (or output ); fr mm ,  are the (rising, falling) 

memories (or the thresholds for cancellation or the inertia parameters) and 



fr dd ,  are the (rising, falling) upper bounds of the (transmission) delays 

(for transitions). The differences ff md − , respectively rr md −  are called 

the (rising, falling) lower bounds of the (transmission) delays (for 
transitions). We say that the tuple ),,,,,( xdmdmu ffrr  satisfies BDC. A 

DC that is not bounded is called unbounded. 

4.2 Notation We put 
}),,,,,(|{),,,,( BDCsatisfiesxdmdmuxdmdmuSol ffrrffrrBDC =  (1) 

for the set of the solutions of BDC. 

4.3 Theorem Let ffrr dmdm ≤≤≤≤ 0,0  be given. The following 

statements are equivalent: 
 a)  UI

],[],[

)()(,

fmfdtfdtrmrdtrdt

uuu
+−−∈ξ+−−∈ξ
ξ≤ξ∀   (1) 

 b) 0)()(,
],[],[
=ξ⋅ξ∀

+−−∈ξ+−−∈ξ
II

fmfdtfdtrmrdtrdt
uuu  (2) 

 c)  rfffrr dmdanddmd ≤−≤−   (3) 

 d)   ∅≠∀ ),,,,(, ffrrBDC dmdmuSolu   (4) 

Proof :)) ba ⇔  UI
],[],[

)()(,

fmfdtfdtrmrdtrdt

uuu
+−−∈ξ+−−∈ξ

ξ≤ξ∀  

  1)()(,
],[],[

=ξ∪ξ∀⇔
+−−∈ξ+−−∈ξ

II
fmfdtfdtrmrdtrdt

uuu  

  1)()(,
],[],[

=ξ⋅ξ∀⇔
+−−∈ξ+−−∈ξ

II
fmfdtfdtrmrdtrdt

uuu  

  0)()(,
],[],[
=ξ⋅ξ∀⇔

+−−∈ξ+−−∈ξ
II

fmfdtfdtrmrdtrdt
uuu  (5) 

:)) cb ⇔  0)()(,
],[],[
=ξ⋅ξ∀

+−−∈ξ+−−∈ξ
II

fmfdtfdtrmrdtrdt
uuu  

  ∅≠+−−∧+−−∀⇔ ],[],[, fffrrr mdtdtmdtdtt  

(because if ∅=+−−∧+−−∃ ],[],[, fffrrr mdtdtmdtdtt , then u  exists 

so that 1)(],,[ =ξ+−−∈ξ∀ umdtdt rrr  and ],,[ fff mdtdt +−−∈ξ∀  



0)( =ξu ; conversely, if ∅≠+−−∧+−−∀ ],[],[, fffrrr mdtdtmdtdtt , 

then ],,[],[,, fffrrr mdtdtmdtdttu +−−∧+−−∈ξ∀∀∀  1)( =ξu  and 

0)( =ξu  cannot be both true) 

 )(, rfffrr dtmdtordtmdtt −<+−−<+−¬∀⇔  

 rfffrr dtmdtanddtmdtt −≥+−−≥+−∀⇔ ,  

  rfffrr dmdanddmd ≤−≤−⇔    (6) 

)) da ⇔  is obvious if we take into account Lemma 2.23. 

4.4 Definition The properties 4.3 are called the consistency condition (CC). 

4.5 Remark For any ,0 rr dm ≤≤  ff dm ≤≤0  we have 

}{),,,,( 00 =ffrrBDC dmdmSol  and if 0≠u  and CC is fulfilled, then 

),,,,( ffrrBDC dmdmuSol  is either a one element set or an infinite set. 

4.6 Remark The situation expressed by BDC is shown in the following 
figure 

Fig 7 
where we have supposed that τ<rm  and that CC is fulfilled: 

,frr dmd ≤−  rff dmd ≤− . We observe that if u  is 1 for more than rm  

time units then x  becomes 1 with a delay of ],[ rff dmdd −∈  time units 

and, in a dual manner, that if u  is 0 for more than fm  time units then x  



becomes 0 with a delay of ],[ frr dmdd −∈  time units. See also the 

informal definition of the bounded delays from [2], [3] in our Introduction at 
the classification of the delays, item II b). 

4.7 Remark Two interpretations of BDC exist, the positive and the negative 
interpretation. 
 The positive interpretation of BDC is the following: it is natural that 
the value of the output be arbitrary when the input is not sufficiently 
persistent (in Fig 7 from 4.6, for ),[),[ frrrff dmddmdt +τ−+τ∨−∈ ). 

This fact could also be modelled by the replacement of the set }1,0{  with 

}1,,0{
2
1  -some authors do so- but this has algebraical disadvantages, 

because the set }1,,0{
2
1  is poorer algebraically than }1,0{ . Non-determinism 

is another way (ours!) of solving this problem. 
 The negative interpretation of BDC: it is not natural that at some 
time moment, 1t  for example, we may have 1)()0( 11 =⋅− txtx , while 

0)()0(,1 =⋅−≤∀ tututt  in the sense tha t x  is allowed to switch in a manner 
that is not compatible with the (more or less) (left) local behaviour of u . 
 

 
 

Fig 8 
 In other words, pulses on the output may exist that do not reproduce 
the pulses on the input. 
 On the other hand, we observe that the pulses that are shorter than or 
equal to rm , respectively shorter than or equal to fm  on the input are not 

necessarily transmitted to the output, thus BDC implies inertia when 0>rm  
or 0>fm ; we have called this type of inertia ‘trivalent’, because it may be 



interpreted in the trivalent logic and ‘relative’ because it relates x  with u . 

4.8 Remark Let us suppose that in BDC the upper and the lower bounds of 
the delays coincide: 
    ffr mdd −=     (1) 

    rrf mdd −=     (2) 

representing the situation when, see Fig 7 from 4.6, in 4.1 (1) and in 4.3 (1), 
(3) the inequalities are replaced by equalities. 
 We add (1) and (2) and we get 0=+ fr mm , i.e. 

    0== fr mm     (3) 

    ddd fr ==     (4) 

and BDC takes the form 
    )()( dtutx −=     (5) 
We shall treat this  special case called the fixed delay condition in the next 
chapter. We shall also meet equation (5) as a special case of bounded 
inertial delay condition, more specifically of deterministic inertial delay 
condition (chapter 8) where there is no inertia (equation (3)) and the 
transmission delays for transitions are equal (equation (4)). 

4.9 Theorem For any u  and any ffrr dmdm ≤≤≤≤ 0,0 , we have:  

  ))(),,,,(( uSoldmdmuSolCC SCffrrBDC ⊂⇒  (1) 

Proof If CC is fulfilled and if )(lim tu
t ∞→

∃ , then 

),,,,( ffrrBDC dmdmuSolx ∈  and 01 ≥t  exist so that 

)(lim)()()(,
],[],[

1 tuutxutt
t

fmfdtfdtrmrdtrdt ∞→+−−∈ξ+−−∈ξ
=ξ==ξ≥∀ UI  (2) 

4.10 Theorem (of representation of the solutions of BDC). Let Su∈  and 
the numbers ffrr dmdm ≤≤≤≤ 0,0  so that CC is fulfilled. The fo llowing 

statements are equivalent: 
 a)   ),,,,( ffrrBDC dmdmuSolx ∈  

 b) Sy∈∃  so that x  is given by 

 UI
],[],[

)()()()(

fmfdtfdtrmrdtrdt

utyutx
+−−∈ξ+−−∈ξ

ξ⋅∪ξ=   (1) 



Proof The satisfaction of the consistency condition makes that, at a certain 
time instant t , we have one of the cases i), ii), iii) true: 
 i) 0)()(

],[],[

=ξ=ξ
+−−∈ξ+−−∈ξ

UI
fmfdtfdtrmrdtrdt

uu   (2) 

 ii) 1)(,0)(
],[],[

=ξ=ξ
+−−∈ξ+−−∈ξ

UI
fmfdtfdtrmrdtrdt

uu  (3) 

 iii)  1)()(
],[],[

=ξ=ξ
+−−∈ξ+−−∈ξ

UI
fmfdtfdtrmrdtrdt

uu   (4) 

)) ba ⇒  Let ),,,,( ffrrBDC dmdmuSolx ∈ . In the cases i), iii) )(ty  has 

arbitrary values and in case ii) )()( txty = . 
)) ab ⇒  In all the cases i), ii), iii) BDC is obviously fulfilled for any y . 

4.11 Theorem If rr dm ≤≤0  and ff dm ≤≤0  satisfy CC, then the set 

 )},,,,(,|),{( ffrrBDC dmdmuSolxSuxuD ∈∈=   (1) 

is a DE. 
Proof 3.8 i) is true because CC is fulfilled and 3.8 ii) was proved in 
Theorem 4.9. We check 3.8 iii). 
 We prove that 

SxDxuandSu dd ∈τ⇒∈∈τ oo )),((  

and let R∈d  fixed. The statement Su d ∈τo , equivalent with 
0,0)( <=− tdtu  gives 

   )()(,0)( ),[ ttudttu d ∞−χ≤⇔−<=   (2) 

 ≤ξ
+−−∈ξ

U
],[

)(

fmfdtfdt

u  

 )()()( ),[),[
],[
),[ tt ddfmfd

fmfdtfdt
d ∞−∞−−

+−−∈ξ
∞− χ≤χ=ξχ≤ U  (3) 

Because ),,,,( ffrrBDC dmdmuSolx∈  we have 

  )()()( ),[
],[

tutx d

fmfdtfdt
∞−

+−−∈ξ
χ≤ξ≤ U   (4) 

i.e. dttx −<= ,0)(  thus Sx d ∈τo . 
 We prove now that 



DxuDxuandSu ddd ∈ττ⇒∈∈τ ),()),(( ooo  

 =−ξ=ξτ
+−−∈ξ+−−∈ξ

II o
],[],[

)())((
rmrdtrdtrmrdtrdt

d duu  

 =−≤ξ=ξ=
+−−−−∈ξ+−−∈+ξ

)()()(
],[],[

dtxuu
rmrddtrddtrmrdtrdtd

II  

 =ξ=ξ≤τ=
−−−∈+ξ−−−−−∈ξ

UUo
],[],[

)()())((

fmfdtfdtdfmfddtfddt

d uutx  

 UU o
],[],[

))(()(

fmfdtfdt

d

fmfdtfdt

udu
−−−∈ξ−−−∈ξ

ξτ=−ξ=   (5) 

4.12 Definition Any DE DD ⊂' , where the set D  was defined at 4.11 (1) is 
called bounded delay element (BDE) (circuit, buffer). The BDE D  itself is 
called full. A DE that is not bounded is called unbounded. 

4.13 Theorem If ',DD  are BDE’s, then their serial connection DDD o'"=  
is BDE with 

   '"'" , fffrrr dddddd +=+=    (1) 

   '"'" , fffrrr mmmmmm +=+=   (2) 

Proof Let us observe at first that the satisfaction of the consistency 
condition 
   rfffrr dmddmd ≤−≤− ,   (3) 

   '''''' , rfffrr dmddmd ≤−≤−   (4) 

implies 

   """""" , rfffrr dmddmd ≤−≤−    (5) 

where """" ,,, frfr mmdd  are given by (1), (2). 

 Furthermore, u  being the input of D  and "D , x  being the state of 
D  and the input of 'D  and respectively y  the state of 'D  and "D , from 

 UI
],[],[

)()()(

fmfdtfdtrmrdtrdt

utxu
+−−∈ξ+−−∈ξ

ξ≤≤ξ   (6) 

 UI
]'','[]'','[

)()()(

fmfdtfdtrmrdtrdt

xtyx

+−−∈ξ+−−∈ξ

ξ≤≤ξ   (7) 



we have for example 
 ≥ξ≥

+−−∈ξ
I

]'','[

)()(

rmrdtrdt

xty      (8) 

III
]'','[],[']'','[

)()'(

rmrmrdrdtrdrdtrmrdrdrmrdtrdt

uu

++−−−−∈ξ+−ξ−ξ∈ξ+−−∈ξ

ξ=ξ≥  

4.14 Remark The inclusion defines an order in the set of the BDE’s. If 
',DD  are full BDE’s, then 'DD ⊂  iff 

  ≤ξ≤ξ∀
+−−∈ξ+−−∈ξ

II
],[]'','[

)()(,

rmrdtrdtrmrdtrdt

uuu  

  UU
]'','[],[

)()(

fmfdtfdt
fmfdtfdt

uu

+−−∈ξ+−−∈ξ

ξ≤ξ≤   (1) 

equivalently iff 

⊂∀ ),,,,(, ffrrBDC dmdmuSolu ),,,,( ''''
ffrrBDC dmdmuSol  

with the interpretation: ',DD  are asked to delay the input with at least 
''
ffff mdmd −≥− , respectively ''

rrrr mdmd −≥−  time units and with at 

most '
rr dd ≤ , respectively '

ff dd ≤  time units. 

4.15 Remark By passing to the left limit in BDC, we use Lemma 2.23 and 
we obtain the next inequalities: 
  ≤−≤ξ⋅−−

+−−∈ξ
)0()()0(

),[

txudtu
rmrdtrdt

r I  

   U
),[

)()0(

fmfdtfdt
f udtu

+−−∈ξ
ξ∪−−≤   (1) 

that are fulfilled by any ),,,,( ffrrBDC dmdmuSolx ∈ . 

5. Fixed Delays. Constant Delays 

5.1 Definition For Sxu ∈,  and 0≥d , the relation (see Remark 4.8) 
    )()( dtutx −=     (1) 
is called the fixed delay condition (FDC) (or the ideal delay condition or the 
pure delay condition). xu,  have the same names as mentioned before and 
d  is called (transmission) delay (for transitions). We say that ),,( xdu  



satisfies FDC. 

5.2 Remark In FDC, CC is fulfilled for any 0≥d  under the form dd ≥ . 

5.3 Remark If Su∈  and 0≥d , then Sx∈  like at 2.19 c). 

5.4 Notation The one element set consisting in the solut ion x  of FDC is 
noted with 
  }),,(|{),( FDCsatisfiesxduxduSolFDC =   (1) 

5.5 Theorem  a) )(),(,0, uSolduSoldu SCFDC ⊂≥∀∀  (1) 

 b) For any u  and any numbers ffrr dmdm ≤≤≤≤ 0,0 , we have:  

⇒−∧−∈ ],[],[ fffrrr dmddmdd  

 )),,,,(),(( ffrrBDCFDC dmdmuSolduSol ⊂⇒   (2) 

Proof  a) If 1t∃  so that )()(, 11 tuut =ξ≥ξ∀ , then for any 0≥d  we have 
)()()(, 11 tuduxdt =−ξ=ξ+≥ξ∀ . This property is a consequence however 

of Remark 5.2 and of Theorem 4.9. 
 b) If ],[],[ fffrrr dmddmdd −∧−∈ , then the next statements are 

true: 

fffrrr mdtdtdtandmdtdtdtt +−≤−≤−+−≤−≤−∀ ,  (3) 

 UI
],[],[

)()()(

fmfdtfdtrmrdtrdt

udtuu
+−−∈ξ+−−∈ξ
ξ≤−≤ξ   (4) 

5.6 Remark  At 5.5 b) the condition ∅≠−∧− ],[],[ fffrrr dmddmd  

occurs in the hypothesis; this condition coincides with CC and consequently 
with the fact that ∅≠),,,,( ffrrBDC dmdmuSol  for all u . 

5.7 Theorem The set 

   }|),{( SuuuI d
d ∈τ= o    (1) 

where 0≥d  is a deterministic DE. 
Proof 3.8 i) is obvious, 3.8 ii) was shown at 5.5 a) and 3.8 iii) means that 
(see Theorem 2.19) for all Su∈  and R∈'d , the obvious implication 

),0[}1)'(|{),0[}1)'(|{ ∞⊂=−−⇒∞⊂=− ddtutdtut  
is true. All these follow from Theorem 4.11 however. 
 Determinism means exactly that ),( duSolFDC  is a one element set. 



5.8 Definition dI  previously defined is called the fixed delay element 
(FDE) (or the ideal delay element or the pure delay element). 

5.9 Theorem For all 0', ≥dd  
   ''' dddddd IIIII +== oo    (1) 
i.e. by the serial connection of two FDE’s having the delays ',dd  we get a 
FDE, having the delay 'dd + . Moreover, the serial connection of the FDE’s 
is commutative. 
Proof Follows from the property 

    '')( dddd uu +τ=ττ ooo   (2) 

5.10 Remark The set of the FDE’s is organised by the serial connection as 
commutative monoid, where the unit is the wire. 

5.11 Theorem Let D  an arbitrary DE and dI  some FDE. We have: 

  }),(|),{( DxuxuDIID d
dd ∈τ== ooo   (1) 

and if D  is deterministic, then dID o  is deterministic. 

Proof  =dID o        (2) 

}),(),(,!|),{( DyxandIxuxyu d ∈∈∃=  (the determinism of dI ) 

}),(,!|),{( Dyxanduxxyu d ∈τ=∃= o  

}),(|),{( Dyuyu d ∈τ= o  

}),(|),{( Dyuyu d ∈τ= −o    (Lemma 3.13) 

}),(,!|),{( dyxandDxuxyu −τ=∈∃= o  
}),(),(,!|),{( dIyxandDxuxyu ∈∈∃=  

DId o=      (the determinism of dI ) 

5.12 Theorem If D  is BDE and dI  is FDE, then dIDD o=' DId o=  is 

BDE with dddmmdddmm ffffrrrr +==+== '''' ,,, . 

Proof dIDD o='  is a BDE with '''' ,,, ffrr dmdm  like in the statement of the 

Theorem 4.13. The commutativity dID o DId o=  was proved at Theorem 
5.11. 

5.13 Definition The DC )(uSolu a  is called constant if 0,0 ≥≥ fr dd  



exist so that )(, uSolxu ∈∀∀  the next inequalities are fulfilled 

   )()()0( rdtutxtx −≤⋅−    (1) 

   )()()0( fdtutxtx −≤⋅−    (2) 

A DC that is not constant is called variable. 

5.14 Remark The fixed delays are constant, because 
   )()()()0( dtutxtxtx −=≤⋅−   (1) 

   )()()()0( dtutxtxtx −=≤⋅−   (2) 

5.15 Remark For the informal definitions of the fixed delays, respectively 
of the pure delays from [2] see also the classification of the delays in our 
Introduction, item II c), respectively III a). 

6. Bivalent Relative Inertial Delays 

6.1 Lemma Let rr δ≤µ≤0  and ff δ≤µ≤0  be arbitrary numbers. When 

xu,  run in S , the next statements are equivalent: 
 a) I

],[
)()()0(

rrtrt
utxtx

µ+δ−δ−∈ξ
ξ≤⋅−    (1) 

 b) I
],[

)()0()()0(
rrtrt

utxtxtx
µ+δ−δ−∈ξ

ξ⋅−≤⋅−   (2) 

and the next statements are also equivalent 
 a') I

],[
)()()0(

fftft
utxtx

µ+δ−δ−∈ξ
ξ≤⋅−    (3) 

 b') I
],[

)()0()()0(
fftft

utxtxtx
µ+δ−δ−∈ξ

ξ⋅−≤⋅−   (4) 

Proof )) ba ⇒  Follows by multiplying (1) with )0( −tx . 
)) ab ⇒  We have 

)()0( txtx ⋅− II
],[],[

)()()0(
rrtrtrrtrt

uutx
µ+δ−δ−∈ξµ+δ−δ−∈ξ

ξ≤ξ⋅−≤  (5) 

6.2 Definition We consider the signals xu,  and the numbers ,0 rr δ≤µ≤  

ff δ≤µ≤0 . The property expressed by 

 i)  ))(lim)(lim()(lim)(lim txtuandtxtu
tttt ∞→∞→∞→∞→

=∃⇒∃  



 ii)   I
],[

)()()0(
rrtrt

utxtx
µ+δ−δ−∈ξ

ξ≤⋅−   (1) 

   I
],[

)()()0(
fftft

utxtx
µ+δ−δ−∈ξ

ξ≤⋅−   (2) 

is called the (bivalent) relative inertial delay condition (RIDC). xu,  have 

the same names like before and ffrr δµδµ ,,,  are called inertia parameters. 

We say that the tuple ),,,,,( xu ffrr δµδµ  satisfies RIDC. 

6.3 Remark The relative inertial delays are constant, because 6.2 ii) imply 
   )()()0( rtutxtx δ−≤⋅−    (1) 

   )()()0( ftutxtx δ−≤⋅−    (2) 

This example of constant delays is less trivial than the one of the FDC’s, 
because we have generally fr δ≠δ . 

6.4 Notation Let 
 =δµδµ ),,,,( ffrrRIDC uSol  

  }),,,,,(|{ RIDCsatisfiesxux ffrr δµδµ=   (1) 

the set of the solutions of RIDC. 

6.5 Remark  Because 6.2 i) coincides with SC, for any numbers 

ffrr δ≤µ≤δ≤µ≤ 0,0  and any signal Su∈  we have 

  )(),,,,( uSoluSol SCffrrRIDC ⊂δµδµ   (1) 

6.6 Remark We interpret the dual inequations 6.1 (1), 6.1 (3) in the spirit of 
the informal definition from [2], see in our Introduction the classification of 
the delays, item III b), that we rewrite in the following manner: 'pulses 
shorter than or equal to rm  (respectively fm ) are not transmitted and 

pulses strictly longer than rm  (respectively fm ) may be transmitted'. This 

interpretation results from the fact that for example ),0[ τχ=u  implies 

whenever rµ≤τ<0  that 0)(
],[

=ξ
µ+δ−δ−∈ξ

I
rrtrt

u  and x  cannot switch 

(inequation 6.1 (1)) from 0 to 1. Such pulses are not transmitted to the 
output, bivalent inertia unlike the trivalent inertia from BDC where the 



pulses ),0[ τχ=u  with rm≤τ<0  sometimes were transmitted, sometimes 

were not. 

6.7 Example We show by an example the meaning of  
   frr δ≤µ−δ , rff δ≤µ−δ    (1) 

analogue with 4.3 c) whose satisfaction was not asked so far, in RIDC. Let 
0>δ  some number and ),0[ δ+µχ= ru  giving 

 )()( ),[
],[

tu
rr

rrtrt
δ+δδ

µ+δ−δ−∈ξ
χ=ξI     (2) 

 )()()( ),[),(
],[

ttu frff
fftft

∞δ+δ+µµ−δ−∞
µ+δ−δ−∈ξ

χ⊕χ=ξI  (3) 

Case 1 (1) is true, thus δ+δ+µ≤δ+δ<δ≤µ−δ frrrff  and RIDC has 

solutions of two forms: 
 a) 0)( =tx       (4) 

 b) )()( )',[ ttx ddχ=      (5) 

where ),[ δ+δδ∈ rrd  and ),[' ∞δ+δ+µ∈ frd . 

Case 2 (1) is not satisfied and, in order to make a choice, we suppose that 
),[),[ ∞δ+δ+µ⊂δ+δδ frrr . Then the solutions of RIDC are of the forms 

 a) 0)( =tx        (6) 

 b) )(...)()()( )2,12[)4,3[)2,1[ ttttx ndnddddd −χ⊕⊕χ⊕χ=  (7) 

where 1≥n  and 
  nrnr dddd 21221 ... ≤δ+δ<<<<≤δ −   (8) 
 From this point of view, we conclude that our choice for the 
satisfaction or not of the inequalities (1) is that -case 1 - a pulse on the input 
be transmitted to the output under the form of at most one pulse or -case 2 - 
a pulse on the input be transmitted to the output under the form of at most a 
finite number of pulses, having the switching moments situated in the range 
indicated at (8) 
 This undesired situation is similar with what we have called the 
negative interpretation of BDC at Remark 4.7. 

6.8 Remark We avoid the previous property (of density or of zenoness), 
written under the general form: 

,0',),,,,,(,,0 >∃δµδµ∈∃∃>ε∀ dduSolxu ffrrRIDC  



 ε<−=⋅−=⋅− |'|1)'()0'(1)()0( ddanddxdxanddxdx  (1) 
by asking that in RIDC the request rfffrr δ≤µ−δδ≤µ−δ ,  be fulfilled. 

This condition has the same form like CC, but the content is different. 

6.9 Definition In RIDC 6.2 the property rfffrr δ≤µ−δδ≤µ−δ ,  is 

called the non-zenoness condition (NZC). NZC is by definition trivial if 

rfffrr δ=µ−δδ=µ−δ ,  and non-trivial otherwise. 

6.10 Theorem We consider Su ∈  and ),,,,( ffrrRIDC uSolx δµδµ∈  so 

that NZC be true. Then for all 0', ≥dd , the next implications hold: 

 ⇒<=⋅−=⋅− '1)'()0'(1)()0( ddanddxdxanddxdx  
    rrfdd µ+δ−δ>−⇒ '   (1) 

 ⇒<=⋅−=⋅− '1)'()0'(1)()0( ddanddxdxanddxdx  
    ffrdd µ+δ−δ>−⇒ '   (2) 

Proof We show (1). The hypothesis states 
  1)()(

]','[],[
=ξ=ξ

µ+δ−δ−∈ξµ+δ−δ−∈ξ
II

ffdfdrrdrd
uu   (3) 

meaning that 
⇔∅=µ+δ−δ−∧µ+δ−δ− ]','[],[ fffrrr dddd  

⇔δ−<µ+δ−δ−<µ+δ−⇔ rfffrr ddordd ''  

⇔δ−µ−δ<−µ+δ−δ>−⇔ rffrrf ddordd ''  

rrfdd µ+δ−δ>−⇔ '       (4) 

6.11 Remark Let ,0 rr δ≤µ≤  ff δ≤µ≤0  arbitrary. We have 

}{),,,,( 00 =δµδµ ffrrRIDCSol  and if 0≠u  and NZC is true, then 

}{),,,,( 0=δµδµ ffrrRIDC uSol  and ),,,,( ffrrRIDC uSol δµδµ  is infinite 

are both possible, to be compared with Remark 4.5. 

6.12 Theorem For ffrr δ≤µ≤δ≤µ≤ 0,0  arbitrary so that NZC is true, 

the set 
 )},,,,(,|),{( ffrrRIDC uSolxSuxuD δµδµ∈∈=   (1) 

is a DE. 



Proof The satisfaction of 3.8 i) is a consequence of 6.11 and the satisfaction 
of 3.8 ii) coincides with the inclusion 6.5 (1) and we show 3.8 iii). Let 

R∈d  arbitrary. The translation of 6.2 ii) with d  is 

=ξ≤−⋅−−=τ⋅−τ
µ+δ−−δ−−∈ξ

Ioo
],[

)()()0())(()0)((
rrdtrdt

dd udtxdtxtxtx  

  II o
],[],[

))(()(
rrtrt

d

rrtrtd

uu
µ+δ−δ−∈ξµ+δ−δ−∈+ξ

ξτ=ξ=   (2) 

together with the dual statement. The hypothesis states that Su d ∈τo , thus 

(see 2.23) we have that Su
rrr

d ∈ξτ
µ+δ−⋅δ−⋅∈ξ

I o
],[

))((  and we infer that 

0))((min
],[

≥ξτ
µ+δ−⋅δ−⋅∈ξ

I o

rrr

dusupp . From (2) we get 

 ≥⋅τ⋅−⋅τ=τ ))(()0)((minmin ddd xxsuppxsupp ooo  

   0))((min
],[

≥ξτ≥
µ+δ−⋅δ−⋅∈ξ

I o

rrr

dusupp   (3) 

implying Sx d ∈τo  from 2.19 b). (2) and its dual shows that 

Dxu dd ∈ττ ),( oo . 3.8 iii) is proved. 

6.13 Definition Any DE DD ⊂' , where the set D  is defined by 6.12 (1) is 
called the (bivalent) relative inertial delay element (RIDE) (or circuit or 
buffer). 

6.14 Theorem Let RIDC described by 6.2 i), ii) where 

ffrr δ≤µ≤δ≤µ≤ 0,0  and NZC is satisfied. The next property is true: 

,),,,,,(, tuSolxu ffrrRIDC ∀δµδµ∈∃∀  

  I
],[

)()0()()0(
rrtrt

utxtxtx
µ+δ−δ−∈ξ

ξ⋅−=⋅−   (1) 

  I
],[

)()0()()0(
fftft

utxtxtx
µ+δ−δ−∈ξ

ξ⋅−=⋅−   (2) 

The solution of the system (1), (2) is unique. 
Proof We define 



   














−

=ξ

=ξ

=
µ+δ−δ−∈ξ

µ+δ−δ−∈ξ

elsetx

u

u

tx
fftft

rrtrt

),0(

1)(,0

1)(,1

)(
],[

],[

I

I

  (3) 

and, due to NZC –see the analogy from 4.3 b)- this definition is correct. 
From Lemma 2.23 we know that 
 - I

],[

)(
rrtrt

u
µ+δ−δ−∈ξ

ξ  is a signal 

 - UI
],[],[

)()(
fftftfftft

uu
µ+δ−δ−∈ξµ+δ−δ−∈ξ

ξ=ξ  is the complement of a 

 signal, satisfying the properties 2.12 b.1), 2.12 b.3) but not 
 2.12 b.2) 
and the conclusion is that x  given by (3) satisfies ),0[ ∞⊂xsupp  and on 
the other hand that it has limits and only left discontinuities, given by the 

left discontinuities of II
],[],[

)(,)(
fftftrrtrt

uu
µ+δ−δ−∈ξµ+δ−δ−∈ξ

ξξ : 

 I
],[

)()0()()0(
rrtrt

r ututxtx
µ+δ−δ−∈ξ

ξ⋅−δ−≤⋅−   (4) 

 I
],[

)()0()()0(
fftft

f ututxtx
µ+δ−δ−∈ξ

ξ⋅−δ−≤⋅−   (5) 

in other words x  is a signal. Moreover, x  satisfies (1), (2) in both situations 

 - if II
],[],[

)(,)(
fftftrrtrt

uu
µ+δ−δ−∈ξµ+δ−δ−∈ξ

ξξ  are null and in this case (1), 

(2) have all the four terms null, from (4), (5) 
 - if one of II

],[],[
)(,)(

fftftrrtrt
uu

µ+δ−δ−∈ξµ+δ−δ−∈ξ
ξξ  is 1 and the other is 

null, from (3). 
 We have proved that (3) implies (1), (2). The equivalence of these 
statements will be proved at 8.1, by following a different line of 
demonstration. 
 We prove the uniqueness of the solution (3) and let us suppose that 



(1), (2) has two distinct solutions ', xx  that necessarily satisfy the property 
that 0'≥t  exists so that 
    )(')(,' txtxtt =<∀    (6) 
    1)'(',0)'( == txtx    (7) 
(1), (2) become at the time instant 't , taking into account (7): 
          I

]','[
)()0'(0

rrtrt
utx

µ+δ−δ−∈ξ
ξ⋅−=   (8) 

   I
]','[

)()0'()0'(
fftft

utxtx
µ+δ−δ−∈ξ

ξ⋅−=−   (9) 

   I
]','[

)()0'(')0'('
rrtrt

utxtx
µ+δ−δ−∈ξ

ξ⋅−=−   (10) 

         I
]','[

)()0'('0
fftft

utx
µ+δ−δ−∈ξ

ξ⋅−=    (11) 

and on the other hand (6) implies 
    )0'(')0'( −=− txtx    (12) 
(8), (10), (12) and respectively (9), (11), (12) give 
        1)0'(' =−tx     (13) 
        0)0'( =−tx     (14) 
(12), (13) and (14) are contradictory and this ends the proof of the fact that 
the solution of (1), (2) is unique. 

6.15 Counterexample If ',DD  are RIDE's, then their serial connection 
DDD o'"=  is not in general an RIDE. We give in this sense the 

counterexample from Fig 9, for which the inequations are given by 
(1),…,(4): 
  I

]1,2[
)()0()()0(

−−∈ξ
ξ⋅−≤⋅−

tt
utxtxtx    (1) 

  I
]1,2[
)()0()()0(

−−∈ξ
ξ⋅−≤⋅−

tt
utxtxtx    (2) 

  I
]1,3[
)()0()()0(

−−∈ξ
ξ⋅−≤⋅−

tt
xtytyty    (3) 

  I
]1,3[
)()0()()0(

−−∈ξ
ξ⋅−≤⋅−

tt
xtytyty    (4) 

and from the rising-falling symmetry conditions, the serial connection 



should satisfy the inequations: 

  I
],[

)()0()()0(
µ+δ−δ−∈ξ

ξ⋅−≤⋅−
tt
utytyty   (5) 

  I
],[

)()0()()0(
µ+δ−δ−∈ξ

ξ⋅−≤⋅−
tt
utytyty   (6) 

where δ≤µ≤0  are parameters to be identified from the request that 
(1),…,(6) are all satisfied as equalities. Such solutions 

)2,1,2,1,(uSolx RIDC∈ , )3,2,3,2,(xSoly RIDC∈  always exist in a unique 
manner by 6.14 since NZC is fulfilled twice and if DDD o'"=  is a RIDE, 
then such a solution ),,,,(' δµδµ∈ uSoly RIDC  should always exist since 
NZC is fulfilled and moreover we should have yy =' . 
 

 
Fig 9 



 We have 

:5=t  µ>=δ=ξ⇒=⋅−
µ+δ−δ−∈ξ

251)(1)()0(
],[

andandutyty
tt
I  (7) 

:9=t  µ>=ξ⇒=⋅−
µ+δ−δ−∈ξ

31)(1)()0(
],[

andutyty
tt
I   (8) 

:12=t  µ≤=ξ⇒=⋅−
µ+δ−δ−∈ξ

20)(0)()0(
],[

andutyty
tt
I   (9) 

But (7) and (9) are contradictory, thus (5) and (6) are not true. This has 
occurred because the pulse )2,0[,1)( ∈ξ=ξu  has produced 

1)5()05( =⋅− yy , but the ‘similar’ pulse )9,7[,1)( ∈ξ=ξu  has not 

produced 1)12()012( =⋅− yy . The source of the situation consists in the 

fact that the system (1), (2) identifies 




∈ξ
∨∈ξ

=ξ
)3,2[,0

)4,3[)2,0[,1
)(u  with 

)4,0[,1)( ∈ξ=ξu  and this results by looking in Fig 9 at the form of x . 

6.16 Example of RIDC: 0== fr mm  and, NZC being satisfied, ,rf dd ≤  

 

 
 

Fig 10 

fr dd ≤ , thus ddd fr == . 6.1 (1) and 6.1 (3) are written under the form: 

   )()()0( dtutxtx −≤⋅−    (1) 



   )()()0( dtutxtx −≤⋅−    (2) 
 Taking into account SC also, we have the situation from Fig 10, 
where we have supposed that 1=d . 

7. Bounded Bivalent Relative Inertial Delays 

7.1 Definition Let Sxu ∈,  and the real numbers rr dm ≤≤0 , 

ff dm ≤≤0 , rr δ≤µ≤0 , ff δ≤µ≤0 . The next system of inequations: 

 i) UI
],[],[

)()()(

fmfdtfdtrmrdtrdt

utxu
+−−∈ξ−−−∈ξ

ξ≤≤ξ  (1) 

 ii)  I
],[

)()()0(
rrtrt

utxtx
µ+δ−δ−∈ξ

ξ≤⋅−   (2) 

   I
],[

)()()0(
fftft

utxtx
µ+δ−δ−∈ξ

ξ≤⋅−   (3) 

is called the bounded (bivalent) relative inertial delay condition (BRIDC); 

ffrrffrr dmdmxu δµδµ ,,,,,,,,,  have the previous names We say that the 

tuple ),,,,,,,,,( xdmdmu ffrrffrr δµδµ  satisfies BRIDC. A RIDC that is 

not bounded is called unbounded. 

7.2 Notation We note with 
 =δµδµ ),,,,,,,,( ffrrffrrBRIDC dmdmuSol  

 }),,,,,,,,,(|{ BRIDCsatisfiesxdmdmux ffrrffrr δµδµ=  (1) 

the set of the solutions of BRIDC. 

7.3 Remark The meaning of BRIDC results from Fig 11. 

7.4 Theorem BRIDC has solutions for any u  if and only if one of the next 
requests is satisfied: 
 a)  rrrrrff mdmd +µ−δ≤≤δ≤−  

   fffffrr mdmd +µ−δ≤≤δ≤−  

 b)  rffrrrr dmdmd ≤−≤δ≤µ+−  

   frrffff dmdmd ≤−≤δ≤µ+−  

 c)  rrrrrff dmdmd ≤µ+−≤δ≤−  

 



 

 
Fig 11 

 
   fffffrr dmdmd ≤µ+−≤δ≤−  

 d)  rrrrffr dmmd ≤µ−+δ≤−≤δ  

   ffffrrf dmmd ≤µ−+δ≤−≤δ  

Proof Solutions exist iff whenever x  must have the value 1, respectively 
the value 0 in t  ( I

],[

)(
rmrdtrdt

u
+−−∈ξ
ξ  switches in t  from 0 to 1, respectively 

U
],[

)(

fmfdtfdt

u
+−−∈ξ

ξ  switches in t  from 1 to 0), RIDC gives this possibility 

( 't  exists so that 1)(
]','[

=ξ
µ+δ−δ−∈ξ

I
rrtrt

u , respectively so that 

1)(
]','[
=ξ

µ+δ−δ−∈ξ
I

fftft
u ) in time ( ],[' tmddtt ffr −+−∈ , respectively 

],[' tmddtt rrf −+−∈ ). 

 



 
 

Fig 12 
 
This happens for example in Fig 12 for rdt = . We can write 

IUI
]','[],['],[

)()()0(
rrtrttfmfdrdttrmrdtrdt

r uudtu
µ+δ−δ−∈ξ−+−∈+−−∈ξ

ξ≤ξ⋅−−  

inequality that is true for any u . The next statements are all equivalent with 
the previous one: 
 ]','[],[],,[' rrrrrrffr ttmdtdttmddtt µ+δ−δ−⊃+−−−+−∈∃  

 




µ−δ++−≤
≤





≤δ+−

≤−+−
∃

rrrrrr

ffr

mdtt

tt
and

tdt

tmddt
t

'

'

'

'
,'  

 ),min(),(max rrrrrrffr mdttdtmddt µ−δ++−≤δ+−−+−  

 one of the next possibilities is true: 
   j)  rrffr dmdd δ+−≤−+−  

    rrrr md µ−δ++−≤0  
    0≤δ+− rrd  
   jj)  rrffr dmdd δ+−≥−+−  

    rrrr md µ−δ++−≤0  
    0≤−+− ffr mdd  

   jjj)  rrffr dmdd δ+−≤−+−  



    rrrr md µ−δ++−≥0  
    rrrrrr mdd µ−δ++−≤δ+−  
   jv)  rrffr dmdd δ+−≥−+−  

    rrrr md µ−δ++−≥0  
    rrrrffr mdmdd µ−δ++−≤−+−  

It is shown that j), jj), jjj), jv) are equivalent with the first statements of a), 
b), c), d). 

7.5 Definition The condition  
7.4 a) or 7.4 b) or 7.4 c) or 7.4 d) 

is called the  consistency condition (CC) associated with BRIDC 7.1. 

7.6 Example We suppose that the following conditions, stronger than CC 
(they imply 7.4 a)) are fulfilled: 
         rrffff dmd ≤δ≤µ−δ≤−    (1) 

          ffrrrr dmd ≤δ≤µ−δ≤−    (2) 

 In this case, BRIDC with u  having sufficiently long pulses (u  is 1 
strictly longer than rm  and then u  is 0 strictly longer than fm ) is 

characterized by time intervals of the following kind: 
 - ),( ff mdt −−∞∈ ; 0)( =tx  and the only possible switch -that 

does not happen- is from 1 to 0 
 - ),[ ffff mdt µ−δ−∈ ; 0)( =tx . )(tx  could be 1, but it is 

allowed to switch only from 1 to 0 and this does not happen 
 - ),[ rfft δµ−δ∈ ; 0)( =tx . )(tx  could be 1, but no switch is 

allowed 
 - ],[ rr dt δ∈ ; 0)( =tx  and 1)( =tx  are both allowed, switching 
from 0 to 1 is allowed to happen and exactly one such switch takes place 
 - ),( rrr mddt −τ+∈ ; 1)( =tx  and the only possible switch -that 
does not happen- is from 0 to 1 
 - ),[ rrrr mdt µ−τ+δ−τ+∈ ; 1)( =tx , )(tx  could be 0, but it is 
allowed to switch only from 0 to 1 and this does not happen 
 - ),[ τ+δµ−τ+δ∈ frrt ; 1)( =tx , )(tx  could be 0, but no switches 

are possible in this time interval 
 - ],[ τ+τ+δ∈ ff dt ; 1)( =tx  and 0)( =tx  are both possible, 



switching from 1 to 0 is allowed and exactly one such switch takes place 
 

Fig 13 
 
 - ),( ∞τ+∈ fdt ; 0)( =tx  and the only possible switch -that does 

not happen- is from 1 to 0. 
 This succession of time intervals is repetitive if u  is suitable chosen. 

7.7 Theorem (Special case of BRIDC) When ffrr dd δ=δ= ,  and 

ffrr mm µ=µ= ,  and if ffrrrf mddmdd −≥−≥ ,  is true, then the next 

systems: 
  UI

],[],[

)()()(

fmfdtfdtrmrdtrdt

utxu
+−−∈ξ−−−∈ξ

ξ≤≤ξ  (1) 

   I
],[

)()()0(

rmrdtrdt

utxtx

+−−∈ξ

ξ≤⋅−   (2) 

   I
],[

)()()0(

fmfdtfdt

utxtx

+−−∈ξ

ξ≤⋅−   (3) 

and respectively  



  I
],[

)()0()()0(

rmrdtrdt

utxtxtx

+−−∈ξ

ξ⋅−=⋅−   (4) 

  I
],[

)()0()()0(

fmfdtfdt

utxtxtx

+−−∈ξ

ξ⋅−=⋅−   (5) 

are equivalent, in the sense that the signals xu,  satisfy the first system if 
and only if they satisfy the second system. 
Proof By multiplying both the left inequality of (1) and the inequality (2) 
with )0( −tx , we have: 

)0()0()()0()()0(

],[

−⋅−≤ξ⋅−≤⋅−

+−−∈ξ

txtxutxtxtx

rmrdtrdt

I  (6) 

from where we get (4). 
 The complementation of the right inequality of (1) gives 
   )()(

],[

txu

fmfdtfdt

≤ξ
+−−∈ξ

I    (7) 

 By the multiplication of (3) and (7) with )0( −tx  we have 

)()0()()0()()0(

],[

txtxutxtxtx

fmfdtfdt

⋅−≤ξ⋅−≤⋅−
+−−∈ξ

I   (8) 

thus we have obtained (5). 
 Conversely, (4) implies (2) and (5) implies (3). In order to show that 
the system (4), (5) implies (1), we suppose that 1)(

],[

=ξ
+−−∈ξ

I
rmrdtrdt

u  for 

some arbitrary t . If 1)0( =−tx , then 1)( =tx  from (4) thus the left 

inequality of (1) is proved and if 0)0( =−tx , then (5) becomes 0)( =tx , 
thus 1)( =tx  and the left inequality of (1) is proved again. Proving the fact 
that (4), (5) imply the validity of the right inequation of (1) is similar. 

7.8 Remark Let ffrrffrr dmdm δ≤µ≤δ≤µ≤≤≤≤≤ 0,0,0,0  be 

arbitrary. We have }{),,,,,,,,( 00 =δµδµ ffrrffrrBRIDC dmdmSol ; 0≠u  

and CC imply that }{),,,,,,,,( 0=δµδµ ffrrffrrBRIDC dmdmuSol  and 

),,,,,,,,( ffrrffrrBRIDC dmdmuSol δµδµ  is infinite are both possible. 



7.9 Remark  From the manner in which BRIDC was defined we have, if CC 
is satisfied: 

=δµδµ ),,,,,,,,( ffrrffrrBRIDC dmdmuSol  

 ),,,,(),,,,( ffrrRIDCffrrBDC uSoldmdmuSol δµδµ∧=  (1) 

7.10 Theorem For ffrrffrr dmdm δ≤µ≤δ≤µ≤≤≤≤≤ 0,0,0,0  

arbitrary so that CC is fulfilled, the set 
)},,,,,,,,(,|),{( ffrrffrrBRIDC dmdmuSolxSuxuD δµδµ∈∈=  (1) 

is a DE. 
Proof The satisfaction of 3.8 a) results from 7.8, the satisfaction of 3.8 b) 
from 7.9 because 
 ⊂δµδµ ),,,,,,,,( ffrrffrrBRIDC dmdmuSol  

   )(),,,,( uSoldmdmuSol SCffrrBDC ⊂⊂  

and the validity of 3.8 c) may be shown by combining the similar properties 
for BDE’s and RIDE’s. 

7.11 Definition Any DE DD ⊂' , where the set D  was defined at 7.10 (1) is 
called the bounded (bivalent) relative inertial delay element (BRIDE) 
(circuit, buffer). D  itself is called the full BRIDE. A RIDE that is not 
bounded is called unbounded. 

7.12 Let the BRIDE’s ', DD  and their serial connection DDD o'"= . "D  is 
not a BRIDE in general, but a BDE due to the fact that the serial connection 
of the RIDE’s is not a RIDE. 

8. Deterministic Bivalent Relative Inertial Delays 

8.1 Theorem Let the real numbers ffrr dmdm ≤≤≤≤ 0,0  arbitrary with 

frr dmd ≤− , rff dmd ≤− . The next systems are equivalent, in the sense 

that if Sxu ∈,  satisfy one of them, then they also satisfy any other. 
a)   I

],[
)()0()()0(

rmrdtrdt
utxtxtx

+−−∈ξ
ξ⋅−=⋅−   (1) 

  I
],[

)()0()()0(
fmfdtfdt

utxtxtx
+−−∈ξ
ξ⋅−=⋅−   (2) 



b)   )()(
],[

txu
rmrdtrdt

≤ξ
+−−∈ξ

I     (3) 

  )()(
],[

txu
fmfdtfdt

≤ξ
+−−∈ξ

I     (4) 

 ⋅ξ
+−−∈ξ

I
],[

)(
rmrdtrdt

u ≤ξ
+−−∈ξ

I
],[

)(
fmfdtfdt

u  

    )()0()()0( txtxtxtx ⋅−∪⋅−≤  (5) 

c)  














−

=ξ

=ξ

=
+−−∈ξ

+−−∈ξ

otherwisetx

u

u

tx
fmfdtfdt

rmrdtrdt

),0(

1)(,0

1)(,1

)(
],[

],[

I

I

   (6) 

d)    UI
],[],[

)()0()()(

fmfdtfdtrmrdtrdt

utxutx
+−−∈ξ+−−∈ξ
ξ⋅−∪ξ=  (7) 

e) ∪ξ⋅−=
+−−∈ξ

I
],[

)()0()(
rmrdtrdt

utxtDx  

    I
],[

)()0(
fmfdtfdt

utx
+−−∈ξ
ξ⋅−∪  (8) 

f) ∪ξ⋅⋅−∪ξ⋅⋅−
+−−∈ξ+−−∈ξ

II
],[],[

)()()0()()()0(
fmfdtfdtrmrdtrdt

utxtxutxtx  

 ∪ξ⋅⋅−∪
+−−∈ξ

I
],[

)()()0(
rmrdtrdt

utxtx  

 1)()()0(
],[

=ξ⋅⋅−∪
+−−∈ξ

I
fmfdtfdt

utxtx    (9) 

Proof We shall show the implications )))))) aedcba ⇒⇒⇒⇒⇒  and 
the equivalence )) fa ⇔  (some of the previous implications prove to be 
equivalences during the proof) 

)) ba ⇒  If 1)(
],[

=ξ
+−−∈ξ

I
rmrdtrdt

u , then 0)(
],[
=ξ

+−−∈ξ
I

fmfdtfdt
u  from CC 

and 1)( =tx  is the unique solution of the system (1), (2): 



   )0()()0( −=⋅− txtxtx    (10) 

       0)()0( =⋅− txtx     (11) 
 (3) is proved. 
 (4) may be proved in a dual manner. 

 The supposition 0)()(
],[],[
=ξ=ξ

+−−∈ξ+−−∈ξ
II

fmfdtfdtrmrdtrdt
uu  gives 

the conclusion that 0)()0()()0( =⋅−∪⋅− txtxtxtx , from where 

=⋅−∪⋅− )()0()()0( txtxtxtx 1)()0()()0( =⋅−∪⋅− txtxtxtx . (5) is 
proved. 

)) cb ⇒  If 1)(
],[

=ξ
+−−∈ξ

I
rmrdtrdt

u , then 1)( =tx  and if 

1)(
],[
=ξ

+−−∈ξ
I

fmfdtfdt
u , then 1)( =tx  and thus 0)( =tx . Otherwise, 

1)()0()()0( =⋅−∪⋅− txtxtxtx , i.e. )0()( −= txtx . 

)) dc ⇒  Because UI
],[],[

)()(

fmfdtfdtrmrdtrdt

uu
+−−∈ξ+−−∈ξ
ξ≤ξ , we have the 

three possibilities 4.10 (2), 4.10 (3), 4.10 (4). 

Case i), 4.10 (2) is true. Then 1)()(
],[],[
=ξ=ξ

+−−∈ξ+−−∈ξ
IU

fmfdtfdtfmfdtfdt
uu  

and 0)( =tx . (7) represents the equation 0)( =tx  too. 

Case ii), 4.10 (3) is true. Then 0)(
],[
=ξ

+−−∈ξ
I

fmfdtfdt
u  and (6), (7) coincide 

both with the equation )0()( −= txtx . 
Case iii), 4.10 (4) is true. In this situation (6), (7) become both 1)( =tx . 

)) ed ⇒  We have the same three possibilities. 
Case i), 4.10 (2) is true and d) means that 0)( =tx . Because 

1)(
],[
=ξ

+−−∈ξ
I

fmfdtfdt
u , e) gives )0()0()( −=−⊕ txtxtx  thus 0)( =tx  and 

(7), (8) coincide. 
Case ii) 4.10 (3) is true and d) means that )0()( −= txtx , in other words 



0)( =tDx . On the other hand 0)(
],[
=ξ

+−−∈ξ
I

fmfdtfdt
u  and e) becomes 

0)( =tDx  too. 
Case iii) 4.10 (4) is true and d) means that 1)( =tx . Because 

0)(
],[
=ξ

+−−∈ξ
I

fmfdtfdt
u , e) implies =−=−⊕ )0()0()( txtxtx  

1)0( ⊕−= tx , i.e. 1)( =tx . 
)) ae ⇒  We make use once again of the three cases i), ii), iii). 

Case i), 4.10 (2) is satisfied. Because =ξ
+−−∈ξ

U
],[

)(
fmfdtfdt

u  

1)(
],[
=ξ=

+−−∈ξ
I

fmfdtfdt
u  , e) means )0()( −= txtDx  i.e. 0)( =tx ; on the 

other hand, the equations (1), (2) become 
    0)()0( =⋅− txtx    (12) 

         )0()()0( −=⋅− txtxtx    (13) 
The system (12), (13) is uniquely satisfied by 0)( =tx . 
Case ii), 4.10 (3) is true. e) shows that 0)( =tDx  and a) gives 

0)()0()()0( =⋅−=⋅− txtxtxtx  i.e. ==⋅−∪⋅− 0)()0()()0( txtxtxtx  
)(tDx= . 

Case iii), 4.10 (4) is satisfied. e) gives )0()( −= txtDx , i.e. 
1)0()()0( ⊕−=⊕− txtxtx  and 1)( =tx . a) is equivalent with the system 

(10), (11) whose unique solution is 1)( =tx . 
)) fa ⇔  We observe that a) is equivalent with the system 

∪ξ⋅−⋅⋅−
+−−∈ξ

I
],[

)()0()()0(
rmrdtrdt

utxtxtx  

 1)()0()()0(
],[

=ξ⋅−⋅⋅−∪
+−−∈ξ

I
rmrdtrdt

utxtxtx  

∪ξ⋅−⋅⋅−
+−−∈ξ

I
],[

)()0()()0(
fmfdtfdt

utxtxtx  



 1)()0()()0(
],[

=ξ⋅−⋅⋅−∪
+−−∈ξ

I
fmfdtfdt

utxtxtx  

thus with the equations 
∪ξ⋅⋅−=

+−−∈ξ
I

],[
)()()0((1

rmrdtrdt
utxtx  

 ⋅ξ∪−⋅∪−∪
+−−∈ξ

)))()0(())()0((
],[

I
rmrdtrdt

utxtxtx  

∪ξ⋅⋅−⋅
+−−∈ξ

I
],[

)()()0((
fmfdtfdt

utxtx  

 =ξ∪−⋅∪−∪
+−−∈ξ

)))()0(())()0((
],[

I
fmfdtfdt

utxtxtx  

∪ξ⋅⋅−=
+−−∈ξ

I
],[

)()()0((
rmrdtrdt

utxtx  

 ⋅−∪ξ⋅∪−∪
+−−∈ξ

))0()())()0((
],[

txutxtx
rmrdtrdt

I  

∪ξ⋅⋅−⋅
+−−∈ξ

I
],[

)()()0((
fmfdtfdt

utxtx  

 =−∪ξ⋅∪−∪
+−−∈ξ

))0()())()0((
],[

txutxtx

fmfdtfdt
I  

∪ξ⋅ξ⋅⋅−=
+−−∈ξ+−−∈ξ

II
],[],[

)()()()0(
fmfdtfdtrmrdtrdt

uutxtx  

 ∪ξ⋅⋅−∪
+−−∈ξ

I
],[

)()()0(
fmfdtfdt

utxtx  

∪ξ⋅ξ⋅⋅−∪
+−−∈ξ+−−∈ξ

II
],[],[

)()()()0(

fmfdtfdtrmrdtrdt

uutxtx  

II
],[],[

)()())()0()()0((

fmfdtfdtrmrdtrdt

uutxtxtxtx
+−−∈ξ+−−∈ξ

ξ⋅ξ⋅⋅−∪⋅−∪

 ∪ξ⋅⋅−∪
+−−∈ξ

I
],[

)()()0(

fmfdtfdt

utxtx  



II
],[],[

)()()0()()()0(
rmrdtrdtrmrdtrdt

utxtxutxtx
+−−∈ξ+−−∈ξ
ξ⋅⋅−∪ξ⋅⋅−∪  

∪ξ⋅ξ⋅⋅−=
+−−∈ξ+−−∈ξ

II
],[],[

)()()()0(
fmfdtfdtrmrdtrdt

uutxtx  

 ∪ξ⋅⋅−∪
+−−∈ξ

I
],[

)()()0(
fmfdtfdt

utxtx  

∪ξ⋅ξ⋅⋅−∪
+−−∈ξ+−−∈ξ

II
],[],[

)()()()0(
fmfdtfdtrmrdtrdt

uutxtx  

 ∪ξ⋅⋅−∪
+−−∈ξ

I
],[

)()()0(
rmrdtrdt

utxtx  

∪ξ⋅ξ⋅⋅−∪
+−−∈ξ+−−∈ξ

II
],[],[

)()()()0(

fmfdtfdtrmrdtrdt

uutxtx  

 ∪ξ⋅⋅−∪
+−−∈ξ

I
],[

)()()0(
rmrdtrdt

utxtx  

∪ξ⋅ξ⋅⋅−∪
+−−∈ξ+−−∈ξ

II
],[],[

)()()()0(

fmfdtfdtrmrdtrdt

uutxtx  

 I
],[

)()()0(

fmfdtfdt

utxtx
+−−∈ξ
ξ⋅⋅−∪  

∪ξ⋅⋅−∪ξ⋅⋅−=
+−−∈ξ+−−∈ξ

II
],[],[

)()()0()()()0(
rmrdtrdtfmfdtfdt

utxtxutxtx  

II
],[],[

)()()0()()()0(
fmfdtfdtrmrdtrdt

utxtxutxtx
+−−∈ξ+−−∈ξ
ξ⋅⋅−∪ξ⋅⋅−∪  

8.2 Remark The equations 8.1 a) have occurred for the first time at 6.14 
and at 6.15 they were used as a counterexample showing that the serial 
connection of the RIDE’s is not in general an RIDE. We have also met them 
at 7.7 as a special case of BRIDC, where ,,, rrffrr mdd µ=δ=δ=  

ffm µ=  are true. 

8.3 Remark In any of the equivalent conditions 8.1 a),…,8.1 f), CC from 
7.4 coincides with ,ffr mdd −≥  rrf mdd −≥ . We shall refer to it as the  



consistency condition CC too. 

8.4 Remark The implications of the possible violation of CC in one of 8.1 
a),...,8.1 f) are the following. Let u  and 't  so that 
 ∅=+−−∧+−− ]','[]','[ fffrrr mdtdtmdtdt   (1) 

  1)(],','[ =ξ+−−∈ξ∀ umdtdt rrr    (2) 
          0)(],','[ =ξ+−−∈ξ∀ umdtdt fff    (3) 

 Let us suppose, in order to make a choice, that frr dtmdt −<+− '' . 

From (2), (3) and from the right continuity of u  in ffrr mdtmdt +−+− ','  

we get the existence of 0>δ  so that frr dtmdt −<δ++− ''  and 

  1)(],','[ =ξδ++−−∈ξ∀ umdtdt rrr    (4) 
          0)(],','[ =ξδ++−−∈ξ∀ umdtdt fff    (5) 

8.1 a) becomes for any ]','[ δ+∈ ttt  

   )0()()0( −=⋅− txtxtx    (6) 

   )0()()0( −=⋅− txtxtx    (7) 
and the system accepts two possibilities 1)0(,0)( =−= txtx  and 1)( =tx , 

0)0( =−tx ; no signal x  satisfies such requests. 8.1 b) has no solution 
either, because 8.1 (3), 8.1 (4) show that 0)( =tx  and 1)( =tx  are both true 
for ]','[ δ+∈ ttt  and this is the case of 8.1 c) also, where )(tx  is not a well 
defined function for ]','[ δ+∈ ttt . 8.1 d) gives ,1)( =tx  ]','[ δ+∈ ttt . 8.1 e) 
and 8.1 f) become both 
   ]','[,1)( δ+∈= ttttDx     (8) 
and this equation represents a nonsense, because the set 

}1)(],','[|{ =δ+∈ tDxtttt  should be finite ( x  has resulted to be 
‘everywhere discontinuous’ in ]','[ δ+tt ). 

8.5 Theorem We suppose for the numbers ffrr dmdm ≤≤≤≤ 0,0  that 

CC is satisfied. Then any of 8.1 a),...,8.1 f) has a solution, that is unique. 
Proof This follows from 8.1 and 6.14. 

8.6 Definition For Sxu ∈,  and ffrr dmdm ≤≤≤≤ 0,0  so that the 

consistency condition is satisfied, any of the equiva lent properties 8.1 a), ..., 
8.1 f) and respectively 7.7 (1), (2), (3) is called the deterministic (bivalent) 
relative inertial delay condition (DRIDC). We say that the tuple 



),,,,,( xdmdmu ffrr  satisfies DRIDC. 

8.7 Remark We give an interpretation for the statements from 8.1. 
 a) x  was 0 and u  was 1 for sufficiently long iff x  switches from 0 
to 1 + the dual statement 
 b) if u  was 1 for sufficiently long, then x is 1 + the dual statement; if 
u was not sufficiently persistent in order that it is reproduced at the output, 
then x keeps its previous value 
 c), d) similar with b) 
 e) the switches of x occur exactly when either x was 0 and u was 1 
for sufficiently long, or x was 1 and u was 0 for sufficiently long 
 f) at any moment in time we have one of the next situations true: 
 - x switches from 0 to 1 and u was 1 for sufficiently long + the dual 
statement 
 - x keeps the 0 value and u was not 1 for sufficiently long + the dual 
statement 

8.8 Notation We suppose that ffrr dmdm ≤≤≤≤ 0,0  and that CC is 

satisfied. The set consisting in the unique solution x  (see Theorem 8.5) of 
DRIDC is noted with 
 =),,,,( ffrrDRIDC dmdmuSol  

  }),,,,,(|{ DRIDCsatisfiesxdmdmux ffrr=  (1) 

8.9 Theorem For all u  and all ffrr dmdm ,,,  like at 8.8, we have 

 =),,,,( ffrrDRIDC dmdmuSol  

  ),,,,,,,,( ffrrffrrBRIDC dmdmdmdmuSol=  (1) 

Proof This is the result expressed by 7.7. 

8.10 Remark  We have the special case of DRIDC when ,0== fr mm  

ddd fr == : 

  )()0()()0( dtutxtxtx −⋅−=⋅−    (1) 

  )()0()()0( dtutxtxtx −⋅−=⋅−    (2) 
The solution of (1), (2) is unique and it is: 
   )()( dtutx −=      (3) 
i.e. we have obtained FDC 5.1 (1). 



8.11 Theorem Let ffrr dmdm ≤≤≤≤ 0,0  arbitrary with frr dmd ≤− , 

rff dmd ≤− . The set 

 )},,,,(,|),{( ffrrDRIDC dmdmuSolxSuxuD ∈∈=   (1) 

is a deterministic DE. 
Proof This follows from 7.10, taking into account 8.9. 

8.12 Definition D  previously defined is called the deterministic (bivalent) 
relative inertial delay element (DRIDE) (or circuit or buffer). 

8.13 Theorem Let the DRIDE D  and the FDE dI , where 0≥d . Then 

 }),(|),{(' DxuxuDIIDD d
dd ∈τ=== ooo   (1) 

is a DRIDE with ffffrrrr mmdddmmddd =+==+= '''' ,,, . 

Proof Formula (1) takes place for any DE’s D, dI  like in Theorem 5.11. 
The equations are: 

UI
],[],[

)()0()()(

fmfdtfdtrmrdtrdt

utxutx
+−−∈ξ+−−∈ξ
ξ⋅−∪ξ=   (2) 

)()( dtxty −=        (3) 

UI
],[],[

)()0()()(

fmdfdtdfdtrmdrdtdrdt

utyuty
+−−−−∈ξ+−−−−∈ξ

ξ⋅−∪ξ=  (4) 

8.14 Remark  The serial connection of the DRIDE’s is a BDE, but not a 
DRIDE, as known from 6.15, for example. 

9. A Comparison with Other Works of the Author 

9.1 Remark Because differences exist between the points of view from this 
paper and other points of view that have been expressed in previous works, 
the purpose of this chapter is to make a comparison between them. 

9.2 Lemma For ffrr dmdm ≤≤≤≤ 0,0  and Su∈  the next formulas are 

true: 

 UI
],(],[

)()()(
rmrdtrdt

rr
rmrdtrdt

Dumdtuu
+−−∈ξ+−−∈ξ

ξ⋅+−=ξ  (1) 

 UI
],(],[

)()()(
fmfdtfdt

ff
fmfdtfdt

Dumdtuu
+−−∈ξ+−−∈ξ
ξ⋅+−=ξ  (2) 



Proof (1), (2) are trivial if rm , respectively fm  are null and the reunions 

are null too. If 0>rm , the equality (1) is a consequence of the fact that 
constantisuandmdtuu

rmrdtrdtrr
rmrdtrdt

],[|
],[

1)(1)( +−−
+−−∈ξ

=+−⇔=ξI  

  constantisuandmdtu rmrdtrdtrr ],(|1)( +−−=+−⇔  

(from the right continuity of u  in rdt − ) 
  nullisDuandmdtu rmrdtrdtrr ],(|1)( +−−=+−⇔  

Such equivalencies, that are easy to accept intuitively, follow from [13] 6.4 
Theorem 1 however. 

9.3 Example We rewrite 8.1 (8) in the special case when 
    ddd fr ==     (1) 

          0>== mmm fr     (2) 

and we apply Lemma 9.2: 
 II

],[],[
)()0()()0()(
mdtdtmdtdt

utxutxtDx
+−−∈ξ+−−∈ξ
ξ⋅−∪ξ⋅−=  (3) 

 U
],(
)())()0()()0((

mdtdt
Dumdtutxmdtutx

+−−∈ξ
ξ⋅+−⋅−∪+−⋅−=  

 In [12], the equation of the inertial delay circuit with null initial 
conditions was written under the form 

  U
),(

)())0()0(()(
tdt

DututxtDx
−∈ξ

ξ⋅−⊕−=   (4) 

 By comparing (3), (4) we reach the conclusion that they are 
'equivalent' if we make dm <  infinitely close to d . This fact corresponds to 
the ideas exposed in [1] and elsewhere showing that the cancellation delay 
m  and the transmission delay for transitions d  are usually taken to be 
equal. 

9.4 Theorem The next properties are equivalent in the sense that the 
arbitrary signals xu,  satisfy one of them if and only if they satisfy the other 
one. 
 a) ffrrffrr dmdm δµδµ ,,,,,,,  are given and the next inequalities 

are fulfilled (see also Example 7.6) 
   ffrr dmdm ≤≤≤≤ 0,0    (1) 



   ffrr δ≤µ≤δ≤µ≤ 0,0    (2) 

         rrffff dmd ≤δ≤µ−δ≤−    (3) 

          ffrrrr dmd ≤δ≤µ−δ≤−    (4) 

 UI
],[],[

)()()(

fmfdtfdtrmrdtrdt

utxu
+−−∈ξ+−−∈ξ

ξ≤≤ξ   (5) 

  I
],[

)()()0(
rrtrt

utxtx
µ+δ−δ−∈ξ

ξ≤⋅−    (6) 

  I
],[

)()()0(
fftft

utxtx
µ+δ−δ−∈ξ

ξ≤⋅−    (7) 

b) The numbers ,,,,,,, max,min,min,max,max,min,min, fffrrrr mdmdmdm  

max,fd  are given and we have 

  max,max,max,max, 0,0 ffrr dmdm ≤≤≤≤   (8) 

  min,min,min,min, 0,0 ffrr dmdm ≤≤≤≤   (9) 

 max,min,min,min,max,max, rrffff ddmdmd ≤≤−≤−  (10) 

 max,min,min,min,max,max, ffrrrr ddmdmd ≤≤−≤−  (11) 

≤⋅−≤ξ⋅−
+−−∈ξ

)()0()()0(
]max,max,,max,[

txtxutx
rmrdtrdt

I   (12) 

  I
]min,min,,min,[

)()0(
rmrdtrdt

utx
+−−∈ξ

ξ⋅−≤  

≤⋅−≤ξ⋅−
+−−∈ξ

)()0()()0(
]max,max,,max,[

txtxutx
fmfdtfdt

I   (13) 

  I
]min,min,,min,[

)()0(
fmfdtfdt

utx
+−−∈ξ

ξ⋅−≤  

Proof The next equalities take place 
   rrrr dm δ=µ= min,min, ,    (14) 

   rrrr ddmm == max,max, ,    (15) 

   ffff dm δ=µ= min,min, ,    (16) 

   ffff ddmm == max,max, ,    (17) 

under the form 'equal by definition with' in both directions )) ba ⇒  and 



)) ab ⇒  resulting that (1),…,(4) and (8),…,(11) coincide. 

)) ba ⇒  The left inequality of (5) multiplied with )0( −tx  gives the left 

inequality of (12) and (6) multiplied with )0( −tx  gives the right inequality 
of (12). The rest results by duality. 

)) ab ⇒  We suppose that 1)(
],[

=ξ
+−−∈ξ

I
rmrdtrdt

u  and we have the next 

possibilities 
 i) 0)0( =−tx  
Then the left inequality of (12) shows that 1)( =tx  and the left inequality of 
(5) is satisfied. 
 ii) 1)0( =−tx  
and the right inequality of (13) becomes 

   I
],[

)()(
fftft

utx
µ+δ−δ−∈ξ

ξ≤    (18) 

(10), (11) are written under the form (3), (4) and this implies 
   rff dtt −≥µ+δ−     (19) 

   frr tmdt δ−≥+−     (20) 

i.e. 
 ∅≠µ+δ−δ−∧+−− ],[],[ fffrrr ttmdtdt   (21) 

and thus 0)(
],[
=ξ

µ+δ−δ−∈ξ
I

fftft
u . From (18) we get 1)( =tx  and the left 

inequality of (5) is satisfied in this case too. 
 On the other hand, the right inequality of (12) gives 

II
],[],[

)()()0()()0(
rrtrtrrtrt

uutxtxtx
µ+δ−δ−∈ξµ+δ−δ−∈ξ

ξ≤ξ⋅−≤⋅−   (22) 

i.e. (6). 
 The other implications result by duality. 

9.5 Remark We compare 9.4 b) with the inequations 
≤⋅−≤ξ⋅−

−∈ξ
)()0()()0(

),max,[

txtxutx
trdt

I I
),min,[

)()0(
trdt

utx
−∈ξ

ξ⋅−  (1) 

≤⋅−≤ξ⋅−
−∈ξ

)()0()()0(
),max,[

txtxutx
tfdt

I I
),min,[

)()0(
tfdt

utx
−∈ξ

ξ⋅−  (2) 



from [11]. We suppose that for some sufficiently small 0>ε  and for 

max,min,0 rr dd ≤< , max,min,0 ff dd ≤<  given, we have: 

  ε−=ε−= max,max,max,max, , ffrr dmdm   (3) 

  ε−=ε−= min,min,min,min, , ffrr dmdm   (4) 

 When 0→ε , the two systems of inequations are 'equivalent'. 

10 Conclusions  

 The central idea of the theory is represented by SC, DC and the 
Definition 3.8 of the DE’s. They are strengthened sometimes under the form 
BDC, BDE and interfere with (bivalent) inertia and occasionally with 
determinism. It is interesting and important to observe the manner in which 
the serial connection of the DE’s preserves the properties of boundness, 
inertia, CC, NZC and determinism because certain ‘failures’ occur, caused 
by inertia. 
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