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Abstract. The theory ofDaizhanCheng [1] replacesB = {0, 1}withD = {

(
1

0

)
,

(
0

1

)
},

and Boolean functions with logical matrices. Interesting and very important algebraical

opportunities result, which can be used in systems theory. Our purpose is to give a hint

on the theory of Cheng and its application to asynchronicity.
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Sisteme booleene asincrone din perspectiva teoriei lui
Daizhan Cheng

Rezumat. Teoria lui Daizhan Cheng [1] înlocuieşte B = {0, 1} cu D = {

(
1

0

)
,

(
0

1

)
},

şi funcţiile booleene cu matrici logice. Rezultă de aici oportunităţi algebrice importante,

care pot fi folosite în teoria sistemelor. Scopul nostru este acela de a schiţa teoria lui

Cheng şi aplicaţiile sale în asincronism.

Cuvinte cheie: funcţie booleană, sistem asincron boolean, matrice de structură, produs

semi-tensorial, teoria lui Daizhan Cheng.

1. Preliminaries

Notation 1.1. We denote with B = {0, 1} the binary Boolean algebra.

Definition 1.1. The 𝜆−iterate of Φ : B𝑛 → B𝑛, 𝜆 ∈ B𝑛 is the function Φ𝜆 : B𝑛 → B𝑛

defined like this: ∀𝜇 ∈ B𝑛,∀𝑖 ∈ {1, ..., 𝑛},

(Φ𝜆)𝑖 (𝜇) =

{
Φ𝑖 (𝜇), 𝑖 𝑓 𝜆𝑖 = 1,

𝜇𝑖 , 𝑖 𝑓 𝜆𝑖 = 0.

Dedicated to the memory of Academician Mitrofan Cioban, who was the core of the intellectual and

spiritual life of the Moldovan mathematicians for so many years, and also a steady bridge connecting the

mathematicians from Moldova and Romania. We shall keep in our hearts his common sense and support.

May he rest in peace!
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Definition 1.2. GivenΦ, the function Φ̃ : B𝑛×B𝑛 → B𝑛 is defined by∀𝜇 ∈ B𝑛,∀𝜆 ∈ B𝑛,

Φ̃(𝜇, 𝜆) = Φ𝜆(𝜇). (1)

Definition 1.3. The function 𝛼 : N → B𝑛, N � 𝑘 ↦→ 𝛼𝑘 ∈ B𝑛, with

∀𝑖 ∈ {1, ..., 𝑛}, the set {𝑘 |𝑘 ∈ N, 𝛼𝑘
𝑖 = 1} is infinite

is called progressive computation function, and we denote with Π𝑛 the set of these

functions.

Remark1.1. Twoways ofmaking the discrete time iterations of the functionΦ : B𝑛 → B𝑛

exist: synchronously 1B𝑛 ,Φ,Φ ◦Φ, ... whenΦ1, ...,Φ𝑛 are computed always, all of them,

and asynchronously, when the coordinates of Φ are computed sometimes, independently

on each other. The functions 𝛼 ∈ Π𝑛 indicate howΦ is computed: ∀𝑘 ∈ N,∀𝑖 ∈ {1, ..., 𝑛},{
𝛼𝑘
𝑖 = 1, at time instant 𝑘, Φ𝑖 is computed,

𝛼𝑘
𝑖 = 0, at time instant 𝑘, Φ𝑖 is not computed.

Synchronicity is that special case of asynchronicity when ∀𝑘 ∈ N, 𝛼𝑘 = (1, ..., 1).

Definition 1.4. The unbounded delay model of computation of Φ consists in the equation

𝑥(𝑘 + 1) = Φ𝛼𝑘
(𝑥(𝑘)), (2)

where Φ : B𝑛 → B𝑛, 𝑥 : N → B𝑛, 𝛼 ∈ Π𝑛 and 𝑘 ∈ N. In (2) the function 𝑥, called state,
is unknown, and 𝑥(0), together with 𝛼, are parameters.

Example 1.1. We consider the function Φ : B2 → B2,∀𝜇 ∈ B2,Φ(𝜇1, 𝜇2) = (𝜇2, 𝜇1),

with the following state portrait

In the drawing, the underlined coordinates 𝜇𝑖 , 𝑖 ∈ {1, 2} show that Φ𝑖 (𝜇) ≠ 𝜇𝑖 and,

by their computation, the system moves to a distinct state, while the arrows indicate the

evolution of the system. The equation (2) is ∀𝑘 ∈ N,{
𝑥1(𝑘 + 1) = 𝑥2(𝑘)𝛼

𝑘
1
∪ 𝑥1(𝑘)𝛼

𝑘
1
,

𝑥2(𝑘 + 1) = 𝑥1(𝑘)𝛼
𝑘
2
∪ 𝑥2(𝑘)𝛼

𝑘
2
,

(3)

where 𝑥 : N → B2 fulfils 𝑥(0) = (0, 0) and 𝛼 ∈ Π2 is defined as

𝛼 = (1, 0), (0, 1), (1, 1), (0, 1), (1, 0), ...
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We get

𝑥(1) = Φ𝛼0

(𝑥(0)) = Φ(1,0) (0, 0) = (0, 0), (4)

𝑥(2) = Φ𝛼1

(𝑥(1)) = Φ(0,1) (0, 0) = (0, 1), (5)

𝑥(3) = Φ𝛼2

(𝑥(2)) = Φ(1,1) (0, 1) = (1, 1), (6)

𝑥(4) = Φ𝛼3

(𝑥(3)) = Φ(0,1) (1, 1) = (1, 0), (7)

𝑥(5) = Φ𝛼4

(𝑥(4)) = Φ(1,0) (1, 0) = (0, 0), (8)

...

2. Semi-tensor product

Notation 2.1. We use the notation 𝑀𝑚×𝑛 for the set of the matrices with binary entries

that have 𝑚 rows and 𝑛 columns.

Remark 2.1. In the following Definitions 2.1 and 2.2, the operations with matrices are

induced by the field structure of B relative to ⊕, ·.

Definition 2.1. The Kronecker product ⊗ of the matrices 𝐴 ∈ 𝑀𝑚×𝑛 and 𝐵 ∈ 𝑀𝑝×𝑞 is

𝐴 ⊗ 𝐵 =
����

𝑎11𝐵 ... 𝑎1𝑛𝐵

...

𝑎𝑚1𝐵 ... 𝑎𝑚𝑛𝐵

	

� ∈ 𝑀𝑚𝑝×𝑛𝑞 .

Definition 2.2. The semi-tensor product � of 𝐴 ∈ 𝑀𝑚×𝑛 and 𝐵 ∈ 𝑀𝑝×𝑞 is by definition

𝐴 � 𝐵 = (𝐴 ⊗ 𝐼 𝑐
𝑛
) (𝐵 ⊗ 𝐼 𝑐

𝑝
) ∈ 𝑀𝑚𝑐

𝑛 ×
𝑞𝑐
𝑝
,

where 𝐼𝑘 is the 𝑘 × 𝑘 identity matrix and 𝑐 is the least common multiple of 𝑛 and 𝑝.

Remark 2.2. At Definition 2.2, 𝐴 ⊗ 𝐼 𝑐
𝑛
has 𝑛 𝑐

𝑛 columns and 𝐵 ⊗ 𝐼 𝑐
𝑝
has 𝑝 𝑐

𝑝 rows, thus

the product of the matrices 𝐴 ⊗ 𝐼 𝑐
𝑛
, 𝐵 ⊗ 𝐼 𝑐

𝑝
makes sense.

Remark 2.3. If 𝑛 = 𝑝, the semi-tensor product coincides with the usual product of the

matrices. This happens because we get 𝑐 = 𝑛 = 𝑝, 𝐴 ⊗ 𝐼1 = 𝐴, and 𝐵 ⊗ 𝐼1 = 𝐵.

Example 2.1. We have the following examples of Kronecker product(
1

0

)
⊗

(
1 1

)
=

���
1
(
1 1

)
0
(
1 1

) 	
� =

(
1 1

0 0

)
,

and semi-tensor product(
1

0

)
�

(
1 1 1

0 0 0

)
=

((
1

0

)
⊗ 𝐼2

) ((
1 1 1

0 0 0

)
⊗ 𝐼1

)
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=

�������
1 0

0 1

0 0

0 0

	




�
(
1 1 1

0 0 0

)
=

�������
1 1 1

0 0 0

0 0 0

0 0 0

	




�
.

Remark 2.4. The semi-tensor product is associative, and for this reason we shall omit

writing brackets when it is used repeatedly.

3. Replacement of B with D

Notation 3.1. We denote with 𝛿𝑖𝑛 ∈ 𝑀𝑛×1 the columns of the identity matrix of dimension

𝑛:

𝛿𝑖𝑛 =

���������

0

...

1

...

0

	






�
− 𝑖,

where 𝑛 ≥ 1 and 𝑖 ∈ {1, ..., 𝑛}.

Notation 3.2. We use also the notations

D = {𝛿12, 𝛿
2
2},

D(𝑛) = {𝛿12𝑛 , ..., 𝛿
2𝑛

2𝑛 }.

Remark 3.1. D and D(𝑛) do not have a name and an algebraical structure of their own,

but they will act as B and B𝑛 in the following. Obviously, 𝑐𝑎𝑟𝑑 (B) = 𝑐𝑎𝑟𝑑 (D) = 2 and

𝑐𝑎𝑟𝑑 (B𝑛) = 𝑐𝑎𝑟𝑑 (D(𝑛) ) = 2𝑛.

Notation 3.3. We use the notations 𝜁 : B → D, 𝜁𝑛 : B𝑛 → D(𝑛) for the following

functions: ∀𝜇 ∈ B,∀𝜆 ∈ B𝑛,

𝜁 (𝜇) =

(
𝜇

𝜇

)
,

𝜁𝑛 (𝜆) =

���������

𝜆1...𝜆𝑛−1𝜆𝑛

𝜆1...𝜆𝑛−1𝜆𝑛

𝜆1...𝜆𝑛−1𝜆𝑛

...

𝜆1...𝜆𝑛−1 𝜆𝑛

	






�
.

We denote in general 𝜇= 𝜁 (𝜇) and 𝜆=𝜁𝑛 (𝜆).
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Remark 3.2. We notice that for any 𝜇 ∈ B, respectively 𝜆 ∈ B𝑛, exactly one of 𝜇, 𝜇 is

1, respectively exactly one of 𝜆1...𝜆𝑛−1𝜆𝑛, 𝜆1...𝜆𝑛−1𝜆𝑛, 𝜆1...𝜆𝑛−1𝜆𝑛, ..., 𝜆1...𝜆𝑛−1 𝜆𝑛 is 1,

meaning that 𝜇∈ D, respectively that 𝜆∈ D(𝑛) indeed.

Theorem 3.4. (a) 𝜁 and 𝜁𝑛 are bijections;
(b) ∀𝜆 ∈ B𝑛,

𝜆 = 𝜆1 � ... � 𝜆𝑛.

Proof. (a) When 𝜆 ∈ B𝑛 takes the distinct 2𝑛 values (1, ..., 1, 1), (1, ..., 1, 0), (1, ..., 0, 1),

..., (0, ..., 0, 0), 𝜆 takes the distinct 2𝑛 values 𝛿1
2𝑛
, 𝛿2

2𝑛
, 𝛿3

2𝑛
, ..., 𝛿2

𝑛

2𝑛
.

(b) For 𝑛 = 2 and arbitrary 𝜆 ∈ B2, we obtain

𝜆1 � 𝜆2 =

(
𝜆1

𝜆1

)
�

(
𝜆2

𝜆2

)
= (

(
𝜆1

𝜆1

)
⊗

(
1 0

0 1

)
) (

(
𝜆2

𝜆2

)
⊗ 1)

=

�������
𝜆1 0

0 𝜆1

𝜆1 0

0 𝜆1

	




�
(
𝜆2

𝜆2

)
=

�������
𝜆1𝜆2

𝜆1𝜆2

𝜆1𝜆2

𝜆1 𝜆2

	




�
= 𝜆.

The property is supposed to be true for 𝑛 and the proof is made for 𝑛 + 1. �

4. Structure matrix

Notation 4.1. The notation of the 𝑖− 𝑡ℎ column of an arbitrary binary matrix 𝐴 is col𝑖 (𝐴).

Definition 4.1. A matrix 𝐴 with 𝑛 rows and 𝑚 columns is called logical if ∀ 𝑗 ∈

{1, ..., 𝑚}, col 𝑗 (𝐴) ∈ {𝛿1𝑛, ..., 𝛿
𝑛
𝑛}. The set of the logical matrices with 𝑛 rows and 𝑚

columns is denoted with 𝐿𝑛×𝑚.

Definition 4.2. Let 𝑓 : B𝑛 → B, Φ : B𝑛 → B𝑛 and Φ̃ : B𝑛 ×B𝑛 → B𝑛, as defined at (1).

We denote with 𝑀 𝑓 ∈ 𝐿2×2𝑛 the matrix

𝑀 𝑓 =

(
𝑓 (1, ..., 1, 1),

𝑓 (1, ..., 1, 1),

𝑓 (1, ..., 1, 0),

𝑓 (1, ..., 1, 0),

𝑓 (1, ..., 0, 1),

𝑓 (1, ..., 0, 1),

...

...

𝑓 (0, ..., 0, 0)

𝑓 (0, ..., 0, 0)

)
,

with 𝑀Φ ∈ 𝐿2𝑛×2𝑛 the matrix whose columns are

col1(𝑀Φ) =

���������

Φ1(1, ..., 1, 1)...Φ𝑛−1(1, ..., 1, 1)Φ𝑛 (1, ..., 1, 1)

Φ1(1, ..., 1, 1)...Φ𝑛−1(1, ..., 1, 1)Φ𝑛 (1, ..., 1, 1)

Φ1(1, ..., 1, 1)...Φ𝑛−1(1, ..., 1, 1)Φ𝑛 (1, ..., 1, 1)

...

Φ1(1, ..., 1, 1)...Φ𝑛−1(1, ..., 1, 1) Φ𝑛 (1, ..., 1, 1)

	






�
,
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col2(𝑀Φ) =

���������

Φ1(1, ..., 1, 0)...Φ𝑛−1(1, ..., 1, 0)Φ𝑛 (1, ..., 1, 0)

Φ1(1, ..., 1, 0)...Φ𝑛−1(1, ..., 1, 0)Φ𝑛 (1, ..., 1, 0)

Φ1(1, ..., 1, 0)...Φ𝑛−1(1, ..., 1, 0)Φ𝑛 (1, ..., 1, 0)

...

Φ1(1, ..., 1, 0)...Φ𝑛−1(1, ..., 1, 0) Φ𝑛 (1, ..., 1, 0)

	






�
,

...

col2𝑛 (𝑀Φ) =

���������

Φ1(0, ..., 0, 0)...Φ𝑛−1(0, ..., 0, 0)Φ𝑛 (0, ..., 0, 0)

Φ1(0, ..., 0, 0)...Φ𝑛−1(0, ..., 0, 0)Φ𝑛 (0, ..., 0, 0)

Φ1(0, ..., 0, 0)...Φ𝑛−1(0, ..., 0, 0)Φ𝑛 (0, ..., 0, 0)

...

Φ1(0, ..., 0, 0)...Φ𝑛−1(0, ..., 0, 0) Φ𝑛 (0, ..., 0, 0)

	






�
and with 𝑀Φ̃ ∈ 𝐿2𝑛×22𝑛 the matrix

col1(𝑀Φ̃) =

�����������

Φ(1,...,1,1)
1

(1, ..., 1)...Φ(1,...,1,1)
𝑛−1 (1, ..., 1)Φ(1,...,1,1)

𝑛 (1, ..., 1)

Φ(1,...,1,1)
1

(1, ..., 1)...Φ(1,...,1,1)
𝑛−1 (1, ..., 1)Φ(1,...,1,1)

𝑛 (1, ..., 1)

Φ(1,...,1,1)
1

(1, ..., 1)...Φ(1,...,1,1)
𝑛−1 (1, ..., 1)Φ(1,...,1,1)

𝑛 (1, ..., 1)

...

Φ(1,...,1,1)
1

(1, ..., 1)...Φ(1,...,1,1)
𝑛−1 (1, ..., 1) Φ(1,...,1,1)

𝑛 (1, ..., 1)

	








�
,

col2(𝑀Φ̃) =

�����������

Φ(1,...,1,0)
1

(1, ..., 1)...Φ(1,...,1,0)
𝑛−1 (1, ..., 1)Φ(1,...,1,0)

𝑛 (1, ..., 1)

Φ(1,...,1,0)
1

(1, ..., 1)...Φ(1,...,1,0)
𝑛−1 (1, ..., 1)Φ(1,...,1,0)

𝑛 (1, ..., 1)

Φ(1,...,1,0)
1

(1, ..., 1)...Φ(1,...,1,0)
𝑛−1 (1, ..., 1)Φ(1,...,1,0)

𝑛 (1, ..., 1)

...

Φ(1,...,1,0)
1

(1, ..., 1)...Φ(1,...,1,0)
𝑛−1 (1, ..., 1) Φ(1,...,1,0)

𝑛 (1, ..., 1)

	








�
,

...

col2𝑛 (𝑀Φ̃) =

�����������

Φ(0,...,0,0)
1

(1, ..., 1)...Φ(0,...,0,0)
𝑛−1 (1, ..., 1)Φ(0,...,0,0)

𝑛 (1, ..., 1)

Φ(0,...,0,0)
1

(1, ..., 1)...Φ(0,...,0,0)
𝑛−1 (1, ..., 1)Φ(0,...,0,0)

𝑛 (1, ..., 1)

Φ(0,...,0,0)
1

(1, ..., 1)...Φ(0,...,0,0)
𝑛−1 (1, ..., 1)Φ(0,...,0,0)

𝑛 (1, ..., 1)

...

Φ(0,...,0,0)
1

(1, ..., 1)...Φ(0,...,0,0)
𝑛−1 (1, ..., 1) Φ(0,...,0,0)

𝑛 (1, ..., 1)

	








�
,

...

col22𝑛 (𝑀Φ̃) =

�����������

Φ(0,...,0,0)
1

(0, ..., 0)...Φ(0,...,0,0)
𝑛−1 (0, ..., 0)Φ(0,...,0,0)

𝑛 (0, ..., 0)

Φ(0,...,0,0)
1

(0, ..., 0)...Φ(0,...,0,0)
𝑛−1 (0, ..., 0)Φ(0,...,0,0)

𝑛 (0, ..., 0)

Φ(0,...,0,0)
1

(0, ..., 0)...Φ(0,...,0,0)
𝑛−1 (0, ..., 0)Φ(0,...,0,0)

𝑛 (0, ..., 0)

...

Φ(0,...,0,0)
1

(0, ..., 0)...Φ(0,...,0,0)
𝑛−1 (0, ..., 0) Φ(0,...,0,0)

𝑛 (0, ..., 0)

	








�
.
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𝑀 𝑓 , 𝑀Φ, 𝑀Φ̃ are called the structure matrices of 𝑓 ,Φ, Φ̃.

Theorem 4.2. We consider 𝑓 : B𝑛 → B, Φ : B𝑛 → B𝑛 and Φ̃ : B𝑛 × B𝑛 → B𝑛 like
previously. The assignments

𝜇 ↦→ 𝑀 𝑓 � 𝜇,

𝜇 ↦→ 𝑀Φ � 𝜇,

(𝜇, 𝜆) ↦→ 𝑀Φ̃ � 𝜇 � 𝜆,

with 𝜇 ∈ B𝑛, 𝜆 ∈ B𝑛, define the functions 𝑀 ( 𝑓 ) : D(𝑛) → D, 𝑀 (Φ) : D(𝑛) → D(𝑛) ,

𝑀 (Φ̃) : D(𝑛) × D(𝑛) → D(𝑛) in the following way: ∀𝜇 ∈ D(𝑛) ,∀𝜆 ∈ D(𝑛) ,

𝑀 ( 𝑓 ) (𝜇) = 𝑀 𝑓 � 𝜇, (9)

𝑀 (Φ) (𝜇) = 𝑀Φ � 𝜇, (10)

𝑀 (Φ̃) (𝜇, 𝜆) = 𝑀Φ̃ � 𝜇 � 𝜆. (11)

We have

𝑀 𝑓 � 𝜇 = 𝑀 𝑓 · 𝜇, (12)

𝑀Φ � 𝜇 = 𝑀Φ · 𝜇, (13)

𝑀Φ̃ � 𝜇 � 𝜆 = 𝑀Φ̃ · (𝜇 � 𝜆), (14)

where ′·′ is the product of the matrices.

Proof. We note first that

D = 𝐿2×1,

D(𝑛) = 𝐿2𝑛×1

are true. As far as 𝜇∈ 𝐿2𝑛×1 and 𝑀 𝑓 ∈ 𝐿2×2𝑛 , we infer from Remark 2.3 that (12) holds.

On the other hand, 𝜇∈ 𝐿2𝑛×1 makes 𝑀 𝑓 ·𝜇 coincide with one of col1(𝑀 𝑓 ), ..., col2𝑛 (𝑀 𝑓 )

and we know that col1(𝑀 𝑓 ), ..., col2𝑛 (𝑀 𝑓 ) ∈ 𝐿2×1, thus we can define 𝑀 ( 𝑓 ) as

D(𝑛) � 𝜇 ↦→ 𝑀 ( 𝑓 ) (𝜇) = 𝑀 𝑓 � 𝜇 ∈ D.

The other statements are proved similarly. �

Notation 4.3. We denote 𝐹𝑛,𝑚 = {ℎ|ℎ : B𝑛 → B𝑚}.

Theorem 4.4. (a) The following diagrams
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commute.
(b) The assignments 𝐹𝑛,1 � 𝑓 ↦−→ 𝑀 𝑓 ∈ 𝐿2×2𝑛 , 𝐹𝑛,𝑛 � Φ ↦−→ 𝑀Φ ∈ 𝐿2𝑛×2𝑛 ,

𝐹2𝑛,𝑛 � Φ̃ ↦−→ 𝑀Φ̃ ∈ 𝐿2𝑛×22𝑛 are bijective.

Proof. We fix 𝜇 ∈ B𝑛 and 𝜆 ∈ B𝑛 arbitrary.

(a) In order to prove the commutativity of the first diagram, we use the fact that

𝑓 (𝜇) = 𝑓 (1, ..., 1, 1)𝜇1...𝜇𝑛−1𝜇𝑛 ⊕ 𝑓 (1, ..., 1, 0)𝜇1...𝜇𝑛−1𝜇𝑛

⊕ 𝑓 (1, ..., 0, 1)𝜇1...𝜇𝑛−1𝜇𝑛 ⊕ ... ⊕ 𝑓 (0, ..., 0, 0)𝜇1...𝜇𝑛−1 𝜇𝑛,

𝑓 (𝜇) = 𝑓 (1, ..., 1, 1)𝜇1...𝜇𝑛−1𝜇𝑛 ⊕ 𝑓 (1, ..., 1, 0)𝜇1...𝜇𝑛−1𝜇𝑛

⊕ 𝑓 (1, ..., 0, 1)𝜇1...𝜇𝑛−1𝜇𝑛 ⊕ ... ⊕ 𝑓 (0, ..., 0, 0)𝜇1...𝜇𝑛−1 𝜇𝑛,

wherefrom

𝑓 (𝜇) =

(
𝑓 (𝜇)

𝑓 (𝜇)

)
= 𝑀 𝑓 · 𝜇. (15)

We conclude that

(𝑀 ( 𝑓 ) ◦ 𝜁𝑛) (𝜇) = 𝑀 ( 𝑓 ) (𝜁𝑛 (𝜇)) = 𝑀 ( 𝑓 ) (𝜇)
(9)
= 𝑀 𝑓 � 𝜇

(12)
= 𝑀 𝑓 · 𝜇

(15)
= 𝑓 (𝜇) = 𝜁 ( 𝑓 (𝜇)) = (𝜁 ◦ 𝑓 ) (𝜇),

i.e. the first diagram is commutative.

As far as the second diagram is concerned, we can prove that

Φ(𝜇) = 𝑀Φ · 𝜇, (16)

which is analogue with (15), and we obtain

(𝑀 (Φ) ◦ 𝜁𝑛) (𝜇) = 𝑀 (Φ) (𝜁𝑛 (𝜇)) = 𝑀 (Φ) (𝜇)
(10)
= 𝑀Φ � 𝜇

(13)
= 𝑀Φ · 𝜇

(16)
= Φ(𝜇) = 𝜁𝑛 (Φ(𝜇)) = (𝜁𝑛 ◦Φ) (𝜇).
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For the commutativity of the third diagram, we have

Φ̃(𝜇, 𝜆) =

����������

Φ𝜆
1
(𝜇)...Φ𝜆

𝑛−1(𝜇)Φ
𝜆
𝑛 (𝜇)

Φ𝜆
1
(𝜇)...Φ𝜆

𝑛−1(𝜇)Φ
𝜆
𝑛 (𝜇)

Φ𝜆
1
(𝜇)...Φ𝜆

𝑛−1(𝜇)Φ
𝜆
𝑛 (𝜇)

...

Φ𝜆
1
(𝜇)...Φ𝜆

𝑛−1(𝜇) Φ
𝜆
𝑛 (𝜇)

	







�
,

𝜇 � 𝜆 =

���������

𝜇1...𝜇𝑛𝜆1...𝜆𝑛−1𝜆𝑛

𝜇1...𝜇𝑛𝜆1...𝜆𝑛−1𝜆𝑛

𝜇1...𝜇𝑛𝜆1...𝜆𝑛−1𝜆𝑛

...

𝜇1...𝜇𝑛 𝜆1...𝜆𝑛−1 𝜆𝑛

	






�
and we note that

Φ̃(𝜇, 𝜆) = 𝑀Φ̃ · (𝜇 � 𝜆). (17)

For example, the second row in (17) is proved like this:

Φ𝜆
1 (𝜇)...Φ

𝜆
𝑛−1(𝜇)Φ

𝜆
𝑛 (𝜇)

= Φ(1,...,1,1)
1

(1, ..., 1)...Φ(1,...,1,1)
𝑛−1 (1, ..., 1)Φ(1,...,1,1)

𝑛 (1, ..., 1)𝜇1...𝜇𝑛𝜆1...𝜆𝑛−1𝜆𝑛

⊕Φ(1,...,1,0)
1

(1, ..., 1)...Φ(1,...,1,0)
𝑛−1 (1, ..., 1)Φ(1,...,1,0)

𝑛 (1, ..., 1)𝜇1...𝜇𝑛𝜆1...𝜆𝑛−1𝜆𝑛

...

⊕Φ(0,...,0,0)
1

(1, ..., 1)...Φ(0,...,0,0)
𝑛−1 (1, ..., 1)Φ(0,...,0,0)

𝑛 (1, ..., 1)𝜇1...𝜇𝑛𝜆1...𝜆𝑛−1 𝜆𝑛

...

⊕Φ(0,...,0,0)
1

(0, ..., 0)...Φ(0,...,0,0)
𝑛−1 (0, ..., 0)Φ(0,...,0,0)

𝑛 (0, ..., 0)𝜇1...𝜇𝑛𝜆1...𝜆𝑛−1 𝜆𝑛.

We infer

(𝑀 (Φ̃) ◦ (𝜁𝑛 × 𝜁𝑛)) (𝜇, 𝜆) = 𝑀 (Φ̃) (𝜁𝑛 (𝜇), 𝜁𝑛 (𝜆)) = 𝑀 (Φ̃) (𝜇, 𝜆)
(11)
= 𝑀Φ̃ � 𝜇 � 𝜆

(14)
= 𝑀Φ̃ · (𝜇 � 𝜆)

(17)
= Φ̃(𝜇, 𝜆) = 𝜁𝑛 (Φ̃(𝜇, 𝜆)) = (𝜁𝑛 ◦ Φ̃) (𝜇, 𝜆).

(b) For example we suppose against all reason that 𝑓 , 𝑓 ′ : B𝑛 → B exist, 𝑓 ≠ 𝑓 ′, with

the property that 𝑀 𝑓 = 𝑀 𝑓 ′ . The hypothesis states the existence of 𝜇 ∈ B𝑛 such that

𝑓 (𝜇) ≠ 𝑓 ′(𝜇) thus, from Theorem 3.4, 𝑓 (𝜇)≠ 𝑓 ′(𝜇). We have:

𝑓 (𝜇) = 𝜁 ( 𝑓 (𝜇)) = (𝜁 ◦ 𝑓 ) (𝜇) = (𝑀 ( 𝑓 ) ◦ 𝜁𝑛) (𝜇) = 𝑀 ( 𝑓 ) (𝜁𝑛 (𝜇))

= 𝑀 ( 𝑓 ) (𝜇) = 𝑀 𝑓 � 𝜇 = 𝑀 𝑓 ′ � 𝜇 = 𝑀 ( 𝑓 ′) (𝜇) = 𝑀 ( 𝑓 ′) (𝜁𝑛 (𝜇))

= (𝑀 ( 𝑓 ′) ◦ 𝜁𝑛) (𝜇) = (𝜁 ◦ 𝑓 ′) (𝜇) = 𝜁 ( 𝑓 ′(𝜇)) = 𝑓 ′(𝜇),
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contradiction, showing that the assignment 𝐹𝑛,1 � 𝑓 ↦−→ 𝑀 𝑓 ∈ 𝐿2×2𝑛 is injective. Due

to the fact that 𝑐𝑎𝑟𝑑 (𝐹𝑛,1) = 𝑐𝑎𝑟𝑑 (𝐿2×2𝑛) = 22
𝑛
, injectivity and bijectivity coincide. �

5. Equations of evolution

Remark 5.1. Daizhan Cheng’s theory adapted to asynchornicity replaces the equation of
evolution (2) where Φ : B𝑛 → B𝑛, 𝑥 : N → B𝑛, 𝛼 ∈ Π𝑛, 𝑘 ∈ N, with the equation

𝑥(𝑘 + 1) = Φ𝛼𝑘
(𝑥(𝑘)) = Φ̃(𝑥(𝑘), 𝛼𝑘)

(17)
= 𝑀Φ̃ · (𝑥(𝑘) � 𝛼

𝑘), (18)

which is easier to be studied. The price to pay is the increase of the dimension of the

system from 𝑛 to 2𝑛.

Example 5.1. We return to Example 1.1 now. Function

Φ̃(𝜇1, 𝜇2, 𝜆1, 𝜆2) = (𝜆1𝜇1 ∪ 𝜆1𝜇2, 𝜆2𝜇2 ∪ 𝜆2𝜇1)

defines the matrix

𝑀Φ̃ =

��������
Φ̃1(1, 1, 1, 1)Φ̃2(1, 1, 1, 1)

Φ̃1(1, 1, 1, 1)Φ̃2(1, 1, 1, 1)

Φ̃1(1, 1, 1, 1)Φ̃2(1, 1, 1, 1)

Φ̃1(1, 1, 1, 1) Φ̃2(1, 1, 1, 1)

...

Φ̃1(0, 0, 0, 0)Φ̃2(0, 0, 0, 0)

Φ̃1(0, 0, 0, 0)Φ̃2(0, 0, 0, 0)

Φ̃1(0, 0, 0, 0)Φ̃2(0, 0, 0, 0)

Φ̃1(0, 0, 0, 0) Φ̃2(0, 0, 0, 0)

	





�
=

�������
0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1

	




�
.

Equation (3) implies that ∀𝑘 ∈ N, (18) is true, with 𝑥,𝛼: N → D(2) . We can see that, via

(18), equation (4) becomes

𝑥(0) � 𝛼0 = (0, 0) � (1, 0) = 𝛿44 � 𝛿
2
4 = 𝛿1416,

𝑥(1) = 𝑀Φ̃ · 𝛿
14
16 = 𝛿44 = (0, 0),

while (5) becomes

𝑥(1) � 𝛼1 = (0, 0) � (0, 1) = 𝛿44 � 𝛿
3
4 = 𝛿1516,

𝑥(2) = 𝑀Φ̃ · 𝛿
15
16 = 𝛿34 = (0, 1),

(6) becomes

𝑥(2) � 𝛼2 = (0, 1) � (1, 1) = 𝛿34 � 𝛿
1
4 = 𝛿916,

𝑥(3) = 𝑀Φ̃ · 𝛿
9
16 = 𝛿14 = (1, 1),
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(7) becomes

𝑥(3) � 𝛼3 = (1, 1) � (0, 1) = 𝛿14 � 𝛿
3
4 = 𝛿316,

𝑥(4) = 𝑀Φ̃ · 𝛿
3
16 = 𝛿24 = (1, 0),

and (8) becomes

𝑥(4) � 𝛼4 = (1, 0) � (1, 0) = 𝛿24 � 𝛿
2
4 = 𝛿616,

𝑥(5) = 𝑀Φ̃ · 𝛿
6
16 = 𝛿44 = (0, 0),

...
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