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Abstract

The asynchronous circuits from the digital electrical engineering are
modeled by the so-called asynchronous systems. An asynchronous sys-
tem f is a multi-valued function that associates to each admissible input
u:R —{0,1}™ a set f(u) of possible states z € f(u),z : R — {0,1}".
A special case of asynchronous system consists in the existence of a
Boolean function Y : B" x B™ — B" such that Yu,Vz € f(u), a certain
equation involving T is fulfilled. Then T is called generator function
(Moisil used the terminology of network function) and we say that f is
generated by T.

Our purpose is to continue in a more general context the study of
the generation of the asynchronous systems that was started in [5] with
the autonomous systems.

1 Preliminaries

Notation 1 Let be the arbitrary set M. The following notation will be

useful:
P*(M) ={M'|M'" c M, M # 0}

Definition 2 The set B = {0, 1}, endowed with the order 0 < 1 and
with the usual laws —, -, U, &, 1s called the binary Boole algebra.

k

Definition 3 The limat klimoz € B" of the sequence a : N — B",

a(k) ot af k € N is defined by

3K € N,VE' > K, o = lim o.

k—o00



Definition 4 Let be the function x : R — B". Its initial value
thEH z(t) € B" (also denoted by x(—o00+0)) and its final value tlim:n(t) €

B" (also denoted by x(oco — 0)) are defined by

3t e R,V <t z(¢") = lim z(¢),

t——o0

3" e R,Vt" >t z(¢") = limx(¢).

t—o0

Notation 5 We denote by 7@ : R — R, d € R the translation
vt € R, T (t) =t —d.
Thus for any = : R — B™, we denote by x o 7% : R — B" the function
vt € R, (x o7 (t) = 2(t — d).

Definition 6 The characteristic function x, : R — B of the set
A C R is given by

1,te A

Vt < R?XA(t) = { 0 else

Notation 7 We use the following notation
Seq = {(tx)|tx € R,k €N, tg < ... <t < ... is unbounded from above}.

Definition 8 The cyclic values 1 € B™ and the co-cyclic values
@ € B" of z: R — B" are defined by

3(tx) € Seq,Vk € N, z(ty) = u,
I(ty,) € Seq,Vk € N, x(—ty) = 1.

Remark 9 The initial value and the final value of x : R — B"™ may
not exist and if they exist, then they are unique. The cyclic values and
the co-cyclic values of x always exist and they are not unique in general.
The existence of the final value (of the initial value) of x is equivalent
with the existence of a unique cyclic value (of a unique co-cyclic value)
of © and in this case the final value (the initial value) coincides with the
unique cyclic value (with the unique co-cyclic value).

Definition 10 The set of the cyclic values of x is called the limait cycle
of © and its notation is LC(x). The set of the co-cyclic values of x is
called the limit co-cycle of © and is denoted by LC*(x).



Definition 11 A function = : R — B" is called n—signal, shortly
stgnal if p € B™ and (tx) € Seq exist so that

T(t) = [ X(—oot) (1) D T(0) * Xjto 1) (8) D - ® T(th) * Xty t041) (E) B oo (1)

where in (1) we have abusively used the same symbols -, @ for the laws
that are induced by those of B. The set of the n—signals is denoted by
S™ and instead of S we usually write S.

Remark 12 Normally we have S™ x S™ = {(z,u)|(z,u) : R x R —
B"xB™ z € S™ u e S™}. In this paper we need to work with another
type of Cartesian product of spaces of functions, denoted by X’ also, such
that

S 5 8 — Lz u)|(x,u) : R — B" x B™, 2z € S™ e §M1.

We keep in mind this fact when writing S™ instead of S™. This remark
on the way that the Cartesian product of spaces of functions is made is
obuviously justified by the existence of a unique time variable and between

the consequences derived from here we have the identifications S™ x
S = Stm) gnd P*(S™) x P*(S™) = p*(Sn+tm),

Definition 13 Let z € S™ be given by (1). Its left limit x(t — 0) is
the R — B" function defined as

T(t=0) = 1 X(—o0,t0) () DT (t0) * X (19,02 (O) D - DT (k) - X1y 0,1 () B - (2)

Definition 14 Let be U € P*(S™). A multi-valued function f : U —
P*(S™) is called asynchronous system, shortly system. Any u €
U is called (admissible) input and the functions x € f(u) are called
(possible) states.

Definition 15 The system f is called a subsystem of g : V — P*(S™),
V € P*(8™) and we write f C g if

UcCV andVu e U, f(u) C g(u).

Remark 16 The concept of system originates in the modeling of the
asynchronous circuits. The multi-valued character of the cause-effect
association is due to the statistical fluctuations in the fabrication process,
the variations in the ambiental temperature, the power supply etc.

Sometimes the systems are given by equations and/or inequalities.

We interpret f C g in the following way: the systems f and g model
the same circuit, but the model represented by f is more precise than the
model represented by g.

Definition 17 IfVu € U, the set f(u) has exactly one element, then the
system f is called deterministic and we use the notation f : U — S
of the usual functions.
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Figure 1: The logical gate NOT and the logical gate AND
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Figure 2: Example of circuit with feedback

2 An example

Example 18 The logical gates from Figure 1 compute for any A\, \' € B
the complement B > A — X € B and the product Bx B > (\,\) —
A - X € B. This computation is made with a nonconstant and generally
unknown delay. We are interested in modeling the circuit from Figure 2
where the way that the function

T:B2 X BHB27B2 x B> ([1,,1/) _>T</1’7V) = (ﬁQJV'ﬂﬂ) EB2
is computed is indicated by p : R — B2,
p(t) = (1,0) - X1 (£) & (1,1) - X3 (8) & (0,1) - x5y (1) D

©(0,1) - X7 (1) ® (1,1) - x5y (1) ® (1, 1) - X0y (1) ® (1, 1) - X103 () © .

The function p shows the following behavior of the circuit: at t = 2 the
coordinate Y1 is computed, at t = 4 both coordinates Y1 and Yo are
computed, at t =5 only Yo is computed, at t = 7 the coordinate Yo is
computed again and att € {8,9,10, ...} both Y1 and Ty are computed. At
te R\ {2,4,5,7,8,9,10,...} the circuit does not make any computation
and keeps the previous values of the state x € S®.



The initial state € B? and the input u € S are
H= (0’ 0)’

u(t) = Xpp,4)(t) & Xo,00) (1)-

We have
t<2:
(21(t), z2(t)) = (0,0),
tef2,4):
(21(t), 22(t)) =

=(Y1(z1(2 = 0),22(2 = 0),u(2 —0)),x2(2 — 0))

=(71(0,0,0),0) = (0,0) = (1,0),
te4,5):

(21(t), z2(t)) =

(T1(x1(4 —0),29(4 — 0), u(jl —0)), Yo(z1(4 —0),29(4 — 0),u(4 —0)))

=(74(1,0,1),75(1,0,1)) = (0,1-1) = (1,1),

tel57):
(21(2), 22(t)) =
= (21(5—0), To(z1(5 — 0),22(5 — 0),u(5 — 0)))
=(1,72(1,1,0)) = (1,0- 1) = (1,0),
tel7,8):

(21(t), z2(t)) =

= (x1(7—0), Yo(z1(7 — 0), 22(7 — 0),u(7 — 0)))
=(1,75(1,0,1)) = (1,1-1) = (1,1),

After a few more similar computations we get that the state z(t) is given
by

z(t) = (1,0) - X[2,4)(t) ®(1,1) X[4,5) (t) @ (1,0) - X[5,7)(t)@
S(L, 1) X7 gunazu.. (B0, 1) X oupzsu.. (D1, 0)-Xpo1mupas... ()

Of course that at this level of generality of the exposure, in order to
describe all the possibilities of work of the circuit from Figure 2, infinitely
many functions p exist giving the way that Y is computed.



3 Progressive sequences and progressive functions

not

Definition 19 The sequence a : N — B", a(k) = of k € N is pro-
gressive if Vi € {1,...,n}, the set

{k|lk € N,aF =1}

1s infinite. The set of the N — B"™ progressive sequences is denoted by
IL,.

Definition 20 The function p : R — B" is called progressive, if a €
I1,, and (ty) € Seq exist such that

The set of the progressive functions is denoted by P,.

Remark 21 In the previous two definitions, the so-called progress con-
dition that all the sets {k|k € N,aFf = 1} are infinite, i = 1,n expresses
the idea that the coordinates of some Boolean function are computed
countably many times, thus their computation time is arbitrary, finite,
possibly variable (depending on manufacturing fluctuations in delay re-
lated parameters, on the temperature, on the tension of the mains etc.)
This was anticipated at Fxample 18.

Some properties of invariance are interesting in this context, of the
form ...,¥p € P,,... meaning that for each manufactured instance of a
design, for each admissible temperature and for each admissible tension
of the mains, we restrict our attention to the information that is common
to all of them. Such properties occur in [5].

4 Basic definitions

Definition 22 Let be the function Y : B"xB™ — B", T = (T4, ..., T,).
For A € B", A = (A, ..., \n) we define the function T : B" x B™ — B",
called T at the power \, or the A—iterate of Y, by Vu € B" Vv € B™,

TA(/I’J V) = (A_l " D )‘1 ' TI(IU’J l/), 7>\_n oy, D )‘n ' Tn(lu’v V))

Remark 23 In the previous definition the role of X is that of showing,
in a computation that starts in u and heads towards Y (u,v), which coor-
dinate Y; of Y is computed: if \; = 0, then T (p,v) = p,; and Y; is not
computed, while if \; = 1, then Y u,v) = Yi(u,v) and Y; is computed,
1=1,n.




Definition 24 Let be the progressive sequence o € 1IL,,. We define the
functions T°-2" . B x B™ — B", k € N by Vk € N,Vu € B*, Vv €
o e ) = 0 T ) ), 0
Definition 25 Let be p € P,
p(t) :a0~x{t0}(t) D ... @ak-x{tk}(t)@... (5)
where a € 11, and (ty) € Seq. For any u € S,
u(t) =u "t X(—o0,15) () © u’ - Xo) () © - © u - Xt ) (E) © oo

with u=,u®, ...,u*, ... € B™, (¢,) € Seq we suppose without loss of gen-

erality the existence of the indexes pg, p1, p2, ... € N such that
to <t1 < .. <tpy <Yy < tpor1 < tppra < ... (6)

v <ty S <ty <Tprgo < o <, <Py <

For this, we can choose in (5) conveniently some sequence (t)) € Seq, () D
(tx) and we can supplement o with null terms to some sequence o/ € 11,,.
We define T at the power —p, Y= : R x B" x S(™ — B" by

,U/O — Tao...apo (/’LJ ufl)’

pl =TT (0 ), (7)

,UZ — Tozp1+1...ap2 (,ul7 Ul),

and vVt € R,Vu € B",
T0(t, pyu) = (8)

ao — aO...a —
= 10X (—o0te) (BT (1, u™) Xg,00) ()BT (1, ™) Xy, 0y (DB

aPo+1 P01l P
pY (,U,Oauo)'X[tp0+1,tp0+2)<t)@"'®T 0 1(u0,U0)'X[tpl,tp1+1)(t)€9

oP1tl oP1tl o
@T P1 (/J17ul)'X[tp1+1,tp1+2)(t)@”'@T P1 P2 (IulﬂUI)'X[tpzvtngﬁl)(t)@”'
Similarly, we replace (6) by
to <t1 < .. <tpy <Yy <tpos1 < tppra < ... (9)

W<ty <Y <t <tpipo <. <tp, <Py <L

and we define T at the power p, TP : R x B" x S™ — B"™ by (7) and
vt € R,Vu € B",
TO(t, p,u) = (10)

7



af — al...aP -
= 1 X (—o0t) (BT (1,47 Xg,00) (B BT (1, ™) Xy, 0y (DB

aPotl aPotl P
ST (0, ) J(O) @ T (00, 00) Xy ) (DD

’ X[tp0+1 7tp()+2

@Talerl (,ul’ ul) )(t) @H.EBTalerl,..a?O (l,lll, ul) 'X[tpz,thJfl)(t)@”.

.X[tpl+1vtpl+2
Example 26 T : BxB — B,Vu € B,Vv € B, Y(u,v) = -7 and we
take

p(t) = X{0,1,2,...}(t);
P/(t) = X{1,2,3,...}(t)-
We have:
T7P(t, 11y X[0,00) = B * X(—o00,1) (1)

TP(Ls 1y X[0,00)) = B * X(=00,0)(E):
Tr (ta 22 X[O,oo)) =p- X(foo,l) (t) =717 (ta 22 X[O,oo))

Remark 27 Y~ makes use of the values u(ty,—0),k € N and Y? makes
use of the values u(ty),k € N. In the previous example, T~P(t, {1, X[0,00)) 7
TP(t, 1y Xjo,00)) because p(0) # 0, thus T is computed int =0 and t =0
is also a discontinuity point of u = X|g ) : (0 —0) = 0,u(0) = 1. On
the other hand YT~ (t, s X[0,00)) = Tpl(t,u,x[opo)) because in the only
discontinuity point t = 0 of u we have p'(0) = 0, thus Y is not computed
int =0 and the first time instant where the complement is computed is
t=1.

The occurrence of Y=P(t, u,u) and of YP(t, u,u) corresponds to two
different concepts of causality, namely the one when only the previous
values of the cause influence the present value of the effect, respectively
the one when the present value of the cause influences also the present
value of the effect.

0,00

Definition 28 The functions Y=°(-, u,u), Y°(-, u,u) : R — B™, where
p € Bhu € S™ and p € P,, are called the —p—motion and the
p—motion of the point p under the input u.

Definition 29 The quadruples v~ = (R,B",B™, (T7?),cp,), v = (R,
B",B™, (Y?),ep,) are called Boolean dynamical systems. R is the
time set andt € R 1s the time variable. B" is called the state space
and its points y € B™ are called states'. B™ has the name of input
space. The function Y 1is called the generator function of v—,v and
Y7, Y7 p € P, are called the computations of Y.

'We abusively identify a function z € S normally called state with its values
w=xz(t).



5 The generation of the asynchronous systems

Definition 30 Let be T : B" x B™ — B". The systems Xy, %Xy
S — p*(SM),

Vu € S S1(u) = {X (-, p,u)|u € B", p € P},

Vu € S, Sy (u) = {X°(-, p,u)|n € B", p € P,}

are called the universal regular asynchronous systems that are
generated by Y. The function Y s called the generator function
Of E‘YWET-

Definition 31 A system f : U — P*(S™), U € P*(S™) is called
regular if T : B" x B™ — B" exists such that one of f C Xy, f C Xy
1s true. In this situation the function Y is called the generator function

of f.

Remark 32 In the previous definitions, the attribute "universal’ means
mazimal relative to the inclusion and the attribute ‘reqular’ means the
existence of a generator function Y.

While the system X5 is associated to the Boolean dynamical sys-
tem v- = (R,B",B",(Y7°),cp,), its subsystems f C Xy may result
by requesting that the initial states p Tun over a subset of B™ (initial
conditions), the inputs u run over a subset U of S (conditions of ad-
missibility of the inputs), or perhaps Y~ run over a subset of all the
computations of Y (restrictions imposed on the computation time of the
coordinate functions Y, i = 1,n). Similarly for Y.

In general the regular asynchronous systems do not have a unique
generator function, for example

3T, Y :B" x B™ = B", T # Y and Ju € S, %1 (u) N X7 (u) # 0.

6 The connection between dynamical systems, asyn-
chronous systems and equations

Theorem 33 We consider the point i € B™ and the functions u €
St p e P,. The equation

z(—o0+0) = p
{:B(t) = 17O (2(t — 0),u(t — 0))

has the unique solution

xz(t) =Y (t, p,u)

9



and the equation
{ z(—o00+0) = p
w(t) = 17O (2(t — 0),u(t))

has the unique solution
x(t) = TP(t, p, u).
Proof. We prove the first statement of the theorem and let be
p(t) =’ Xy () ® .. ® - xpp (1) O ... (11)
where «a € I, and (t;) € Seq. We can write
u(t) =ut- X(—o0,) (1) © u’ - Xy ;) () O - @ u - Xt ) (E) © oo

for some w1, %, ...,u*, ... € B™ and (1) € Seq. We suppose that the
sequence Py, p1, P2, --- € N exists such that

to <t1 < ... <tpy <Py < tpot1 < tpgra < ... (12)

e <t S < tpg1 <Tprgo < <, <Py <

is true. We have from the first equation:

t<to: z(t) =x(t —0) = z(—0c0+0) = p,

t=tg: z(ty) = Y (p, u™"),

t € (to,t1) : z(t) = z(t — 0) = T (p,u™),

t=t: z(t) = Y (Y (yu ), ut) = Y (w7,

o« —1) not
t="1p : x(tpo) =1’ po(:uau 1) = MO’
tE (tpotporr) 1 x(t) =(t — o ‘
t=1poy1: T(tpot1) = T ( 0’%01)7

b
te (tp0+1’tp0+2) : l’(t) = .CL’( - 0) =T (IUO’UO)7

t =1ty : x(ty,) = Yarotl. P (1, u°) not ul,
tE (i tpar) :  x(t) = — Op) = ul,

L=ty Fltyin) = 1 (),

t c (tp1+1,tp1+2) : ,I‘(t) = x(t _ 0) — Tapl ( 17 ’LLl)’

This completes the proof of the first part of the theorem.

10



We replace now (12) with
to <t1 < ... <tpy <Yy tposr < tppra < ... (13)

e <ty <Yy Sty <tpgo <<y, <Py <

We prove by following the same steps like previously that Y*(t, y, u) is
the unique solution of the second equation. m

Remark 34 We can associate to the equations from Theorem 33, when
w runs in B®, u runs in S™ and p runs in P,, the dynamical systems
v- = (R,B",B",(Y7°),ep,), v = (R, B", B™, (1) ,ecp,) and the asyn-
chronous systems X, Xy.

7 Equivalencies

Definition 35 Let be the functions T,T' : B" x B™ — B". We say
that the Boolean dynamical systems v~ = (R, B",B™,(Y7°),ep,), V'~ =
(R,B™,B™,(Y'"?) cp,), the Boolean dynamical systemsv = (R, B", B™,
(Y?)pep,), v = (R, B",B™, (1) ,cp, ), the asynchronous systems X5, X5,
and the asynchronous systems Y, X are equivalent, if the bijections
G:B™ — B™ H :B" — B" exist such that the following diagram is
commutative

B"xB™ 5 B"

HxG| | H
B" xB™ L Br

If this is true, we say that G and H transform the generator func-
tion Y in the generator function Y.

Remark 36 This definition concerning the equivalence refers to two

changes of the systems of coordinates, made on B™ by G and on B"
by H.

Definition 37 Let be pn € B™,u € S™ and the functions p,p € P,.
The equations

z(—o0+0) =

{x(t) = 10 (z(t - 0), Z(t —0))" (14)
y(—o0+0) = p

{y(t) = 17O (y(t — 0),u(t — 0)) (15)

and the motions YT=P(-, p,u) and Y= (-, u,u) are equivalent if the bi-
jective, continuous strictly increasing function h : R — R exists such
that

TP (t, g, u) = YP(h(t), p,u). (16)

11



Similarly, the equations

z(—o00+0) =
{xu) N0t — 0),u(t)) (17)

y(t) = 17O (y(t - 0), u(t))

and the motions YP(-, p,u) and Y¥' (-, u,u) are equivalent if the bijec-
tive, continuous strictly increasing function h : R — R exists such that

{ y(—OO+0) =H (18)

T (t, 1, u) = YP(h(t), 1, u). (19)

Remark 38 The previous definition states that the solutions YP(-, u, u),
Y (-, p,u) of (14),(15) are equivalent if they are equal functions regard-
less the time flow, which is given by t for Y=F (-, u,u) and by h(t) for
TP (-, p,u). If the function h : R — R is bijective, continuous and
strictly increasing, then h™' has the same properties [5], thus Definition
37 is that of an equivalence relation indeed. We have the sufficient con-
dition p' = p o h in order that (16) is true [5]. The same interpretation
of the equivalence follows for the motions Y?(-, p,u), Y7 (-, u,u) and the
equations (17), (18).

Definition 39 Let be n € B*,u € S and p,p € P,. The equations
(14), (15) and the motions Y=°(-, i, u), Y= (-, u,u) are equivalent if

LC<T7P('7 K, u)) = LC(T7P,<'7 22 u))

Similarly, the equations (17), (18) and the motions Y (-, p,u), Y7 (-, 1, u)
are equivalent if

LOMYP(-, pyu) = LC(TP,(W fh, w)).

Remark 40 In Definition 39, the motions Y=°(-, u,u), Y77 (-, p,u) and
the motions YP(-, u,u), Y7 (-, p,u) are equivalent if they start from the
same initial value p and, running under the same input v € S they
reach the same limit cycle. The equivalence classes of YP(-, u,u) and
Y?(-, u,u) have the property that the unique limit cycle reached by all
their elements depends on p and u only and it does not depend on p.

8 Huffman systems

Definition 41 The system h s called Huffman if it fulfills one of the
next two conditions a), b):

12
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Figure 3: Huffman systems

a) h:U — P*(S™), U € P*(S™); the function Y : B" x B™ — B"
and the systems f: S™ x U — P*(S™), g : S™ — P*(S™) exist such
that

Y(y,u) € S™ x U, HtlirgloT(y(t),u(t)) = (20)
=V € flgu),Jima(t) = Jim Yy(e), u(t)

Vo € ™, Eltlima:(t) = Vy € g(:v),tlimy(t) = tlima:(t), (21)

Vu € U, h(u) = {z|Fy € S™, 2 € f(y,u) and y € g(z)}; (22)

b) h:U — PSP U € P*(S™); the function T : B" x B™ —
B” x B? and the systems f : S™ x U — P*(S™+P)) g: S — px(SM)
exist such that (21) is true as well as

V(y,u) € S™ xU, Eltliglo'/f(y(t),u(t)):> (23)

—>V(z,2) € f(y,u), lim (a(t), 2(1)) = L T(y(), u(®),

t—o0

Vu € U, h(u) = {(z,2)|Fy € S™, (z,2) € f(y,u) and y € g(z)}. (24)

The two conditions a), b) have been drawn in Figure 3.

Remark 42 We take a look at item a) of the previous definition. A
system f having the property that ' exists with (20) true is called com-
binational (or race-free stable relative to the function Y ). Property (20)
shows that f is a combinational system that computes the function Y
and (21) shows that g is a combinational system that computes the iden-
tity function lgn; (22) links f and g. As g from (21) models the delay
elements, we conclude that the Huffman asynchronous systems consist
in combinational systems f having feedback loops with delay elements.
The interpretation is similar for item b).

13



Notation 43 For T : B" x B™ — B" and A € B", we denote by
T* : B" x B® x B™ — B" the function: Vu € B", V' € B",Vv € B™,

:f)\(:ua:u,’ V) = ()‘_1 “py D )‘1 ’ Tl(NI7V)7 ’>‘_n iy D )‘n ' Tn(:u,7 V))

Theorem 44 Let be d > 0 and the systems f : S™ x S(M) — p*(SM),
g:SM™ — 80 p . 8m) . p*(S™M) defined in the next manner:

Y(y,u) € S™ x S f(y,u) =

= {afa(t) = T Xy 0000 Xy O (4 (¢ — 0), y(t — 0), u(t — 0)),
z(—oco+0) € B", a €11, (t;) € Seq,Vk € N, t,1 — ty > d},
g(x) =z o7,

Vu € S h(u) = {z|z € f(g(z),u)}.

Then:
a) f satisfies (20),
b) g satisfies (21),
¢) h satisfies (22),
d) hC Sy

Proof. a) We choose arbitrarily p € B™, a € 11, (tx) € Seq such
that Vk € N, t5,1 — t;, > d and let be t' € R with the property that

V"' > T (y(t"), u(t")) = Y(y(t), u)).
We fix some k € N with ¢, > t’. The sets I, ..., I} are defined by

I, = {ili € {1,...,n},a¥ = 1},

Iy ={iji € {1,...,n},a" =1}
Ik U...U Ik/ = {1, ,n}

The existence of I, ..., [;s is assured by the fact that « is progressive.
We have

t= tk 1 Vi € Ik,
2i(te) = T3 ((tx — 0), y(te — 0), u(ty — 0))
Tiy(ty — 0),u(ty, — 0)) = Li(y(t'), u(t)),

te (tk;thrl) : VZ € Ik,

zi(t) = TP (t = 0),y(t = 0),u(t — 0)) = z:(t — 0) = Taly(t'), u(t)),
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t=tpr1: Vi € I U Iy,

zi(tren) =T (2(tpsr — 0), y(tesr — 0), ultysr — 0))

_ Ti(tgyr — 0),0 € I \ Iiiq o ().l
_{Ti(y(tm —0), ultpsr —0)),i € Tsy Ti(y(t'), u(t')),

t e (tk+1,tk+2) 1 Vi € Ik U Ik+1,

i(t) = Y(a(t — 0),y(t — 0),u(t — 0)) = z;(t — 0) = Ti(y(t), u(t')),

t=ty Vi€ L U..UIy,

zi(ti) = T2 (x(tw — 0), y(ty — 0), ulty - 0))

zi(ty —0),i € ([yU...ULy_)\ Iy / /
:{ Ti(y(ty — 0),u(ty —0)),i € Iy Ti(y(t'), u(t)).

We have obtained that
o(tw) = T(y(t), u(t)).

Furthermore:
te (tk/,tk/+1) Vi e {1, ...,n},

xi(t) = T(a(t = 0),y(t — 0), u(t — 0)) = zi(t — 0) = Ty(y(t), u(t")),
t= tk’+1 Vi e {1, ...,n},

~k+1

zi(t 1) =15 (2(twsr — 0),y(twg1 — 0), ultp 41 —0))

it~ 0.0 =0 .
- ' =T;(y(t'), u(t
{n@uml—mwgml_mxﬂwl | = Ty, u(t)

and we can prove by induction on £” that
VE" > KVt € (twr, i), 2(t) = T(y(t), w(t)),

VE" > K, x(ter) = T(y(t'), u(t))

thus
V" >t (t”) = T(y(t'), u(t)).

b) Some t' € R exists so that V" >t/ z(t") = z(t'), wherefrom
W d () = g(o) (") = ot — d) = 2(t).

c) Obvious.
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d) Let v € S and = € h(u) be arbitrary, fixed, in other words
uw € B a €ll, and () € Seq exist such that Vk € N, tp 1 —tx > d
and

z(—00+0) = p
Yi(z(ty — d — 0),u(ty — 0)), (25)
Vie {1,...,n},x;(t) = JkeN,t=t,and af =1 °

z;(t — 0), otherwise

We take into account the fact that Vk > 1, — d > tx_1 and we infer
that

Vk € N,l’(tk —d— 0) = ZL"(tk — 0)
With the notation

(1) = 0° Xy (1) & . B 0 X0 (1) © .
equation (25) is equivalent with (i.e. it has the same solution like)
z(—o0+0) = p
z(t) = TP (z(t — 0),u(t —0))

thus (see Theorem 33), z(t) = T P(t, u,u). ™
Remark 45 Another version of Theorem 44 is obtained if we want to

get at d) h C Xy and two other versions of this theorem result by using
Definition 41 b) (instead of Definition 41 a)).

9 Conclusions

Remark 46 The asynchronous systems theory can be made without re-
quests of reqularity and this leaves open the possibility that certain sys-
tems (i.e. the systems that have no generator function) cannot be im-
plemented.

Example 47 The system f: U — S, U € P*(S),
U =1{0,1} (the two constant R — B functions)

[0, ifu=0
Vu e U, f(u) = {X[o,n» ifu=1

has no generator function, because the candidate generator functions Y :
B x B — B fulfill, all of them, the property that ¥ = Xy and

Vu € U,V € ¥3(u), = is monotonous.
The inclusion f C Xy is false since X|o 1y s not a monotonous function.

Remark 48 We conclude that the previous system f models no circuit.
From this point of view, reqularity is as important as nonanticipation,
indicating the systems that cannot be implemented.
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