Morphisms and antimorphisms of Boolean evolution and antievolution functions

Serban E. Vlad

Abstract

The Boolean evolution and antievolution functions model the asynchronous circuits from electronics. Our purpose is to introduce their morphisms and antimorphisms.

Keywords: Boolean function, morphism, antimorphism, evolution function, antievolution function

We denote
$$\mathbf{B}=\{0,1\}$$
 the binary Boole algebra and $\mathbf{N}_{-}=\{-1,0,1,\ldots\}$. Let $\Phi,\Psi,h,h':\mathbf{B}^n\to\mathbf{B}^n$, for which we define $\forall i\in\{1,...,n\},\forall\nu\in\mathbf{B}^n,\forall\mu\in\mathbf{B}^n,\Phi_i^\nu(\mu)=\left\{\begin{array}{c}\mu_i,if\ \nu_i=0,\\\Phi_i(\mu),if\ \nu_i=1\end{array}\right.$ If $\forall\nu\in\mathbf{B}^n,\forall\mu\in\mathbf{B}^n,\forall\mu\in\mathbf{B}^n,h(\Phi^\nu(\mu))=\Psi^{h'(\nu)}(h(\mu)),$ we say that the **morphism** (h,h') is defined, from Φ to Ψ and if $\forall\nu\in\mathbf{B}^n,\forall\mu\in\mathbf{B}^n,h(\mu)=\Psi^{h'(\nu)}(h(\Phi^\nu(\mu))),$ we say that the **antimorphism** $(h,h')^{\sim}$ is defined, from Φ to Ψ . The sets of the morphisms and of the antimorphisms from Φ to Ψ are denoted with $Hom(\Phi,\Psi),Hom^{\sim}(\Phi,\Psi).$ We denote $\widehat{\Pi}_n=\{\alpha|\alpha:\mathbf{N}\to\mathbf{B}^n,\forall i\in\{1,...,n\},\{k|k\in\mathbf{N},\alpha_i^k:=\alpha_i(k)=1\}\text{ is infinite}\}.$ The functions $\widehat{\Phi},\widehat{\Phi}^{\sim}$ given by $\mathbf{B}^n\times\mathbf{N}_{-}\times\widehat{\Pi}_n\ni(\mu,k,\alpha)\mapsto\widehat{\Phi}^{\alpha}(\mu,k),\widehat{\Phi}^{\sim\alpha}(\mu,k)\in\mathbf{B}^n,$ $\widehat{\Phi}^{\alpha}(\mu,k)=\{0,\ldots,n\},\{if\ k=-1,\ldots,n\},\{if\ k=-1,\ldots,n\},\{if\ k=-1,\ldots,n\},\{if\ k=-1,\ldots,n\},\{if\ k=-1,\ldots,n\},\{if\ k=-1,\ldots,n\},\{if\ k=-1,\ldots,n\},\{if\ k=0,\ldots,n\},\{if\ k=0,\ldots,n\},\{if\$

©2017 by Serban E. Vlad

tively the time reversed asynchronous circuits. We have by definition

the **orbit** $\widehat{Or}_{\Phi}^{\alpha}(\mu) = \{\widehat{\Phi}^{\alpha}(\mu, k) | k \in \mathbf{N}_{-}\}$ and the **omega limit set** $\widehat{\omega}_{\Phi}^{\alpha}(\mu) = \{\lambda | \lambda \in \mathbf{B}^{n}, \{k | k \in \mathbf{N}_{-}, \widehat{\Phi}^{\alpha}(\mu, k) = \lambda\}$ is infinite} and similarly for $\widehat{\Phi}^{\sim}$. For $\alpha : \mathbf{N} \longrightarrow \mathbf{B}^{n}$ we also define $\widehat{h'}(\alpha) : \mathbf{N} \longrightarrow \mathbf{B}^{n}$ by $\forall k \in \mathbf{N}, \widehat{h'}(\alpha)^{k} = h'(\alpha^{k})$ and $\Omega_{n} = \{h' | \widehat{h'}(\widehat{\Pi}_{n}) \subset \widehat{\Pi}_{n}\}$. Our purpose is to introduce the morphisms and the antimorphisms of evolution and antievolution functions.

Definition 1. We consider the functions $\Phi, \Psi, h, h' : \mathbf{B}^n \longrightarrow \mathbf{B}^n$ and we suppose that $h' \in \Omega_n$. We say that the couple (h, h') is a **morphism** from the evolution function $\widehat{\Phi}$ to the evolution function $\widehat{\Psi}$, denoted by $(h, h') : \widehat{\Phi} \longrightarrow \widehat{\Psi}$, if $\forall \mu \in \mathbf{B}^n, \forall k \in \mathbf{N}_-, \forall \alpha \in \widehat{\Pi}_n, h(\widehat{\Phi}^{\alpha}(\mu, k)) = \widehat{\Psi}^{\widehat{h'}(\alpha)}(h(\mu), k); (h, h')$ is a **morphism from** the antievolution function $\widehat{\Phi}^{\sim}$ to the antievolution function $\widehat{\Psi}^{\sim}$, denoted by $(h, h') : \widehat{\Phi}^{\sim} \longrightarrow \widehat{\Psi}^{\sim}$, if $\forall \mu \in \mathbf{B}^n, \forall k \in \mathbf{N}_-, \forall \alpha \in \widehat{\Pi}_n, h(\widehat{\Phi}^{\sim \alpha}(\mu, k)) = \widehat{\Psi}^{\sim \widehat{h'}(\alpha)}(h(\mu), k)$. We denote with $Hom(\widehat{\Phi}, \widehat{\Psi}), Hom(\widehat{\Phi}^{\sim}, \widehat{\Psi}^{\sim})$ the previous sets of morphisms.

Theorem 1. We get $Hom(\widehat{\Phi}, \widehat{\Psi}) = Hom(\widehat{\Phi}^{\sim}, \widehat{\Psi}^{\sim}) = \{(h, h') | (h, h') \in Hom(\Phi, \Psi) \text{ and } h' \in \Omega_n\}.$

Theorem 2. For $\Gamma: \mathbf{B}^n \to \mathbf{B}^n$, we have $(h,h') \in Hom(\widehat{\Phi},\widehat{\Psi}), (g,g') \in Hom(\widehat{\Psi},\widehat{\Gamma}) \Longrightarrow (g \circ h, g' \circ h') \in Hom(\widehat{\Phi},\widehat{\Gamma}) \text{ and } (h,h') \in Hom(\widehat{\Phi}^{\sim},\widehat{\Psi}^{\sim}), (g,g') \in Hom(\widehat{\Psi}^{\sim},\widehat{\Gamma}^{\sim}) \Longrightarrow (g \circ h, g' \circ h') \in Hom(\widehat{\Phi}^{\sim},\widehat{\Gamma}^{\sim}).$

Definition 2. The morphism $(g \circ h, g' \circ h')$ is by definition the **composition** of (g, g') and (h, h') and its notation is $(g, g') \circ (h, h')$.

Theorem 3. Let $(h,h') \in Hom(\widehat{\Phi},\widehat{\Psi}), (g,g') \in Hom(\widehat{\Phi}^{\sim},\widehat{\Psi}^{\sim}).$ Then $\forall \mu \in \mathbf{B}^{n}, \forall \alpha \in \widehat{\Pi}_{n}, h(\widehat{Or}_{\Phi}^{\alpha}(\mu)) = \widehat{Or}_{\Psi}^{\widehat{h'}(\alpha)}(h(\mu)), g(\widehat{Or}_{\Phi}^{\sim\alpha}(\mu)) = \widehat{Or}_{\Psi}^{\sim\widehat{g'}(\alpha)}(g(\mu)), h(\widehat{\omega}_{\Phi}^{\alpha}(\mu)) = \widehat{\omega}_{\Psi}^{\widehat{h'}(\alpha)}(h(\mu)), g(\widehat{\omega}_{\Phi}^{\sim\alpha}(\mu)) = \widehat{\omega}_{\Psi}^{\sim\widehat{g'}(\alpha)}(g(\mu)).$

Theorem 4. For any $\mu \in \mathbf{B}^n$ and any $\alpha \in \widehat{\Pi}_n$, if $\widehat{\Phi}^{\alpha}(\mu, \cdot)$ is periodic, with the period $p \geq 1$: $\forall k \in \mathbf{N}_{\cdot}, \widehat{\Phi}^{\alpha}(\mu, k) = \widehat{\Phi}^{\alpha}(\mu, k+p)$ and $(h, h') \in Hom(\widehat{\Phi}, \widehat{\Psi})$, then $\widehat{\Psi}^{\widehat{h'}(\alpha)}(h(\mu), \cdot)$ is periodic with the period p; if we suppose that $\widehat{\Phi}^{\sim \alpha}(\mu, \cdot)$ is periodic, with the period $p \geq 1$: $\forall k \in \mathbf{N}_{\cdot}, \widehat{\Phi}^{\sim \alpha}(\mu, k) = \widehat{\Phi}^{\sim \alpha}(\mu, k+p)$ and $(h, h') \in Hom(\widehat{\Phi}^{\sim}, \widehat{\Psi}^{\sim})$, then $\widehat{\Psi}^{\sim \widehat{h'}(\alpha)}(h(\mu), \cdot)$ is periodic with the period p.

Theorem 5. Let $\mu \in \mathbf{B}^n$ and we suppose that $\Phi(\mu) = \mu$. If $(h,h') \in Hom(\widehat{\Phi},\widehat{\Psi})$, then $\Psi(h(\mu)) = h(\mu)$ and $\forall \alpha \in \widehat{\Pi}_n, \forall k \in \mathbf{N}_{_}, \widehat{\Psi}^{\widehat{h'}(\alpha)}(h(\mu),k) = h(\mu)$; if $(h,h') \in Hom(\widehat{\Phi}^{\sim},\widehat{\Psi}^{\sim})$, then $\Psi(h(\mu)) = h(\mu)$ and $\forall \alpha \in \widehat{\Pi}_n, \forall k \in \mathbf{N}_{_}, \widehat{\Psi}^{\sim \widehat{h'}(\alpha)}(h(\mu),k) = h(\mu)$.

Definition 3. We ask that $h' \in \Omega_n$. We say that the couple (h,h') is an **antimorphism from** $\widehat{\Phi}^{\sim}$ **to** $\widehat{\Psi}$, denoted $(h,h')^{\sim}$: $\widehat{\Phi}^{\sim} \longrightarrow \widehat{\Psi}$ or simply $(h,h')^{\sim}$, if $\forall \mu \in \mathbf{B}^n, \forall k \in \mathbf{N}_-, \forall \alpha \in \widehat{\Pi}_n, h(\mu) = \widehat{\Psi}^{\widehat{h'}(\alpha)}(h(\widehat{\Phi}^{\sim\alpha}(\mu,k)),k))$ and (h,h') is by definition an **antimorphism from** $\widehat{\Phi}$ **to** $\widehat{\Psi}^{\sim}$, denoted $(h,h')^{\sim}$: $\widehat{\Phi} \longrightarrow \widehat{\Psi}^{\sim}$ or $(h,h')^{\sim}$, if $\forall \mu \in \mathbf{B}^n, \forall k \in \mathbf{N}_-, \forall \alpha \in \widehat{\Pi}_n, h(\mu) = \widehat{\Psi}^{\sim \widehat{h'}(\alpha)}(h(\widehat{\Phi}^{\alpha}(\mu,k)),k))$. We use the notation $Hom^{\sim}(\widehat{\Phi}^{\sim},\widehat{\Psi}), Hom^{\sim}(\widehat{\Phi},\widehat{\Psi}^{\sim})$ for the previous sets of antimorphisms.

Theorem 6. We get $Hom^{\sim}(\widehat{\Phi}^{\sim}, \widehat{\Psi}) = Hom^{\sim}(\widehat{\Phi}, \widehat{\Psi}^{\sim}) = \{(h, h')^{\sim} | (h, h')^{\sim} \in Hom^{\sim}(\Phi, \Psi) \text{ and } h' \in \Omega_n \}.$

 $\begin{array}{l} \textbf{Theorem 7. a) } (h,h')^{\sim} \in Hom^{\sim}(\widehat{\Phi}^{\sim},\widehat{\Psi}), (g,g')^{\sim} \in Hom^{\sim}(\widehat{\Psi},\widehat{\Gamma}^{\sim}) \Longrightarrow \\ (g \circ h,g' \circ h') \in Hom(\widehat{\Phi}^{\sim},\widehat{\Gamma}^{\sim}), \text{ b) } (h,h')^{\sim} \in Hom^{\sim}(\widehat{\Phi},\widehat{\Psi}^{\sim}), (g,g')^{\sim} \in Hom^{\sim}(\widehat{\Psi}^{\sim},\widehat{\Gamma}) \Longrightarrow (g \circ h,g' \circ h') \in Hom(\widehat{\Phi},\widehat{\Gamma}), \text{ c) } (h,h') \in Hom(\widehat{\Phi},\widehat{\Psi}), \\ (g,g')^{\sim} \in Hom^{\sim}(\widehat{\Psi},\widehat{\Gamma}^{\sim}) \Longrightarrow (g \circ h,g' \circ h')^{\sim} \in Hom^{\sim}(\widehat{\Phi},\widehat{\Gamma}^{\sim}), \text{ d)} \\ (h,h') \in Hom(\widehat{\Phi}^{\sim},\widehat{\Psi}^{\sim}), (g,g')^{\sim} \in Hom(\widehat{\Psi}^{\sim},\widehat{\Gamma}) \Longrightarrow (g \circ h,g' \circ h')^{\sim} \in Hom^{\sim}(\widehat{\Phi}^{\sim},\widehat{\Gamma}), \text{ e) } (h,h')^{\sim} \in Hom^{\sim}(\widehat{\Phi}^{\sim},\widehat{\Psi}), (g,g') \in Hom(\widehat{\Psi},\widehat{\Gamma}) \Longrightarrow \\ (g \circ h,g' \circ h')^{\sim} \in Hom^{\sim}(\widehat{\Phi}^{\sim},\widehat{\Gamma}), \text{ f) } (h,h')^{\sim} \in Hom^{\sim}(\widehat{\Phi},\widehat{\Psi}^{\sim}), (g,g') \in Hom(\widehat{\Psi}^{\sim},\widehat{\Gamma}^{\sim}) \Longrightarrow (g \circ h,g' \circ h')^{\sim} \in Hom^{\sim}(\widehat{\Phi},\widehat{\Gamma}^{\sim}) \text{ hold.} \end{array}$

Definition 4. In a), b) the morphism $(g \circ h, g' \circ h')$ is by definition the **composition** of the antimorphisms $(g, g')^{\sim}$ and $(h, h')^{\sim}$ and its notation is $(g, g')^{\sim} \circ (h, h')^{\sim}$. In c), d) the antimorphism $(g \circ h, g' \circ h')^{\sim}$ is by definition the **composition** of the antimorphism $(g, g')^{\sim}$ with the morphism (h, h') and it has the notation $(g, g')^{\sim} \circ (h, h')$. Similarly for $(g \circ h, g' \circ h')^{\sim}$ denoted $(g, g') \circ (h, h')^{\sim}$ from e), f).

Theorem 8. Let the functions $\Phi, \Psi : \mathbf{B}^n \longrightarrow \mathbf{B}^n$ and the antimorphisms $(h, h')^{\sim} \in Hom(\widehat{\Phi}^{\sim}, \widehat{\Psi}), (g, g')^{\sim} \in Hom(\widehat{\Phi}, \widehat{\Psi}^{\sim}); \forall \mu \in \mathbf{B}^n, \forall \alpha \in \widehat{\Pi}_n$, we have $\forall \nu \in \widehat{Or}_{\Phi}^{\sim \alpha}(\mu), h(\mu) \in \widehat{Or}_{\Psi}^{\widehat{h'}(\alpha)}(h(\nu)), \forall \nu \in \widehat{Or}_{\Phi}^{\alpha}(\mu), g(\mu) \in \widehat{Or}_{\Phi}^{\alpha}(\mu)$

$$\begin{split} \widehat{Or}_{\Psi}^{\sim \widehat{h'}(\alpha)}(g(\nu)), \forall \nu \in \widehat{\omega}_{\Phi}^{\sim \alpha}(\mu), h(\mu) \in \widehat{\omega}_{\Psi}^{\widehat{h'}(\alpha)}(h(\nu)), \forall \nu \in \widehat{\omega}_{\Phi}^{\alpha}(\mu), g(\mu) \in \widehat{\omega}_{\Psi}^{\sim \widehat{h'}(\alpha)}(g(\nu)). \end{split}$$

Theorem 9. Let $\mu \in \mathbf{B}^n$ with $\Phi(\mu) = \mu$. If $(h, h')^{\sim} \in Hom^{\sim}(\widehat{\Phi}^{\sim}, \widehat{\Psi})$, then $\Psi(h(\mu)) = h(\mu)$ and $\forall \alpha \in \widehat{\Pi}_n, \forall k \in \mathbf{N}_-, \widehat{\Psi}^{\widehat{h'}(\alpha)}(h(\mu), k) = h(\mu)$ hold; if $(h, h')^{\sim} \in Hom^{\sim}(\widehat{\Phi}, \widehat{\Psi}^{\sim})$, then $\Psi(h(\mu)) = h(\mu)$ and $\forall \alpha \in \widehat{\Pi}_n, \forall k \in \mathbf{N}_-, \widehat{\Psi}^{\sim \widehat{h'}(\alpha)}(h(\mu), k) = h(\mu)$ are true.

Remark 1. The next sets $Hom(\widehat{\Phi}^{\sim}, \widehat{\Psi}), Hom(\widehat{\Phi}, \widehat{\Psi}^{\sim}), Hom^{\sim}(\widehat{\Phi}, \widehat{\Psi}), Hom^{\sim}(\widehat{\Phi}, \widehat{\Psi}), Hom^{\sim}(\widehat{\Phi}^{\sim}, \widehat{\Psi}^{\sim})$ are defined like in Definition 1 and Definition 3. We can prove that $Hom(\widehat{\Phi}^{\sim}, \widehat{\Psi}) = Hom(\widehat{\Phi}, \widehat{\Psi}^{\sim}), Hom(\widehat{\Phi}^{\sim}, \widehat{\Psi}) \subset Hom(\Phi, \Psi), Hom(\widehat{\Phi}^{\sim}, \widehat{\Psi}) \subset Hom(\widehat{\Phi}, \widehat{\Psi}), Hom^{\sim}(\widehat{\Phi}, \widehat{\Psi}) = Hom^{\sim}(\widehat{\Phi}^{\sim}, \widehat{\Psi}^{\sim}), Hom^{\sim}(\widehat{\Phi}, \widehat{\Psi}) \subset Hom^{\sim}(\widehat{\Phi}, \Psi), Hom^{\sim}(\widehat{\Phi}, \widehat{\Psi}) \subset Hom^{\sim}(\widehat{\Phi}^{\sim}, \widehat{\Psi}).$ These morphisms and antimorphisms are not induced by morphisms $(h, h') \in Hom(\Phi, \Psi)$ and antimorphisms $(h, h')^{\sim} \in Hom^{\sim}(\Phi, \Psi)$, i.e. theorems like 1 and 6 are false.

At the same time we notice, as a conclusion, in which manner the morphisms and the antimorphisms keep the orbits, the omega limit sets, periodicity and the fixed points.

References

- [1] J. S. W. Lamb, J. A. G. Roberts, *Time-reversal symmetry in dynamical systems: A survey*. Physica D, 112 (1998), pp 1-39.
- [2] S. E. Vlad, Boolean dynamical systems. ROMAI Journal, vol. 3, no 2, (2007), pp. 277-324.

Serban E. Vlad¹

¹Oradea City Hall

Email: serban_e_vlad@yahoo.com