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Morphisms and antimorphisms of Boolean
evolution and antievolution functions
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Abstract

The Boolean evolution and antievolution functions model the
asynchronous circuits from electronics. Our purpose is to intro-
duce their morphisms and antimorphisms.
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We denote B = {0, 1} the binary Boole algebra and N_= {-1,0,1,...}.
Let ®, ¥, h,h' : B" — B", for which we define Vi € {1,....,n},Vv €

n n Fv _ pisif vi =0, n n
B",Vu € B", ®Y(u) = { By(p),if vi =1 ° If vv € B",Vu € B",
R(®¥ (1)) = UM #) (h()), we say that the morphism (h, i') is defined,
from ® to ¥ and if Vv € B",Vu € B, h(u) = ") (h(®¥ (1)), we
say that the antimorphism (h, h’)~ is defined, from ® to W. The sets
of the morphisms and of the antimorphisms from ® to ¥ are denoted
with Hom(®, V), Hom™(®, ¥). We denote i, = {ala: N — B",Vi €
{1,...,n},{k|k € N,aF := a;(k) = 1} is infinite}. The functions 3, o~
given by B" x N_ x I, 3 (u, k,a) — ®%(u, k), ®~*(u, k) € B",

p, if k=-1,
(k) = " (), if k=0, , o™ k) =
(" 0 ®" 0. 0 ®) (), if k>1
W, if k=-1,
(1), if k=0, are called evolution and anti-

(@ 0 0.0 @ak)(u), ifk>1
evolution function and they model the asynchronous circuits, respec-
tively the time reversed asynchronous circuits. We have by definition
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the orbit 67";( ) = {®%(u, k k)|k_ € N_} and the omega limit set
wg(p) = {/\\)\ € B" {klk € N_,®*(u,k) = A} is infinite} and simi-
larly for ®~. For o : N — B" we also define h’( ): N — B" by
Vk € N, I/ (« )k = h'(a¥) and Q,, = {h/\h’( [1,,) C I,}. Our purpose is
to introduce the morphisms and the antimorphisms of evolution and
antievolution functions.

Definition 1. We consider the functions ®, ¥, h, h’' : B® — B" and
we suppose that A’ € Q,,. We say that the couple (h, h’) is a morphism
from the evolution function ® to the evolution function \TJ, denoted
by (h,h) : ® — W, if Yy € B",Vk € N_ Vo € TI,, h(®(, k)) =
\/I}h/(a)(h(,u), k); (h,h')is a morphism from the antievolution function
®~ to the antievolution function U™, denoted by (h,h') : d~ — U,
if Vu € B",Vk € N_Va € Iy, h(®~(u, k) = U@ (n(u), k). We
denote with Hom(®, \I/) Hom(®~, U™) the previous sets of morphisms.
Theorem 1. We get Hom(®, U) = Hom(®~, U~) = {(h, k)|(h, }) €
Hom(®,¥) and b/ € Q,}.

Theorem 2. For I' : B" — B", we have (h,h') € Hom(®, W), (g,9') €
Hom(¥,T) = > (goh, g'ol’) € Hom(@ I) and (h, W) e Hom(zf U™,
(9,9") € Hom(¥~,T~) => (goh,g oK) € Hom(®~,T™).

Definition 2. The morphism (g o h, ¢’ o h') is by definition the com-
position of (g,¢’) and (h,h’) and its notation is (g, g’) o (h,h').

Theorem 3. Let (h,h) € Hom(®,), (g ¢') € Hom(®~,T~).
Then Vi € B"Va € T, h(Ora(n)) = Or o (), 9(Or5" (1) =
Ora”  (g(m)), h@E (1) = B (h()), 932 (1) = 37 (g(w)).

Theorem 4. For any ¢ € B™ and any a € Hn, if oo “(u,-) is pe-
riodic, with the period p > 1 : Vk € N, CIJO‘(,u, k) = @a(,u,k + p)
and (h, 1) € Hom(®,V), then U@ (p(),-) is periodic with the
period p; if we suppose that o~ *(u,-) is periodic, with the period
p>1:VkeN, O~ (11, k) = ©~(p, k+p) and (h, B') € Hom(®~, ¥™),
then \leh/(a)(h(u), -) is periodic with the period p.
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Morphisms and antimorphisms

Theorem 5. Let p € B™ and we suppose that ®(u) = p. If
(h.h') € Hom(®, V), then W(h(u)) = h(p) and Vo € I,,Vk €
N, OF (@) (h(p), k) = h(p); if (h, 1) € Hom(®~,¥™), then U(h(p)) =
h(p) and Vo € T, Yk € N, T~F@ (h(n), k) = h(p).

Definition 3. We ask that A’ € ). We_say that the couple
(h,h") is an antimorphism from ®~ to U, denoted (R
®~——U or simply (h,h)~, if Vu € B",Vk € N_Va € I, h(n) =
o (a)(h(@No‘(u k)),k) and (h,h’) is by definition an antimorphism
from ® to U™, denoted (h, h')™ : ®—U™ or (h, h')~, if Vuu € B", Vk €
N ,Va € Hn,h( ) = \IINh'( )(h((fa(u,k)),k). We use the notation

~

Hom™ (9~ \I/) Hom (<I> g~ ) for the previous sets of antimorphisms.
Theorem 6. We get Hom™(®~, W) = Hom™(®, U~) =
{(h,W)~|(h,h")~ € Hom™ (P, V) and h' € Qy,}.

Theorem 7. a) (h, ')~ € Hom™(®~, V), (g,¢)~ € Hom™(¥,T™)
(9oh,g o) € Hom(®™, FN) b) (h, W)~ € Hom™(®,97),(g,g)"
Hom™(¥~,T) = (goh,g "oh!) € Hom(q) ), c) (h,h) € Hom(®, ¥

>mQ
&:/mﬂ

(9,9")~ € Hom™ (\Il ) = (goh,g o h)~ € HomN((ID ),
(h,h') € Hom(<I>N U, (g,9)~ € Hom(\I/N I') = (goh,g oh)~ €
Hom™(®~,T), ¢) (h,K)~ € Hom™ (@™, ), (g,9) € ./F\Ioin(\ll r) —

(goh,g o)~ € Hom™(®~,T), f) (h, )~ € Hom™(®,97),(9,¢) €
Hom (U~ T~) = (goh,g o W)~ € Hom™(®,T™) hold.

Definition 4. In a), b) the morphism (g o h,¢’ o h') is by definition
the composition of the antimorphisms (g,¢’)~ and (h, k')~ and its
notation is (g,¢’)~ o (h,h')~. In ¢), d) the antimorphism (goh, g oh’)~
is by definition the composition of the antimorphism (g, ¢')~ with the
morphism (h, h’) and it has the notation (g, ¢’)~ o (h,h’). Similarly for
(goh,g oh')~ denoted (g,g') o (h,h')~ from e), f).

Theorem 8. Let the functions ¢, ¥ : B" — B" and the antimor-
phisms (h, ')~ € Hom(®~,¥),(g,9')~ € Hom(®,¥™); Vu € B",Va €
~ —— —h —

Ty, we have Y € Org (), his) € Ory ™ (h(v)), Yo € Org (1), g(s0) €
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—~~f(a)

Org"“ (9w)), v € 237 (n). () € &Y @ (h(v). W € B, g() €
53" gv)).

Theorem 9. Let p € B" with <I>( ) = p. If (h, h’) € Hom™(®~, V),
then W(h(u)) = h(p) and Vo € Hn,Vk e N_, U@ (h(u), k) = h(u)
hold; if (h,h)~ € Hom™(®,U~), then ¥(h ( )) = h(p) and Va €
IL,,Vk € N, g~ (@ )(h(), k) = h(p) are true.

Remark 1. The next sets Hom( ~ U U ,Hom(CTJ,\f/N), HomN(Cf,\Tl),
Hom™(®~,¥~) are defined like in Definition 1 and Definition 3.
We can prove that Hom(®~, \I/) = Hom(®, T~ ) Hom(®~,¥) C
Hom(®,¥), Hom(®~,¥) C Hom(®, V), Hom™(®, V) =
Hom~(&>~,@~),Hom (®,0) C Hom™ (@,xp),%w@,@) c

H omN(:I;N, \/l\l) These morphisms and antimorphisms are not induced
by morphisms (h,h') € Hom(®,¥) and antimorphisms (h,h')~ €
Hom™(®, V), i.e. theorems like 1 and 6 are false.

At the same time we notice, as a conclusion, in which manner the
morphisms and the antimorphisms keep the orbits, the omega limit
sets, periodicity and the fixed points.
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