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Abstract  

Let 
nn }1,0{}1,0{:  . The asynchronous flows are (discrete time and real time) functions that result 

by iterating the coordinates },...,1{, nii   independently on each other. The purpose of the paper is 

that of showing that the asynchronous flows fulfill the properties of consistency, composition and 
causality that define the dynamical systems. The origin of the problem consists in modelling the 
asynchronous circuits from the digital electrical engineering. 
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1. Introduction 

The Boolean autonomous deterministic regular asynchronous systems have been defined by the author in 2007 and 

a study of such systems can be found in [12]. The concept has its origin in switching theory, the theory of modelling 

the asynchronous (or switching) circuits from the digital electrical engineering. The attribute Boolean vaguely refers 

to the Boole algebra with two elements; autonomous means that there is no input; determinism means the existence 

of a unique state function; and regular indicates the existence of a function ,}1,0{}1,0{: nn   

),...,( 1 n  that ‘generates’ the system. Time is discrete: ,...}1,0,1{ , or continuous: R . The system, 

which is analogue to the (real, usual) dynamical systems, iterates (asynchronously) on each coordinate },...,1{ ni  

one of 

- i : we say that   is computed, at that time instant, on that coordinate; 

- }1,0{),...,,...,(}1,0{ 1  ini
n  : we use to say that   is not computed, at that time instant, on that 

coordinate. 

http://www.scitecresearch.com/
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Figure 1: Asynchronous circuit 

The flows are these that result by analogy with the dynamical systems. 

The ‘nice’ discrete time and real time functions that the (Boolean) asynchronous systems work with are called 

signals. The functions that show when and how the coordinates i  are computed are called computation functions. 

In order to point out the source of inspiration, we give the example of the circuit from Figure 1, where 

2}1,0{,...}1,0,1{:ˆ x  is the signal representing the state of the system, and the initial state is )0,0( . The 

function that generates the system is 
22 }1,0{}1,0{:  , ,}1,0{ 2  

),()( 211211  . 

The evolution of the system is shown in its state diagram from Figure 2, where the arrows indicate the time increase 

 
Figure 2: The state diagram of the circuit from Figure 1 

and we have underlined the coordinates 2,1,  ii  that, by the computation of  , change their value: 

ii  )( . Let 
2}1,0{,...}2,1,0{:   be the computation function whose values 

k
i  show that i  is 

computed at the time instant k  if 1k
i , respectively that it is not computed at the time instant k  if 0k

i , 

where 2,1i  and ,...}2,1,0{k . The uncertainty related with the modelled circuit, depending in general on the 

technology, the temperature, etc, manifests in the fact that the order and the time of computation of each coordinate 

function i  are not known. 

The situation )0,0(0  , when no coordinate of   is computed at the time instant 0 , shows that the system 

remains in )0,0( . 

If the first coordinate of   is computed at the time instant 0 , i.e. )0,1(0  , then Figure 2 indicates the transfer 

from )0,0(  in )0,1( . 
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We suppose that the second coordinate is computed at the time instant 0 , i.e. )1,0(0  , and in this case the 

system transfers from )0,0(  to )1,0( , where it remains indefinitely long for any values of ,...,, 321  , since 

)1,0()1,0(  . Such a signal x̂  is called eventually constant and it corresponds to a stable system. 

The last possibility is given by )1,1(0   that indicates the transfer from )0,0(  to )1,1( , as resulted by the 

simultaneous computation of )0,0(1  and )0,0(2 . 

If the system is in one of the points )1,1(),0,1(  and the set }1,|{ 2  kkk N  is infinite, then it switches 

infinitely many times between )0,1(  and )1,1(  and this corresponds to an unstable system. 

The purpose of our paper is that of showing that the flows of these systems fulfill the properties of consistency, 

composition and causality that define the dynamical systems. 

2. Preliminaries. Signals 

Notation 1 We denote by }1,0{B  the binary Boole algebra. Its laws are the usual ones: 

Table 1.  

011

100

10

,

111

100

10

,

101

000

10

,

01

10



 

and they induce laws that are denoted with the same symbols on 1, nn
B . 

Definition 2 Both sets B  and 
n

B  are organized as topological spaces by the discrete topology. 

Notation 3 ,...}1,0,1{N  is the notation of the discrete time set. 

Notation 4 We denote 

...},,|){(ˆ 101   kkkandjkkqeS jj NN  

}...,|){( 210 abovefromunboundedtttandkttSeq kk  NR . 

Notation 5 BR  :A  is the notation of the characteristic function of the set RA : ,Rt  



 


otherwise

Atif
tA

,0

,,1
)( . 

Definition 6 The discrete time signals are by definition the functions 
nx BN :ˆ . Their set is denoted with 

)(ˆ nS . 

The continuous time signals are the functions 
nx BR :  of the form ,Rt  

 ...)()(...)()()()( )1,[)1,0[0)0,( 
 ttxttxttx

ktktkttt   (1) 

where 
n

B  and .)( Seqtk   Their set is denoted by 
)(nS . 

Remark 7 The signals model the electrical signals of the circuits from the digital electrical engineering. 

Remark 8 At Notation 4 and Definition 6 a convention of notation has occurred, namely a hat ^  is used to show 

that we have discrete time. The hat will make the difference between, for example, the notation of the discrete time 

signals ,...ˆ,ˆ yx  and the notation of the real time signals ,..., yx  

Lemma 9 For any 
)(nSx  and any 

ntxt BR  )0(,  exists with the property 

    )0()(),,(,0  txxtt .    (2) 

Proof. We presume that tx,  are arbitrary and fixed and that x  is of the form (1), with 
n

B  and Seqtk )( . 

If 0tt  , then any 0  makes (2) be true with  )0(tx ; and if 0k  exists with ],( 1 kk ttt , then any 

),0( 1 kk tt    makes (2) be true with )()0( ktxtx  . 

Definition 10 The function 
ntxt BR  )0(  is called the left limit function of x . 
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Definition 11 The discrete time forgetful function 
)()(' ˆˆ:ˆ nnk SS   is defined for any N'k  by 

    )'(ˆ))(ˆ(ˆ,,ˆˆ ')( kkxkxkSx kn  N    (3) 

and the real time forgetful function 
)()(' : nnt SS   is defined for R't  in the following manner 

    









'.),0'(

,'),(
))((,, ')(

tttx

tttx
txtSx tn

R    (4) 

3. Computation functions 

Definition 12 The discrete time computation functions are by definition the sequences 
n

BN  : . Their set is 

denoted by 
'ˆ
n . In general, we write 

k  instead of .),( N kk  

The real time computation functions 
n

BR  :  are by definition the functions of the form 

   ...)(...)()()( }{}1{
1

}0{
0  tttt

kt
k

tt   (5) 

where Seqtk )( . Their set is denoted by 
'
n . 

Remark 13 The meaning of the computation functions 
'' ,ˆ
nn  , subject to the additional property of 

progressiveness that will be stated later, is that of showing when –in discrete time and in real time- and how the 

Boolean functions 
nn

BB  :  are computed. 

Lemma 14 For any 
'
n  and any Rt , we have 

    )0,...,0()(),,(,0  tt .    (6) 

Proof. Analogue with the proof of Lemma 9. 

Definition 15 The discrete time 
''' ˆˆ:ˆ nn

k  , N'k  and the continuous time 
''' : nn

t   forgetful 

function, R't , are defined by: ,,ˆ '
N kn  

     
'' ))(ˆ( kkkk       (7) 

and ,,'
R tn  

          )()())(( ),'[
' ttt t

t
 .     (8) 

Remark 16 Definition 15, equation (8) was given by analogy with Definition 11, equation (4), taking into account 

(6): ,Rt  

  )()(
'),0,...,0(

,'),(

'),0'(

,'),(
))(( ),'[

' tt
tt

ttt

ttt

ttt
t t

t


















  

indeed. 

4. Progressiveness 

Definition 17 The discrete time computation function 
'ˆ
n  is called progressive if 

   infiniteiskksettheni k
i }1,|{},,...,1{  N .   (9) 

The set of the discrete time progressive computation functions is denoted by n̂ . 

The real time computation function 
'
n  is called progressive if 

          
abovefromunboundedis

tttsettheni i }1)(,|{},,...,1{  R
    (10) 

is true. The set of the real time progressive computation functions is denoted by n . 
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Theorem 18 a) Let the computation function 
'ˆ
n . The following equivalence holds: 

nn  ˆ)(ˆˆ 1
. 

 b) The computation function 
'
n  and R't  are given. The following equivalence holds: 

n
t

n  )(' . 

Proof. a) For any },...,1{ ni , the sets }1,0|{  k
ikk , }1,1|{  k

ikk  are simultaneously finite or 

infinite. 

 b) We suppose that   is of the form 

  ...)()(...)()()()()( }{}1{1}0{0  ttttttt
ktktt   (11) 

with Seqtk )( . We denote with 0'k  the rank of the sequence )( kt  that is defined by 

...)()()()())(( }1'{1'}'{'
' 

 ttttt
ktkktk

t
 

For any },...,1{ ni , the sets }1)(,'|{},1)(,0|{  kikkik tkkttkt  are simultaneously bounded or 

unbounded from above. 

Remark 19 From Theorem 18 a) we get the following conclusion. For 
'ˆ
n , we have the equivalence 

n
k

n k  ˆ)(ˆ,ˆ N . 

5. Flows 

Definition 20 For the function 
nn

BB  :  and 
n

B , we define 
nn

BB  :  by 
n

B , 

))(),...,(()( 1111 
nnnn . 

Definition 21 Let ,...,0  ,k  ,1 nk
B 

 0k . We define the functions 
nnkk

BB 
 :
1...0

 

iteratively by 
n

B , 

))(()( ...011...0
  kkkk

. 

Definition 22 a) The function 
n

n
n kk BNB  

 ),(ˆ),,(ˆ   defined by , Nk  

















0),(

,1,
),(ˆ

...0
kif

kif
k k  

is called (discrete time) evolution function, or (state) transition function, or next state function. 
n

B  is called state 

space (or phase space),   is called the initial (value of the) state and   is the computation function. The value 

),(ˆ)(ˆ kkx a   

is the state )(ˆ kx  resulted at the time instant k  from the initial (value of the) state   under the (action of the) 

computation function  . 

 b) We define the function 
n

n
n tt BRB   ),(),,(   in the following way. Let 

,Rt  

  ...)(...)()()( }{}1{
1

}0{
0  tttt

kt
k

tt    (12) 

where n ˆ  and Seqtk )( . Then 

...)(),(ˆ...)()0,(ˆ)()1,(ˆ),( )1,[)1,0[)0,( 





 tkttt
ktktttt  
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is called (real time) evolution function, or (state) transition function, or next state function. 
n

B  is the state space, 

  is the initial (value of the) state and   is the computation function. The value 

),()( ttx  
 

is the state resulted at the time instant t  from the initial (value of the) state   under the (action of the) computation 

function  . 

Definition 23 a) We fix 
n

B  and n ˆ  in the argument of the discrete time evolution function. The signal 

)(ˆ),(ˆ nS
 is called (discrete time) flow (through  , under  ) and, more general, if previously 

'ˆ
n , 

then ),(ˆ 
 is called semi-flow. 

 b) We fix 
n

B  and n  in the argument of the real time evolution function. The signal 

)(),( nS
 is called (real time) flow (through  , under  ). More general, if previously 

'
n , then 

),( 
 is called semi-flow. 

Remark 24 The function   applied to the argument   is computed on all its coordinates: 

))(),...,(()( 1  n . The function 
  applied to   computes those coordinates i  of   for which 

1i  and it does not compute those coordinates i  for which 0i : },...,1{ ni , 










.0,

,1),(
)(

ii

ii

i
if

if






 

Unlike the usual computations from the dynamical systems theory that happen synchronously on all the coordinates: 

),( ),)((),)((   … here things happen on some coordinates only, as shown in Definitions 

20, 21, 22. The asynchronous flows represent a generalization of the computations from the dynamical systems 

theory, since the constant sequence NB  knk ,)1,...,1(  belongs to n̂  and it gives for any 
n

B , 

that ),()(
0


 ),)(()(

10
    ),)(()(

210
   … 

Remark 25 We give the meaning of progressiveness: n ˆ , n  show that ),(),,(ˆ  
 compute 

each coordinate nii ,1,   infinitely many times as k . In electrical engineering, this corresponds to the so 

called unbounded delay model of computation of the Boolean functions, stating basically that each coordinate i  of 

  is computed independently on the other coordinates, in finite time. 

Remark 26 In the following we shall always suppose that the progressiveness requirement on ,  is fulfilled, 

thus we shall work with flows. 

6. Consistency, composition and causality 

Remark 27 The properties stated in Theorems 28, 29, 30 and 31 to follow are the adaptation to the present context 

of the properties of consistency, composition and causality of the transition function that are contained in the 

definition of a dynamical system from [9], page 11. At the same page, the authors show that the words ‘dynamical’, 

‘non-anticipatory’ and ‘causal’ have approximately the same meaning, making us conclude that the property of 

causality to be introduced may be also called non-anticipation. We must add here the remark that in the cited work 

the systems had an input, unlike here where it is convenient to omit this aspect, and consequently there causality 

referred to the input, unlike here where it refers to the computation function. The input controls the state and the 

computation function shows when and how the state is computed. 

We suppose in this section that a function 
nn

BB  :  is given, together with n
n  ˆ,B  and n . 

The relation between   and   is given by (12), where Seqtk )( . 

Theorem 28 (Consistency) 

      )1,(ˆ ,      (13) 

      )0,( 0t .     (14) 



Journal of Progressive Research in Mathematics(JPRM) 
ISSN: 2395-0218    

 
Volume 3, Issue 2 available at www.scitecresearch.com/journals/index.php/jprm/index                                        158|  

Proof.  a) This follows from Definition 22. 

 b) Definition 22 shows that we have 

  ),(,0 ttt , 

wherefrom (14) follows. 

Theorem 29 (Composition) a) ,,'  NN kk  

   )),1',(ˆ(ˆ)))(,(ˆ(ˆ )('ˆ' kkk
kk  

.    (15) 

 b) ,,' RR  tt  

      )),0',(()))(,(( )('' ttt
tt  

.    (16) 

Proof. Let us notice first of all that n
t

n
k

nn  )(,ˆ)(ˆ,ˆ ''
 result from Theorem 18 

and Remark 19, wherefrom the right members of equations (15), (16) make sense. 

 a) We have the following possibilities. 

Case  Nkk ,0'  arbitrary, when 

)),1,(ˆ(ˆ),(ˆ),(ˆ)))(,(ˆ(ˆ )(0ˆ)(0ˆ0 kkkk  
. 

Case 1,1'  kk  

)1),1',(ˆ(ˆ)1',(ˆ)1))(,(ˆ(ˆ )('ˆ'   kk
kk

. 

Case N kk ,1'  arbitrary, for which 

)()',(ˆ)))(,(ˆ(ˆ
'...1''...0' 
 kkkkk kkk  

  )),((ˆ))((
1'...0,...2',1','1'...0'...1''

k
kkkkkkkkk




 

  )),1',(ˆ(ˆ)),((ˆ )('ˆ1'...0)('ˆ
kkk

kkk
 

. 

 b) Equation (12) shows that we can put ),( 
 under the form 

...)()(...)()()(),( )1,[
...0

)1,0[

0

)0,( 





 tttt
ktkt

k

ttt  (17) 

We take an arbitrary R't  and we have the following possibilities. 

Case 0' tt   

In this situation 

                                                        ),())((' ttt   

                                                   ,)0',(  t  

thus 

)),0',((),()))(,(( )('' tttt
tt  

. 

Case ],(', 1 kk tttk N  

In this case we infer 

...)()())(( }2{
2

}1{
1' 





 ttt

kt
k

kt
kt

 

                                                                 ),()0',( ...0
  k

t  

...)()()()()))(,(( )2,1[

1...0

)1,(
...0' 






 ttt
ktkt

kk

kt

kt
 

                ...)())(()()( )2,1[
...01

)1,(
...0







 tt
ktkt

kk

kt

k
 

                )),(( ...0...}2{
2

}1{
1

t
k

kt
k

kt
k
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                  )),0',(()),(( )('...0)(' ttt
tkt

 
. 

Theorem 30 (Composition) a) For arbitrary N'k  we can write: ,'kk   

        )1'),',(ˆ(ˆ),(ˆ )(1'ˆ
  kkkk

k
.   (18) 

 b) R 't  we have: ,'tt   

          ).),',((),( ),'( ttt t  
    (19) 

Proof. a) We make the substitution pkk  ' , where Np  and we prove (18) by induction on p . For 0p , 

(18) becomes 

),1),',(ˆ(ˆ)',(ˆ )(1'ˆ
  kk

k
 

obvious. We suppose that 

            )1),',(ˆ(ˆ)',(ˆ )(1'ˆ
  pkpk

k
   (20) 

is true and we infer that 

                                               ))',(ˆ()1',(ˆ
1'

pkpk
pk

 
 

 ))1),',(ˆ(ˆ( ,...',...,2',1'1')20(

  pk
pkkkpk

 

 )))',(ˆ((
'...2'1'1'

k
pkkkpk

 
 

 ))',(ˆ(
1''...2'1'

k
pkpkkk

 
 

 )),',(ˆ(ˆ)),',(ˆ(ˆ )(1'ˆ,...1',',...,2',1'
pkpk

kpkpkkk
 

. 

 b) Indeed, we shall suppose in the following that (12) is true. In the case 0' tt  , we have 

),()()( ),'( ttt t    

      )',( t  

and (19) is true under the form ).,(),(,' tttt  
 

In the case ,),,[' 1 N  kttt kk  

...)()()()( }2{
2

}1{
1

),'( 






 tttt

kt
k

kt
k

t  

),()',( ...0
  k

t  

),( t
 is given by (17) and 

           )),(()),',(( ...0...}2{
2

}1{
1

),'( ttt
k

kt
k

kt
k

t  






 

                                         ...)()()()( )2,1[

1...0

)1,(
...0







 tt
ktkt

k

kt

k
 

For 'tt  , (19) is true. 

Theorem 31 (Causality) For any Nk  and any n ˆ,  with 

     
''},,...,1{' kkkk  ,    (21) 

we have 

     ),(ˆ),(ˆ kk  
.     (22) 

 b) Let R't  and n ',  with the property that 

       )(')(,' tttt  .     (23) 

Then 
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     )',()',( ' tt  
.     (24) 

Proof. a) We infer 

   ),(ˆ)()(),(ˆ ...0...0
kk

kk
 

.   (25) 

 b) If R't  is such that 

          )0,...,0()(')(,'  tttt ,    (26) 

then 

)',()',( ' tt  
. 

Let Nk  be arbitrary and fixed. We suppose that n ˆ,  and Seqtt jj )(),( '
 exist such that 

,},,...,0{' '
'' kk ttkk   

...)()()(...)()( }2{
2

}1{
1

}{}0{
0 





 ttttt

kt
k

kt
k

kt
k

t  

...)()()(...)()('
}'

2{

2

}'
1{

1
}{}0{

0 






 ttttt
kt

k

kt

k
kt

k
t  

)0,...,0(0   and ),[),[' '
11   kkkk ttttt  hold. We get 

        )',()()',( '...0
tt

k
 

.   (27) 

7. Conclusion 

The flows ),(),,(ˆ  
 fulfill properties of consistency, composition and causality, as expressed by 

Theorems 28, 29, 30 and 31, allowing us to consider that they define dynamical systems. 
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