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In the paper 'Pseudo-Boolean Field Lines' presented by the author at the National Conference 
on Geometry and Topology in Timisoara, October, 1989, there were introduced the 
differential equations of the asynchronous automata, i.e. a model for the behavior of the 
Boolean circuits. The present work enlarges the mathematical frame of the context by 
studying the pseudo-boolean derivatives and integrals. 

1. Preliminaries 

1.1 },,1,0{2 ⋅⊕=B  is the binary Boole algebra, where '' ⊕  is the modulo 2 sum and '' ⋅  is the 
product. It has the discrete topology, i.e. each subset is open. 

1.2 For some function 2: BR →x , the support set of x  is defined by 
}1)(|{ == txtxsupp  

1.3 A real set ring is a set R  of subsets of R  which is closed under the symmetrical 
difference '' ∆  and under the intersection '' ∧ . The neuter element is R∈∅ . 
 For example, the set fR  of the finite subsets of R  is a real set ring. 

1.4 There are defined the elementary functions 2:*,, BR →ηηδ  
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the function 2: B→µ ff R  
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If fRxsuppE ∈∧ , then it is also defined 
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 (the modulo 2 summation) 

1.5 For the sequence )(,: 2 nxxx n =→ BN  and 2
0 B∈x , we have the convergence 
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1.6 For 2: BR →x , there are defined the left )0( −tx and the right )0( +tx  limits of x  in 
R∈t  by 

)0()(),,(,0 −=ξε−∈ξ∀>ε∃ txxtt  
)0()(),,(,0 +=ξε+∈ξ∀>ε∃ txxtt  

1.7 For any 2: BR →x , there are defined the inferior )0( −tx and the superior )0( −tx  left 
limit of x  in t  by 
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(the previous left limits from the right hand terms always exist). We have: 
)0()0()0()0()0( −=−=−⇒−=− txtxtxtxtx  

and similarly for the right limits. 
 There are obviously defined the functions with left limit, respectively with right limit 
(in t ) and the (inferior, superior) left, respectively right limit functions. 

1.8 Let 2: BR →χ A  be the characteristic function of R⊂A . Then for 2:, BR →yx  there 
are true: 

xsuppx χ=  

ysuppxsuppyx ∆χ=⊕  

ysuppxsuppyx ∧χ=⋅  

1.9 There are defined the symmetrical intervals: 
),[),[)),[[ abbaba ∨=  

R∈∨= baabbaba ,],,(],(]],((  

2. Derivatives 

2.1 For 2: BR →x  there are defined the inferior left derivative )(txD , the superior left 

derivative )(txD  and the left derivative )(tDx  of x  in t  by: 
)()0()( txtxtxD ⊕−=  

)()0()( txtxtxD ⊕−=  
)()0()( txtxtDx ⊕−=  

 There are obviously defined the left and the right derivable functions (in t ), 
respectively the (inferior, superior) left and right derivative functions. 

2.2 Remark We have two kind of dualities here: one coming from I U,,2B (i.e. inferior 

and superior, )(,)(  ) and the other coming from ><,,R  (i.e. left and right, *)(),( ). 
For economy, we shall not define all the notions when we shall consider that they result from 



the context. For example, in this moment we shall only indicate the notations **,*, DDD  for 
the right derivatives. 

2.3 Proposition a) c*,,, ηηδ  are left derivable and right derivable, where c  is the constant 
function and 

)()()( ttDtD δ=δ=η  
)()(*)(** ttDtD δ=δ=η  

0)(*)()(*)(* ===η=η tcDtDctDtD  

 b)    )()(),()( txDctcxDtxDctcxD ==  
for any 2: BR →x  and if yx,  are left derivable, then yx ⊕  and xy  are left derivable and 

)()())(( tDytDxtyxD ⊕=⊕  
)()()()()()())(( tDytDxtDxtytDytxtxyD ⊕⊕=  

 c) If x  is left derivable, then Dx  is left derivable and 
)()( tDxtDDx =  

 If x  is left derivable and Dx  is right derivable, then 
)()(* tDxtDxD =  

3. Integrals Relative to Boolean Measures 

3.1 The function 2: BR →x  is called R -integrable, or R -measurable (on R⊂A ), if 
Rxsupp ∈  (if RxsuppA ∈∧ ), where R  is a real set ring. 

3.2 A Boolean measure on the real set ring R  is a function 2: B→µ R  satisfying the 
condition: for any sequence of sets N∈∈ nRAn , , if 
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 For ffRR µ= ,  is an example of Boolean measure. 

3.3 Let 2: BR →x  be R -integrable on A  and 2: B→µ R  a Boolean measure. The number 
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is called the integral of x  on A  relative to µ . 

3.4 Theorem Let R  be a real set ring , 2: B→µ R  a Boolean measure, R⊂A  and 

2:, BR →yx . 
 a) If ∅=A  or R∈= ttx ,0)( , then x  is R -integrable on A  and 

0)( =∅µ=µ∫
A

xD  

 b) If yx,  are R -integrable on A , then yx ⊕  is R -integrable on A  and 
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 As a special case, if ..eayx −µ=  that is if 
0)})()(|({ =≠µ tytxt  

then 
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 c) Let R⊂B . If x  is R -integrable on A  and B , then it is R -integrable on BA ∆  
and 
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4. Boole-Stieltjes Integrals 

4.1 Let ba ≠ . A division of )),[[ ba  or ]],(( ba  is a set 
1),,max(...),min(: 10 ≥=<<<= nbatttbad nn  

and the norm of the division is the real number )( ndν  given by 
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 A sequence of divisions 1)( ≥nnd  is a family of divisions that satisfy 
1,1 ≥⊂ + ndd nn  

 We say about 1)( ≥nnd  that 0)( →ν nd  when ∞→n  if 
ε<ν⇒≥∈∃>ε∀ )(,,0 ndNnN N  

4.2 Theorem Let )),[[ ba  and 2:, BR →yx . The next statements are equivalent: 
 a) The integral sum 
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satisfies the property that for any sequence 1)( ≥nnd  of divisions of )),[[ ba  with 0)( →ν nd  
when ∞→n , it converges (as 2BN →  sequence) to a limit that does not depend on 

1)( ≥nnd  
 b)    fRyDsuppxsuppba ∈∧∧ *)),[[  

4.3 In any of the above situations, x  is called inferiorly left Boole-Stieltjes integrable on 
)),[[ ba  relative to y  and the number 
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is the inferior left Boole-Stieltjes integral of x  on )),[[ ba  relative to y . By definition 

0)(* =∅µ=∫ f

a

a

yDx  

 Similarly, there are defined: 
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4.4 If  

fRyDsuppxsuppbayDsuppxsuppba ∈∧∧=∧∧ *)),[[*)),[[  

then their common value is written yDsuppxsuppba *)),[[ ∧∧  and we note ∫
b

a

yxD *  for 

that integral where the attributes inferior and superior are missing. 

4.5 The integral sums 
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give the inferior left Boole-differential integrals and the left Boole-Riemann integrals: 
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4.6 If the 2BN →  sequence 
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has a limit when ∞→n , then the limit will be noted ∫
∞

a

yDx *  etc. 

4.7 Theorem The next statements are true: 
 a) If x  is inferiorly left integrable relative to y  on )),[[ ba  then it is also inferiorly left 
integrable relative to y  on )),[[ ab  and 
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 b) Let the function x  inferiorly left integrable relative to y  on )),[[ ba . Then it is 
inferiorly left integrable relative to y  on any )),[[))','[[ baba ⊂ . 
 c) If 1x  and 2x  are inferiorly left integrable relative to y  on )),[[ ba , then 21 xx ⊕  is 
inferiorly left integrable relative to y  on )),[[ ba  and the integral is additive: 
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 d) If x  is inferiorly left integrable relative to y  on )),[[ ba  and )),[[ cb , then it is 
inferiorly left integrable relative to y  on )),[[ ca  and 
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 e) Let the function x  be inferiorly left integrable relative to y  on abba >),,[ . The 
functions 
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exist for ),0( ab −∈ε , they have a right limit in the origin and 
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 f) In a similar way to e), let us suppose that the function x  is inferiorly left integrable 
relative to y  on ),[ ba  and ba < . The functions 
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are defined for ),0( ab −∈ε  and they have a right limit in the origin. There hold 
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 g) If x  is left integrable on )),[[ ba  relative to 1y  and 2y , then x  is left integrable on 
)),[[ ba  relative to 21 yy ⊕  and it is true 
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 h) Let us suppose that yx,  have right limits on ),[ ba  and that the sets  
)(*),[ xyDsuppba ∧  
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are finite. In this situation, the next formula is true: 
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4.8 A function )),[[))','[[: babah →  is called right continuous if for any )'(tht =  and any 
0>ε , there exists 0' >ε  with the property that 

),())'','(( ε+⊂ε+ tttth  

 If h  is a bijection and 1, −hh  are right continuous, then it is called right 
homeomorphism. 

4.9 Theorem Let x  be left integrable on )),[[ ba  relative to y  and the right homeomorphism 
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4.10 If we note with 
)()( τ−=τ txtx  

then it is true 
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4.11 In the integral ∫
b

a

x , let us put α=a  a parameter and tb =  the real variable. The 2BR →  

function 
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is called the left primitive of x . We say that x  has a left primitive. 

4.12 The function x  has a left primitive if it is of the form 
)()( ittx
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where for any ba < , the set Iba ∧),(  is finite. As a special case, for ∅=I , the null function 
has a left primitive. 
 Any two left primitives of x  differ by a constant. 

4.13 The formula of Leibniz-Newton is true: if x  has a left primitive then for any R∈ba, , x  
is left Boole-Riemann integrable on )),[[ ba  and we have 
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4.14 Let us suppose that x  has a left primitive; then its left primitive is left derivable and 
right derivable and we have: 

)()(*,0)( txtxDtxD == ∫∫  

4.15 Let x  with left limits and right limits. Then the functions Dx  and xD*  have left 
primitives and right primitives and 

2
*
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4.16 Let 2:, BR →yx , where x  has a finite support and y  has left limits and right limits. 
Then the function 

∫
∞

∞−

= yxth t)(  

is defined and has left limits and right limits. 
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