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Abstract Let X * /& anarbitrary setand U | 2% a non-empty set of subsets. The function
n:U ® {0,1} iscalled binary set function. If n is countably additive, thenit iscalled a

measure. The paper gives some definitions and properties of these functions, its purpose
being that of suggesting the reconstruction of the measure theory within this frame, by
analogy with [1], [2].

AM S Classification: 28A60, 28A25.

K eywor ds: additive and countably additive binary set functions, derivable binary measures,
the Lebesgue-Stieltjes binary measure, the integration of a binary function relative to a binary
measure.

1. Set Ringsand Function Rings

1.1  Wenotewith B, the set {0,1}, called the binary Boole (or Boolean) algebra, together

with the discrete topology, the order 0 £ 1 and the laws: the logical complement ' ™ ', the
reunion 'E ', the product "', the modulo 2 sum "A ", the coincidence 'A ':
. E|l01 =01 Ajo1 AJ01
<‘071 0/01 0|0 O 0(0 1 0(1 0
10 1111 110 1 1|1 0 1|01
a) b) C) d) €)
table (1)

12 Let X A& bean arbitrary set, that we shall call thetotal set. In the set 2% of the
subsets of X, the order is given by the inclusion and the laws are: the complementary relative

to X:' ', thereunion 'U’, thedifference’ - ', theintersection ' U", the symmetrical
difference ' D' and the coincidence ' Q' that is defined like this:
AQB=ADB 1)

13 TheoremlLet U | ZX' aset of subsetsof X . The next statements are equivalent:
a) ABl Ub AUB,A-BI U
b) ABT UbP ADB,AUBI U
and the next statements are equivalent too:
0) ABI Ub AUB,B- Al U
d) ABTUP AQB,AUBIT U
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1.4  Remark In the previous theorem, the conditions @), ¢); b), d) are dual.

15 &) Theset U that fulfillsoneof 1.3 &), b) iscalled set ring, or ring of subsets of X
(on X'). N. Bourbaki calls such a set clan.

b) Similarly, if U fulfillsone of 1.3 c), d), itiscalled set ring, or ring of subsets of X
(on X)), the dual structure of the structure from a).

1.6  Remark a) (U, D, U) isrealy anon-unitary, commutative ring. Its neuter element is

A.
b) (U, Q, U) isitself a non-unitary, commutative ring. Its neuter element is X .

1.7 @ lf X belongstothering (U, D, U), then (U, D, U) iscalled aset algebra.
b) If /£ belongstothering (U, Q, U), then (U, Q, U) iscalled aset algebra too.

1.8  Remark a) The condition that (U, D, U) isaset agebra((U, Q, U) isaset algebra)

impliesthe onethat U isaunitary set ring, becauseif X1 U (if £1 U), thenitisthe unit
of thering.
b) Generally speaking, the unit, if it exists, isgivenby U A (by U A).
Al U Al U

19 Remark The set algebras are not what is usually meant by the F -algebra structures,
where F isafield.

110 Let f:X ® B, afunction. Its support is by definition the set:

supp f ={x|xT X, f(x) =1} (1)
111 If

supp f = A (1)
f will be noted sometimes with ¢ 5. Thisfunction is called the characteristic function of the
st Al X.

1.12  Let usdefinefor the set ring (U, D, U), respectively for the set ring (U, Q,U), the
set
U'={f|f:X® By,supp f1 U} (1)

113 (U'A,s,») and (U',A ,E,E) are B,-algebras, where ' isthe symbol of two
laws: the product of the functions and the product of the functions with scalars (both induced
from B,), while 'E ' isthe dual of '3'.

1.14 The associations

U' A« CAT U’
are ring isomorphisms. They allow us many times to identify the set rings U | 2% and the
functionrings U'T B3
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2. Additive and Countably Additive Set Functions

21 TheoremLet Ul 2% anon-empty family of subsetsof X and n:U ® B, a

function. .
a) If (U,D, V) isaset ring, then the next statements are equivalent:
al) "A BT U AUB=ZP n(AUB)=n(A) A n(B) (1)
a2) " A BT U,n(ADB)=n(A) A n(B) 2)
b) If (U, Q,U) isasetring, then the next statements are equivalent:
b.1) "A BT U, AUB=Xb n(AUB)=n(A) An(B) (3)
b.2) "A BT U,n(AQB)=n(A) An(B) (4

22 a)let (U,D,U) beasetring. A function n:U ® B, that fulfills one of the
equivalent conditions 2.1 a.1), a.2) is called additive, or finitely additive.

b) In adual manner, let (U, Q,U) beasetring. A function n:U ® B, that fulfills
one of the equivalent conditions 2.1 b.1), b.2) is called additive*, or finitely additive*.
23  Thesetsof functions U ® B, which are additive, respectively additive* are noted

with Ad(U), respectively Ad” (U). They are naturally organized as B,-linear spaces.

24  Theorema)Let nl Ad(U).For ABI U, we have:

al) n(4&) =0 Q)
a2) n(A- B) =n(A) A n(AUB) 2
a3) n(AUB)An(AUB)An(ADB)=0 (3)
b) If ml Ad*(U) , then the next properties are true:

b.1) m(X)=1 4
b.2) nm(B- A) =mA) A n{AUB) (5)
b.3) n(AUB)An(AUB)An(AQB)=1 (6)

where ABT U .

25 Leta:N® B,,

def A
a, = a(n),nl N 1)
abinary sequence. If the support of a:{n|nl N,a, =1} isafinite set, then the summation

modulo 2 has sense:
i1, | supp a|isodd
A =i , 2

ni N 1O, | supp a|iseven

where we have noted with |*| the number of elements of afinite set and where, by definition:
|£|=0 ©)

iseven. If the support of a is not finite, then the symbol ‘XN a, refersto adivergent series.
nl

26 Let A:N® By,

def
A, = An),nT N (1)
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asequence of sets. If forany xI X theset {n|nl N,xI A} isfinite, then the symmetrical
difference has sense:

ADNAﬂ:{x|xT X, {n|nT N,xT A.}|isodd} 2)
|

n
and if not, the symbol ‘DN A, refersto adivergent series of sets.
ni

27 TheoremLet (U,D,U)1 2% beasetringand n:U ® B, afunction. The
following statements are equivalent:
a) For any sequence of sets A, T U,nT N , the conditions

al) ntmp ALUA,=£
and ) i
a?) U AU
imply
a3) {nInT N,n(A,) =1} isfinite
and )
ad) n(nTUN Ay = nTXN n(An) «y
b) For any sequence of sets A, T U,nT N , the conditions
b.1) "xI X, {n|nT N,xT A} isfinite
and A
b.2) B AU
imply
b.3) {nInT N,n(A,) =1} isfinite
and
b.4) n(nTDN Ay = nTXN n(An) 2

Proof a)b b) Let A,T U,nT N sothat b.1), b.2) are true under the form:
"xI X, {n|nT N,xI A;}T {01}
nTDN Fn = nTUN Al U )
a1), a2) being fulfilled, a.3), a4) are also fulfilled, thus b.3), b.4) are fulfilled.
byb a) If A,T U,nl N satisfiesa.1), a2), then b.1), b.2) aretrue, thusb.3), b.4) are true
resulting that a.3), a4) are fulfilled.

28 a)Afunction n:U ® B, that satisfies one of the equivalent conditions 2.7 a), b) is
called countably additive, or measure.
b) We take in consideration the duas of 2.5, 2.6, 2.7. A function n:U ® B, that

fulfills one of the duals of the previous equivalent conditionsis called countably additive* or
measure*.

29  Thesetsof countably additive, respectively countably additive* U ® B, functions
are noted with Ad.(U), respectively with Adé ).
These sets are B,-linear spaces.
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210 Theinclusions Ad(U)1 Ad(U), Adz(U)1 Ad" (U) are easily shown.

211 Theterminology of additive function, countably additive function and measure is the

sameif the domain of the functionisa B,-algebra U" included in BZX , viathe identification
from 1.14.

3. Examples

31 LeeX!AadUl 2% aset ring. The null function 0:U ® B, isameasure; itis
the null element of the linear space Ad.(U).

32  Supposethat m:U ® B, isameasureand Al U . Thefunction ny:U ® B, thatis
defined by:
n(B) =n(AUB), BT U (1)
isameasure, called therestrictionof m at A.
Proof Let A,T U,nT N bedisoint two by two with TUN A, T U, resulting that the sets
n

AUA,T U,nT N aredigoint two by two with

TUN(AUAh):AU TUNAhT U (2)

n n

Because nm isameasure, theset {n|nT N,n(AUA,) =1} isfiniteanditistrue:
nl(nTUN Ay) =n(AU nTUN An) = n(nTUN (AUA,)) = ©)

= nTXN n(AUA,) = niXN M1 (An)

33 Wefix x1 X.Thefunction ct*0} :U ® B, defined by:

cX0} (A) = a(x0), AT U L)
isameasure. More general, the sum of these functions is a measure too and this means that to
eachfiniteset H1 X itisassociated afunction ¢ ;U ® B, defined in the following way:

cH M= X ca, AT U )
xI'H
When H isthe empty set, we find the example 3.1.

34 (S, A,-,») isthe B,-algebraof the binary sequences x,1 B,,nl N, wherethe
sum of the sequences ' A ', the product of the sequences ' - ' and the product of the sequences
with scalars "' is made coordinatewise. We mention here that the families of sequences

(xP), T Sy, p1 N that are digoint two by two are these that satisfy:

pt pP " nxfxf =0 (1)
Let kT N and we define my :S, ® B, by:
M ((%1)) = X, (%) T S, )
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- the projection of the vector (x,) of S, onthe k -th coordinate. More general, if H1 N is

afinite set

H ={kq,....kp} (3
then we have the sum of functions ryy : S, ® B,,

my =mg ALA M, (4)

m and nmy are countably additive; if H isempty, then iy is by definition the null
function.

35 &) Wesay that the ssquence x,1 B, nT N convergesto x°1 B, if

$NT N,"n3 N, x, =x° (1)
If so, the unique x0 with this property (because x isafunction) is called the limit of (x,). If
the previous statement is made under the weaker form: the sequence (x,) is convergent, this

means that such an x° like at (1) (uniquely) exists. The limit of the sequence (x,) hasthe

usual notation lim Xp.
n® ¥

b) (3, A -, %) isthe B,-algebra of the binary sequences x,1 B,,nT N that
converge to 0. We define the measure m: Q ® B, by
MO = X X, 00T S2 (1)

36  (S5,A,-,x) isthe B,-algebraof the convergent binary sequences x,1 By, nT N
and we define m: S5 ® B, by:
m(X)) = lim X, (%) T S5 1
n® ¥
n isadditive, but it is not countably additive. In order to see this, we give the example

of the sequence of convergent sequences (the canonical base of S5):

iLn=m -
e":N® Bz,e”(m):%'O,else ,mni N (2)

(€M), aredigoint two by two, their reunion is the constant 1 sequence that is convergent and
on the other hand

m Ue") =12 0= X n(e") 3
n‘l‘ N nl N
37 A vaiant of 3.4is obtained if we take instead of S, = B) an arbitrary function B,-
dgebraU 1 BX . Let o1 X ; thefunction My, :U ® B, defined like this:
Mo (1) = F0xp), 1 U M

isameasure. More general, if H1 X isafinite set, then the function ny :U ® B, defined
in the following manner:
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()= X 103, fiU )

isameasure. If H isempty, then by definition ny isthe null function.
We mentionthefact that fPT U, pI N aredisjoint two by two if
pt pb "xI X, fPx)xfP(x)=0 A3)

3.8  Wenotewith R (X) thering - relativeto D, U - of the finite subsets of X . The

function m} : Ry (X) ® B,

11| Alisodd
m (=oAL

10, Aliseven
is ameasure, called the finite Boolean measure.

, Al Ry (X) 1)

39  Wenotewith Inf; thering of theinferiorly finitesets Al R, i.e. the setswith the
following property:
"al R, (-¥,a)UA isfinite
Wefix some al R and wedefine i, :Inf; ® B, by:
(A =n¢((-¥,a)UA), Al Inf; (1)
I, iscountably additive: for any family A,T Inf¢,nT N of two by two digoint
sets so that nTUN A, T Inf; , only afinite number of sets A, fulfill (-¥,a)UA, ! £ etc.

310 alLet X1 R andtl RU{¥} apoint so that
"t'<t, (t',t) U X isinfinite
b) We say that the function f : X ® B, hasaleft limitin t, noted with
f(t- 0)1 B,, if the next property istrue:

$t'<t," xT (t,1)UX, f(x)=f(t- 0) (1)
c) We note with Limy (t) the B,-algebraof the X ® B, functionsthat have a left
limitint.
d) The function m: Limy (t) ® B,;
m(f)=f(t-0), fT Limy(t) 1)

is a measure, this example being analogue to 3.7.
€) Other examples of measures of the same type with this one may be given.

3.11 a) For a,bT RU{¥}, the symmetrical interval [[a,b)) isdefined by:
i[a,b),a<b
[[a,b)) = i[b,a),b<a (2)
',1' /£ b=a
b) We note with Sym™ the set ring - relativeto D, U - generated by the symmetrical
intervals [[a,b)) .
c) We define m: Sym™ ® B, by:
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iLif sup A=¥
M= o

10, else @

where AT Sym’ . Because in asequence of sets A, T Sym , nT N that are digjoint two by
two with ‘UN AT Sym  at most one satisfies the condition sup A, =¥ , it may be shown
nl

that m isameasure.

3.12 a) Wedefinethenext B,-algebras of functions f : R® B,:

lia,by) ={ f [[a,b)) Usupp f is finite}, a,bT RU{¥} (1)
ly ={f |supp f is finitg (2
and the integrals
b -
A f= X f@), fl1 3
g 0 ffab) (t) [[a,b)) ©)
¥
8 = X f), f11 4
"R (t) ¥ (4)
b) Thenext Ijjap) ® By, 1y ® By functions:
b -
mf)=0 f.f1 ljan) 5
a
¥
mf)= of, f1 Iy (6)
- ¥

are measures.

313 a) Theset Si 2R defined in the next way:
S={(ay,by) D...D(ap,bp) D{Cy,....Ca} | &g, by, ...
...,ap,bp,cl,...,ch R,p.nT N} (1)
isaring of subsetsof R and we have supposed that

p=0P (a,)D..D(ap,bp) =4 2
n=0pb {q,....ch} =4 (©)]
b) Thefunction n: S® B, given by:
{(ag,by) D... D (ap,bp) D{Cy,....Cn}) = p(p+ 1) (4)
where p: N ® B, isthe parity function:
i1, if misodd -
=1 , ml N 5
p(m) %O, if miseven m ©)
- isadditive, but it is not countably additive. In order to see thisfact, we take the sequence
1 1 1 1 1 .- -
: = : D I S,nl N 6
[n+2 n+1) (n+2 n+1) {n+2} ©)
of setsthat are digoint two by two, satisfying
0 [, =011 S @

nf N n+2' n+1
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)=l =& (8)

n+2 n+1

{n|nm([
mOL)=1*0=_ X m([

— 9
=) ©
3.14 &) We note with

R (X)={H |H T X,H is finite} (1)
Thissetisaset ring relativeto Q, U and it isthe dual structure of Ry (X).

b) A typical example of measure* is given by the function m*fx : R’} (X)® B, thatis
defined in the next manner:
0,|H |isodd
XHy =]
11 |H |iseven

(In the equations (1), (2) the superior bar notes two things. the complementary of a set
and the logical complement.)

Let the sequence of sets A, T R; (X),nT N that are dioint* two by two:

nml N,nt mb A,UA,=X (i.e. AyUA,=/) (3)
S0 that ‘UN AT R?(X).Becausefromthedefinitionof R’}(X),theset

nl

=mf (H), HT R; (X) 2

nTUN o = nTUN #n @

isfinite, there results the existence of arank N with the property that K are empty for
n> N .We have:

m* (U A= rré(nTUN Ay) = nf?(nTUN Ay = (A UA 0. UAY) =

= mf (Ag) A (A) A LA mf (Ay) = X mt (Ay) = X mE (Ay) =

_ "X oay— R piX
= XM ()= AL e (An) (5)

4. The Behavior of the M easures Relativeto the
M onotonous Sequences of Sets

41 @ Thefamily A,1 X,nl N iscalled ascending sequence of setsif
AT AT AT L (1)

In this case, the reunion ‘UN A, iscalled the limit of the sequence and is noted
nl

sometimeswith lim A, .
n® ¥

b) Thefamily A, 1 X,nl N iscalled descending sequence of setsif
AEAEAE.. @)
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The intersection AUN A, iscalled the limit of the sequence and is noted sometimes
ni

with Iim )
n®¥Aﬁ

0) If the sequence A, 1 X,nl N iseither ascending, or descending, then we say that
it is monotonous.

42 TheoremLet Ul 2% aset ring and the function m:U ® B,.
a) Let A,T U,nT N an arbitrary ascending sequence of sets satisfying the property
that the set

A nTUN i @

belongsto U . If n isameasure, then the binary sequence (n(A,)),, is convergent (see 3.5
a)) and itistrue:
n(A) = lim n(Ay) )
n® ¥

b) Suppose that n isadditive and it satisfies the property: for any ascending sequence
A, T U,nT N of setssothat itsreunion A belongsto U , the binary sequence (m(A,)),, is
convergent and the relation (2) takes place. Then n isameasure.
Proof a) We have the digoint reunion:

A=Ay U(A - Ag)U..U(Apg- A)U.. (3)
Because 1 isameasure, it results that thereexists NT N so that
N>NP n(Ayg- Ay) =0 (4)
thus
m(A) =n(Ag) An(A - Ag) A LA T(Ay.1- An) = ©)

=n(Ag) A n(A) A n(Ag) A LA (A1) A m(Ay) = M(Ay+1)
(4) is equivalent with the convergence of the sequence ((A,)),, , asit can be rewritten under
the form:
n>NP m(Ay) =n(Ay) (6)

and (5) isequivalent in this situation with (2). In the last equations, we have used 2.4 a.2)
under the form:

M(Ans1- An) =(Aq) An(Ag UA) =(Ayg) An(Ay), nT N (7
b)Let A,7 U,nT N asequence of setsthat are disjoint two by two and let us
suppose that their reunion

A= U A 8
nT N & ®)

belongsto U . We define the sequence A, T U,nT N by:
A=A UAU.UA,NT N (9)

and itisremarked that it is ascending and (1) is satisfied. The hypothesis states the
convergence of the sequence with the general term

M(An) = m(Ag) A (A A .. A r(Ay) (10)
in other words thereexistsan N1 N for which the implication
n>NP nA,) =0 (12)
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istrue. The relation (2) becomes
m(A) =m(Ag) A (A A A (Ay) = X m(An) (12)

i.e. m isameasure.

43  Theorem Itisconsidered the set ring U and the function n:U ® B,.
a) We supposethat A,T U,nT N isan arbitrary descending sequence of sets whose

intersection
A= U 1
ni N #n @)
belongsto U andthat n isameasure. Then the binary sequence (n(A,))n, isconvergent and
itistrue:
n(A) = limn 2
(A lim (An) @)

b) Let us suppose that r is additive and the next property is satisfied: for any

descending sequence A, T U, nT N of setsso that itsintersection A belongsto U , the
binary sequence ((A,)),, isconvergent and the relation (2) is true. In these circumstances n

IS ameasure.
Proof a) Let usremark for the beginning that the set

U (o A=A U A =A- A )
belongsto U and the sequence of sets

Ao- Al Ag- Al Ag- Al (4)
is ascending. We apply 4.2 @) resulting that the binary sequence (n(Ag - Ay)),, IS convergent
and that it takes place

n(Ap- A) = lim n(Ay - Ay) )
n® ¥
From (5) it results that

m(Ap) A m(A) =n(Ag) A n'(l@rg n(An) (6)

and we have the validity of (2).

b)Let A,7 U,nT N asequence of setsthat are disjoint two by two with the
property that their reunion

A= U A )
nl N

belongsto U . We define the sequence of setsfrom U :
Ay = A- (A UA 0. UA) = (A- Ag) U(A- A) U..U(A- A) (8)

where nT N that proves to be descending and its meet

n . no.

A= U = U UMA-A)=A- U UA=A-A=F 9
ni NAﬁ ni Nk:O( & ni Nk:OAk ®)

belongsto U . The hypothesis states that the binary sequence (n(A,)),, is convergent and the
relation (2) becomes:

0= n(niUN An) = nlggé mMAn) (10)

Thereexistsarank NT N sothat for any n> N we have:
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0=n(Ay) =n(A- (A UA U..UAY) =m(A) An(A) An(A) AL Am(Ay) (1)
We have that (n(A']))n convergesto 0 and if k > N then

. K . .
M U A)=mA)= X mA)= X n(A,) (12)
ni N n=0 nit N
5. Derivable M easur es

5.1  Inthisparagraph we shall consider that the total space X isequa with R", n3 1.

The elements xT X will be consequently n- tuples (xq,...,x,)T R".

52  Wedefinethe family
U, ={A| Al R", Aisbounded} (1)
Itisasetring (relativeto D and U).

53 Let Al U, beabounded set. Its diameter is defined to be the real non-negative
number

d(A) = suipAJ(xl- Y2+t (% - Yn)? 1)
%

54  Wedefinethelocally finite setsfrom R" tobethesesets H1 R" with the property
that
" Al U, AUH is finite

55  Theset of thelocally finite setsfrom R" is noted with Loc(fn) anditisasetring.

5.6  Proposition Let ustakeaset H 1 Locgn). Thefunction my :U, ® B, defined by:

nmy (A) =p( AUH |), AT U, (1)
isameasure (the function p was defined at 3.13 (5)).
Proof Let AyT Up, pT N afamily of setsthat are disjoint two by two with the property

that U Ayl U,.Because U A, UH isafiniteset, there existsanumber NT N

pT N pi N
with:
p>Nb AjUH =4 )
We infer that
{pImy(Ap) =11 {0L..,N} ©)
M (pTUN Ap) =p(| pTUN Ay UH ) =p( pTUN (ApUH) ) = (4)

=p(l (A UH) U(A UH)U..U(Ay UH) ] =
=p(lAg UH [+ A UH [+..+|AyUH ] =
=p( A UHDAP(AUHDA . .Ap(AyUH)=

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

= X AbUHD= X A
pin(l pUHY pTNnH(p)

5.7  Proposition Thefunction ny T Ad.(U,) that was previously defined fulfills the
property that for any Al U, and x1 A:

$e>0,%al B,,"Bl U,,,(xI Bandd(B)<e)b ny(B)=a (1)
Proof We define the real positive number
o= min{0a- Y2 .t (- Y2 IYT H- {31 H- {02 & ?
foa JH-{xX=£&

Such an € exists, if not there would exist a sphere S, with the center in x and the
property that S, UH isinfinite and thisis a contradiction with the hypothesis H T Locgn) .
Any bounded set BT U, with the propertiesthat xI B and d(B) < e fulfillsthe

relations:
(B-{x})UH =£& (©)
M4 (B~ {%) =0 (4
My (B) =y (B- {¥)U{x}) =y (B- () Anmy({¥) = ©)
il x1 H

=M (0) =pI0I UHD =10
58 Letnow m:U,® B, beameasure.
a) We say that it isderivablein xT A, where Al U,,, if
$e>0,%al B,," BT Uy, (xI Band d(B)<€) b n(B)=a (1)
b) In the case that the property of derivability of r takes placeinany xI A, we say
that m isderivableon A.
c) If nm isderivableonany set Al U,,, thenit is called derivable.

59  Thenumber al B, dependingon xI A andthefunction A' xa al B, whose
existence is stated in 5.8 are called the derivative of i in X, respectively the derivative
function of n in x.

510 Thederivativeof i in x and the derivative function of rr in x are noted with dr(x) .
Other notations are:

dm . _
E(X),If n=1
dm . _
E(X),If n=2
dm . _
W(X),If n=3

511 Remark Theset BT U,, formed by one element, xI A

B={x 1
has the property that for any € >0,
x] B and d(B)=0<e (2)
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from whereitisinferred that, if i isderivablein x, then dn(x), that generally does not
depend on B, isgiven by:
dn(x) =n({x}) ©)

512 &) We suppose that n isaderivable measureon A. The set
suppp d ={x|xT A dn(x) =3 ={x|x] An({x)=3 D
is called the support of dnm on A.
b) If i is derivable (on any set AT U,,), then by definition the set

supp dm={x|x1 R",dm(x) =1 ={x|x] R",m({x) =1 2
is called the support of drr (on R").

5.13 Theorem We consider the derivable measure m:U, ® B, ontheclosed set Al U,
( A iscompact). Then the set suppp dir isfinite.

Proof Let us suppose that suppa dn isinfinite, in contradiction with the conclusion of the
theorem. Because A is bounded, there exists (Cesaro) a convergent sequence

xPT supps dm pT N and thefact that A isclosed implies that

x= lim xP (1)
p® ¥
belongsto A. We apply the hypothesis of derivability of n in x:
$e>0, "Bl U, (xI Bandd(B)<e)P n(B)=n({x}) (2)

Wefix e, B like above so that for some xP 1 x itistruein addition xP1 B. The set
B- {xP} satisfies the same hypothesislike B, that is:
x1 B-{xP} and d(B- {xP})£d(B)<e (3)
and the conclusion must be the same;

mB- {xP}) =n({x}) (4)
Itisinferred that:
m{x}) =m(B) =n((B- {xP}) U{xP}) = ©)
=m(B- {xPH) Am{xP}) =m{x3)A1

The last equation is a contradiction, having its origin in our supposition that
suppp dir isinfinite.

514 Corollary Letthemeasure n:U, ® B,.

a) If i isderivable on the topological closure A of the set Al U, then:
al) theset suppp dn isfinite

a?) "xI A $e>0, "Bl U,,(xI Bandd(B)<e)P n(B-{x)=0 (1)
a3) n(A) = XTXA”({X}) (2
a4) For any partition A T A/iT |, wehave

n(A) = ”XI n(A) 3)

b) If the measure 1 is derivable, then the set supp dir islocally finite.
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Proof a.3) If suppp dn isempty, thenfor any xT A wehavethat x1 suppp dn and by
replacingin 5.8 (1) B with A and a with n({x}), it results

n(A)=n({x})=0 (4)
making the statement of the theorem obvious.
We suppose now that
supps dm={xt,...xP}, p3 1 (5)
There existsa partition Ay,.., AyT Uy of A with the property that X1 Ai=Lp
and moreover
p P p i
mA) =m(U A) = Xn(A) = Xn({x})= X m({x)(=p(p)) (6)
i=1 i=1 i=1 xl A
b) i isderivable on the compacts Al U, andfromal) all the sets
AU supp dir = suppp dir (7)
arefinite.

5.15 Letussupposethat n:U, ® B, isderivable on the topological closure A of
Al U,,. The binary number

nA)= X n({x)= X di(x)= X f(x)>dn(x) D
xl A Xl A xi RN
isnoted with ¢gm ¢f xdmor ¢f >dmandiscalled theintegral of f : R"® B, relativeto
A RN
n, where the relation between f and A is by definition the following:
A={x|xT R", f(x)=1 =supp f (2
516 We note with
1M =(f|f:R"® By, supp f1 Loc!} (1)
the B, -algebra of the functions with locally finite support, that are called locally integrable

functions.

517 Theorem a) Thefunction g1 1 (™. definesa derivable measure n¥ U, ® B, bythe

Loc
formula:
mP(A) =p(|AUsupp g ), AT Uy, 1
It istrue therelation
dm?(x) = g(x), xI R" (2)

b) Conversely, if m:U,, ® B, isaderivable measure, then there existsin a unique

manner the function g1 Il(_g)c so that
m(A) =p(| AUsupp g ), AT Up, (3)
being aso true the relation
dm(x) = g(x), xI R" 4

Proof &) The fact that m? is ameasure was aready proved at 5.6, if we put
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mP (A) = Mypp g (A AT U, 5
and (2) results from
. 1p@ =1,if xI
P (9 =P () =P Usupp gD =100 o1 SRS

b) If i is derivable, then supp dml Locgn) from 5.14 b) and the function

=9() (6)

g:R"® B, defined by:

g(¥) =dn(x) =m({x3}), xi R" (7)
islocally integrable. As (4) was proved at (7), we prove (3) by taking into account 5.14 a.3):
n(A) = XTXArr({x}) =p(|AUsuppdr() =p(|AUsupp g|), Al Uy )
5.18 Corollary For g1 I|(_r('))c and Al U, itisdefined the integral
oo = ofm? =n? (A) =p(| AUsupp g ) (2)
A A

6. The Lebesgue-Stieltjes Measure

6.1  Wesay about thefunction f : R® B, that
a) it hasaleft limitinany point t| RU{¥}, if (see 3.10)

"tT RU{¥}, $t'<t, $f (t- 0)1 By, " x1 (t',1), f(x) = f(t- 0) (1)
b) it isleft continuousin any point tT R, if @) istrueinany tT R and moreover:
"t1 R, f(t) = f(t- 0) )

6.2 Wefixafunction f satisfying the propertiesfrom 6.1. We prolong f to RU{¥} by
left continuity in the point ¥ :

f(¥)=1(¥-0 (@)
and we note this new function with f too.

6.3 The relation
n([[aq,by)) D...D[[an, b)) = f(a)) A f(b) A ... A f(ay) A f(by) N

where ay,...,a,,0y,....,0,1 RU{¥} obviously defines an additive function m: Sym” ® B,
(see 3.11 for the definition of the symmetrical intervals and of Sym™ ). Our purpose is that of
proving the next:

6.4  Theorem n isameasure.

Proof Let A,T Sym ,ni N asequence of sets that are disjoint two by two with the

property that the reunion
A= U 1
ni N al @)
belongsto Sym™ . We can suppose without loss that all the sets A, are non-empty.
Casea) (t,), isareal strictly increasing sequence that convergesto b and we have:
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-¥<a=t0<t1<t2<...<b£¥ (2

Ay =[tn,ths), nT N ©)
A=[aDb) 4)

Thereexistsan NT N with
N>NP n(A)=f(ty)A f(thsy)=f(b- A f(b- 0)=0 5)

and we can write that
N
nTXN mAy) :n>:<0”('°h) =f(to) A f(t)A f(t) A fFto) A LA F(tN)A ftne) (6)
= f(tO)A ftn+1) = f(a)A f(b- 0) = f(a)A f(b) =n(A)

Caseb) A isof the general form

A=[aq,by) Ulap,by) U... Ufay, by) (M
where
-¥ <y <bfa<bE.fa <b E£¥ (8)
We note
Ani = Ay Ula,by) 9)
where nT N and i =1,k ; we have:
nTXN n(Ay) = niXN (M(An1 U A2 U UA ) = (10)

= nTXN (A An(A ) A A (A ) =
= nTXN’n(Ah’lA nTXN ’”(Ah,Z) ALA nTXN ’”(Ph,k) =
= n(nTUN A1) A n(nTUN An2) A LA n(nTUN Ank) = (from a))

= ([, by) A n((az, b)) A ... A n((ay b)) =
= n([ay,by) Ulag.by) U... Ulag, b)) =n(A)

6.5 Themeasure i that was defined at 6.3 is called the (left) Lebesgue-Stieltjes measure
associatedto f .

6.6  Theright dual construction is made starting froman R® B, function (see 6.1) with
aright limitinany t1 {-¥}UR, right continuousinany tT R that is prolonged (see 6.2) to
{-¥}UR by right continuity in the point - ¥ . It is defined then (see 6.3) ameasure
gm" ® B,, where ym", thedual of Sym’ , isthe set ring generated by the symmetrical
intervals

i(ab],a<b

(@bll=f(bal,b<a (1)

1 fE ,a=b

where a,bl {-¥} UR.

6.7 Theorem Let m:Sym” ® B, an arbitrary measure.
a) The function

9(t) =m([[a1)) (1)
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where a,tT RU{¥} isleft continuouson RU{¥}.
b) ny istheleft Lebesgue-Stieltjes measure associated to g .
Proof a) It is considered the sequence (t,)n,

-¥<a=ty<y <ty <..<t£¥ (2
that is strictly increasing and convergent to t. The sets
Ay =[tn,ths), nT N ©)
belong to Sym™ and are digoint two by two and their reunion
U A =[at) (4)
nl N

isan element from Sym™ too. It results that there exists NT N with

n>NP m(Ay) =m((ty, thea)) = matn)) A my((atheg)) = 9(th) A g(th+) =0 )
showing the existence of g(t- 0). But

gt) =m([a,t)) = nl(nTUN [th th+1)) = nTXN My ([th,the1)) = (6)

N N
= n>=<0”l([tn’tn+1)) = n>=<0(9(tn) A g(th+1)) = 9to) A gltn+1)

From the fact that
g(to) =m([a ) =my(4) =0 M
g(tn+1) = 9(t- 0) )
it results, as t isarbitrary, the statement of the theorem.
b) We have that
M ([[ag, 1)) D... Dl[an,by))) = 9

=m([[a,a)) D[[a,by)) D...O[a,a,)) D[[a,by))) =
=m([[a,a)) A m([[ab) A ... An(([a,a,)) A m([laby)) =
=9g(a) A g(b) A . A g(an) A g(bn)

istruefor any a,...,a,,by,....b, T RU{¥}.

7. M easur able Spaces and M easur able Functions. The I ntegration of the Binary
Functions Relativeto a Measure

7.1  ltiscalled measurable spaceapair (X,U) where X isasetand U | 2% isaring of
subsetsof X . Thesets Al U are called measurable.

7.2 We say that we have defined a measurable, or integrable function f : (X,U) ® B,
where (X,U) isameasurable space, if it isgiven thefunction f : X ® B, with
supp f1 U, i.e thesupport of f isameasurable set.

7.3  Recall that the set of the binary functions

U'={f|f:(X,U)® B,, f ismeasurable Q)
(see1.13, 1.14) isa B,-algebrarelative to the obvious laws. Asring, it isisomorphic with
u.

74  Let (X,U) ameasurable spaceand M | X . Because the set
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UUM ={AUM | Al U} (1)
isaset ring, the pair (M,U UM ) isameasurable space, called measurable subspace of
(X,U).

75  Proposition ) If f:(X,U)® B, ismeasurable, then itsrestriction
fiy 1(M,UUM)® B, ismeasurable.

b)If g:(M,UUM)® B, ismeasurable, then it can be prolonged to a measurable
function f : (X,U)® B,.

7.6  Letussupposethat (X,U) isameasurable space, f :(X,U)® B, isameasurable
functionand m:U ® B, isameasure. The number n(supp f) iscalled theintegral of f

relative to m and is noted with (‘:f xdm.

77 Let f,, fT U, nT N.

a) If
supp fol supp fy1 supp fol ... (1)
U supp f, = supp f @)
ni N
then we say that f,, converges, or tendsincreasingly to f and thisfact is noted with f,,- f .
b) If
supp fo E supp fy E supp f; E ... 1
U supp fp, = supp f @)
ni N

then we say that f,, converges, or tends decreasingly to f and thisfact is noted with
fn f.

c) In one of the situations from a), b) we say that f,, converges, or tends
monotonously to f and the notationis f, b f .

7.8  Letussupposethat f,g:(X,U)® B, aremeasurableandthat n:U ® B, isa
measure. We say that f and g are equal almost everywhere and we write this fact with

f=g ae 1)
if
n({x] f(x)* g(x)} =n(supp f Dsupp g) =0 @)
or, in an equivalent manner, if
n(supp f) =n(supp g) ©)

7.9  Proposition Thefunction U f a ¢f xdmi B, satisfies the following properties:
a) itislinear
b) fab f P cfyxdm® ¢f>xdm
¢ f=g ae0 ¢f >xdm=¢g>dm

where f,, f,gT U',nl N.

Proof b) isarestatement of 4.2 @) and 4.3 a).
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7.10 CorollaryIf f,T U',nT N convergesto 0 decreasingly, then
¢ fp xdm® 0 1)

711 Let f,,f:(X,U)® B,,nl N measurableand n:U ® B, ameasure. We say that
f, tendsto f in measure and we note this property with f,® f if
m

o xdm® ¢ f xdm )

712 Let f,cp: X ® B, twofunctions, where f isarbitrary and c 5 isthe characteristic
function of theset A1 X .1f AUsupp f1 U - condition that is called of integrability- then

the number
def
of xdm = c p xf)>xdm Q)
A
iscalledtheintegral of f,on A, relativeto .

7.13 Thefunction f>n:U ® B, defined by

(f>m(A) = of xdm )
A
where A, supp f1 U isameasure, that coincides with the restriction of n at supp f .

8. Riemann Integrals

8.1  Weend the paper with a short paragraph that introduces the Riemann integrals of the

f : R® B, functions (generalizations are possibleto f : R" ® B, functions). The main
feature for thistype of integral is considering the set ring R (R) and the finite Boolean

measure (see 3.8) m$ :Ri (R)® B,.

82 Fortheset Al R,theproperty AUsupp f1 R¢(R) (see7.12) iscalled the

condition of Riemann integrability of f on A.If itisfulfilled, wesay that f isRiemann
integrable, or integrable in the sense of Riemann, on A.

8.3  Special casesfor 8.2. a) [[a,b)) Usupp f 1 R (R) (see 3.12 (1) for the definition of
l[[a,b))) & bl RU{¥}. These functions are called Ieft integrable (in the sense of Riemann)

fromatob.
b) RUsupp f1 R (R) (see3.12 (2) for the definition of 1y ). These functions are

caled integrable (in the sense of Riemann).
o) "abl R, (ab)Usupp fT R (R) (see5.4, 5.5, 5.16 for the definition of 1),

These functions are called locally integrable (in the sense of Riemann) and they have alocally
finite support.
d) " abl RU{¥},(a,b)Usupp f1 R¢(R) definesthe B,-algebra of functions

| up - We say about these functions that they are left integrable (in the sense of Riemann) and
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that they have the support superiorly finite, dual notion to that of inferiorly finite set that was

defined at 3.9.

84 If f isRiemannintegrableon A, thenthe number (see 7.12 (1))
of xR =mR(AUsupp £) = X (%) (2)
A xlI A

iscalled theintegral, in the sense of Riemann, of f,on A.

85  Special casesfor8.4a) f1 Ijjap),abl RU{¥};theintegra  ¢)f ><dm$ is noted

([a,b))
b
with & f andiscalledtheleftintegral (inthe sense of Riemann) of f froma tob.
a
¥
b) f1 ly;theintegral of ><dm$ isusually noted with f andiscalled theintegral
R -¥

(in the sense of Riemann) of f .

8.6  Thecases8.3a) and 8.5 a) have right duals, that refer to symmetrical intervals of the
form ((a,b]], a,bl {-¥} UR (see6.6).

8.7  Wedefinethe subring of sets Sym'l Sym’ to be the one that is generated by the
symmetrical intervals [[a,b)), a,bT R (at Sym™ wehad [[a,b)), a,bT RU{¥}).

88  a) Letussupposethat f1 Il(_lgc. Then the measure f >m']3 :9yM® B, (see7.13)is
called the indefinite integral of f .
b) Thefunction F~ : R® B,, which is defined in the next manner:
F™ (1) = f>mR([a,n),tT R (2)
where al R isaparameter is called the left primitive of f .

¢) The left primitive F~ (t) hasaleft limit and it is left continuousinany t1 R.

89 Ifa88 f1 Igy (wherelgyl 1), then fxmy isextendedto Sy and F is

extended to R U{¥}, by left continuity in the point ¥ . f ><m'$ isin this situation the | eft

Lebesgue-Stieltjes measure associated to F~ (see 6.3).

8.10 Together with the dualsin the left-right sense that have appeared having their origin in
the order of R, the previous notions have also another type of duality, so called in the
algebraical sense, resulting by the replacement of 0 with 1 and viceversa, to be compared,

b _
from thetable 1.1, thelaws 'A ' and ' A '. For example, the algebraical dual of o fis

a

defined like this;
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N f= A (% (1)

Bibliography

[1] Nicu Boboc, Gheorghe Bucur, Masura si capacitate (measure and Capacity, in Romanian),
Ed. stiintifica si enciclopedica, Bucuresti, 1985
[2] Miron Nicolescu, Analiza matematica (Mathematical Analysis, in Romanian), vol 1-3, Ed.

Tehnica, Bucuresti, 1957
(Received November 15, 1998)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

