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BINARY SIGNALS: NECESSARY AND SUFFICIENT CONDITIONS

OF PERIODICITY OF A POINT

SERBAN E. VLAD

Abstract. The (binary) signals are the models of the electrical signals from digital
electrical engineering. They are presented in two versions, discrete time and real time.

The periodicity of the points of the signals is introduced by analogy with the dynamical

systems theory. The paper gives necessary and sufficient conditions of periodicity of the
points of the signals.

1. Introduction

The asynchronous circuits from the digital electrical engineering are modeled by asyn-
chronous systems. An important special case of such a system consists in a Boolean function
Φ : {0, 1}n −→ {0, 1}n that iterates in discrete or real time, and the iterations do not happen
on all the coordinates Φ1, ...,Φn as in the usual dynamical systems theory (synchronicity),
but on some coordinates only (asynchronicity). The functions that the asynchronous sys-
tems work with (as inputs, states or outputs) are called (binary) signals and they represent
the model of the (two level) electrical signals. In order to study the periodicity of the asyn-
chronous systems, the study of the periodicity of the (values of the) signals is to be made
first and it proves to be very interesting by itself.

Roughly speaking, dynamical systems theory refers to periodic points and periodic orbits
(=signals in this case) and the paper deals with the adaptation of the first concept, without
getting to systems theory. Its aim is to give necessary and sufficient conditions of periodicity.

2. Preliminaries

Definition 2.1. The set B = {0, 1} is a field relative to ′⊕′, ′·′, the modulo 2 sum and
the product. A linear space structure is induced on Bn, n ≥ 1.

Definition 2.2. The topological structure of B and Bn is given by the discrete topology.

Notation 2.1. We denote with χA : R→ B the characteristic function of the set A ⊂ R :
∀t ∈ R,

χA(t) =

{
1, if t ∈ A,

0, otherwise
.

Notation 2.2. We use the notation N = {−1, 0, 1, ...}.
Definition 2.3. The discrete time signals are by definition the functions x̂ : N → Bn.

Their set is denoted by Ŝ(n).
The continuous time signals are the functions x : R→ Bn of the form ∀t ∈ R,

x(t) = µ · χ(−∞,t0)(t)⊕ x(t0) · χ[t0,t1)(t)⊕ ...⊕ x(tk) · χ[tk,tk+1)(t)⊕ ... (2.1)
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where µ ∈ Bn and tk ∈ R, k ∈ N is strictly increasing and unbounded from above. Their
set is denoted by S(n). µ is usually denoted by x(−∞ + 0) and is called the initial value
of x.

Remark 2.1. The signal x ∈ S(n) has the properties of existence ∀t ∈ R of the left limit
x(t − 0) ∈ Bn : ∃ε > 0,∀ξ ∈ (t − ε, t), x(ξ) = x(t − 0), of the right limit x(t + 0) ∈ Bn :
∃ε > 0,∀ξ ∈ (t, t+ ε), x(ξ) = x(t+ 0) and of right continuity: x(t) = x(t+ 0). Proving these
properties is easy and it was made in [10] for example. We shall use the property of right
continuity of x under the form ∀t ∈ R,∃ε > 0,∀ξ ∈ [t, t+ ε), x(ξ) = x(t).

Definition 2.4. The sets

Ôr(x̂) = {x̂(k)|k ∈ N },
Or(x) = {x(t)|t ∈ R}

are called the orbits of x̂, x.

Notation 2.3. For x̂ ∈ Ŝ(n), x ∈ S(n) and µ ∈ Ôr(x̂), ν ∈ Or(x), we use the notations

T̂x̂
µ = {k|k ∈ N , x̂(k) = µ},

Tx
ν = {t|t ∈ R, x(t) = ν}.

Lemma 2.4. Let µ ∈ Or(x) and t′ ∈ R. If (−∞, t′] ⊂ Tx
x(−∞+0), then Tx

µ ∩ [t′,∞) 6= ∅.

Proof. If µ = x(−∞+0), when t′ ∈ Tx
µ, we have Tx

µ∩[t′,∞) 6= ∅ true. And if µ 6= x(−∞+0),
when Tx

µ ∩ (−∞, t′] = ∅,Tx
µ 6= ∅, we get Tx

µ ⊂ (t′,∞), thus Tx
µ ∩ [t′,∞) 6= ∅. �

3. Periodic points

Definition 3.1. We consider the signals x̂ ∈ Ŝ(n), x ∈ S(n).

Let µ ∈ Ôr(x̂) and p ≥ 1. If

∀k ∈ T̂x̂
µ, {k + zp|z ∈ Z} ∩N ⊂ T̂x̂

µ, (3.1)

we say that µ is periodic, with the period p. The least p that fulfills (3.1) is called the
prime period of µ.

Let µ ∈ Or(x) and T > 0, t′ ∈ R such that

(−∞, t′] ⊂ Tx
x(−∞+0), (3.2)

∀t ∈ Tx
µ ∩ [t′,∞), {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ. (3.3)

Then µ is called periodic, with the period T. The least T with the property that t′ exists
such that (3.2), (3.3) are fulfilled is called the prime period of µ.

Lemma 3.1. a) Let x̂ ∈ Ŝ(n), µ ∈ Ôr(x̂), p ≥ 1 and k′ ∈ N . If

T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...} 6= ∅, (3.4)

∀k ∈ T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...},

{k + zp|z ∈ Z} ∩ {k′, k′ + 1, k′ + 2, ...} ⊂ T̂x̂
µ

(3.5)

then for any k ≥ k′ we have T̂x̂
µ ∩ {k, k + 1, ..., k + p− 1} 6= ∅.

b) x ∈ S(n), µ ∈ Or(x), T > 0, t′ ∈ R are given. If

Tx
µ ∩ [t′,∞) 6= ∅, (3.6)

∀t ∈ Tx
µ ∩ [t′,∞), {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ, (3.7)

then for any t ≥ t′, we have Tx
µ ∩ [t, t+ T ) 6= ∅.
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Proof. a) (3.4) allows us to define k′′ = min T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...} and we prove that

k′′ ∈ T̂x̂
µ ∩ {k′, k′ + 1, ..., k′ + p− 1}. If, against all reason, this would not be true, then we

would have k′′ ≥ k′ + p and

k′′ − p ∈ {k′′ + zp|z ∈ Z} ∩ {k′, k′ + 1, k′ + 2, ...}
(3.5)
⊂ T̂x̂

µ,

representing a contradiction with the definition of k′′.

From (3.5) we infer that {k′′, k′′ + p, k′′ + 2p, ...} ⊂ T̂x̂
µ ∩ {k′, k′ + 1, k′ + 2, ...}, meaning

that ∀k ≥ k′, T̂x̂
µ ∩ {k, k + 1, ..., k + p− 1} 6= ∅.

b) The request (3.6) allows defining t′′ = min Tx
µ∩ [t′,∞). We show that t′′ ∈ Tx

µ∩ [t′, t′+
T ). If, against all reason, this would not be true, then we would have t′′ ≥ t′+T. This means
that t′′ − T ≥ t′, thus

t′′ − T ∈ {t′′ + zT |z ∈ Z} ∩ [t′,∞)
(3.7)
⊂ Tx

µ,

contradiction with the definition of t′′.
By using (3.7) we get {t′′, t′′+T, t′′+2T, ...} ⊂ Tx

µ∩ [t′,∞). The statement of the Lemma
holds. �

4. Necessity conditions of periodicity

Theorem 4.1. Let x̂ ∈ Ŝ(n) non constant. For µ ∈ Ôr(x̂), p ≥ 1 we suppose that

∀k ∈ T̂x̂
µ, {k + zp|z ∈ Z} ∩N ⊂ T̂x̂

µ (4.1)

takes place. Then n1, n2, ..., nk1 ∈ {−1, 0, ..., p− 2}, k1 ≥ 1, exist such that

T̂x̂
µ =

⋃
k∈N

{n1 + kp, n2 + kp, ..., nk1 + kp} (4.2)

holds.

Proof. We have T̂x̂
µ 6= ∅. From Lemma 3.1 a), written for k = k′ = −1, we infer T̂x̂

µ ∩
{−1, 0, ..., p− 2} 6= ∅, thus the existence of n1, n2, ..., nk1 , k1 ≥ 1 with

{n1, n2, ..., nk1} = T̂x̂
µ ∩ {−1, 0, ..., p− 2} (4.3)

true results.
We prove T̂x̂

µ ⊂
⋃
k∈N

{n1 + kp, n2 + kp, ..., nk1 + kp} and let k′ ∈ T̂x̂
µ arbitrary. A finite

sequence k′, k′−p, ..., k′−kp ∈ T̂x̂
µ exists from (4.1), k ≥ 0, with the property that k′−kp ∈

{−1, 0, ..., p− 2}, thus, from (4.3), j ∈ {1, ..., k1} exists with k′−kp = nj . We have obtained

that k′ = nj + kp ∈
⋃
k∈N

{n1 + kp, n2 + kp, ..., nk1 + kp}.

We prove
⋃
k∈N

{n1 +kp, n2 +kp, ..., nk1 +kp} ⊂ T̂x̂
µ and let for this k′ ∈

⋃
k∈N

{n1 +kp, n2 +

kp, ..., nk1 +kp} arbitrary. Some k ∈ N and some j ∈ {1, ..., k1} exist such that k′ = nj +kp.

We conclude, as nj
(4.3)
∈ T̂x̂

µ, that

k′ ∈ {nj + zp|z ∈ Z} ∩N
(4.1)
⊂ T̂x̂

µ.

(4.2) holds. �

Remark 4.1. If x̂ is constant, then the previous Theorem takes the form Ôr(x̂) =

{µ}, p = 1, k1 = 1, n1 = −1 and (4.2) becomes T̂x̂
µ = N .
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Theorem 4.2. The non constant signal x ∈ S(n) is considered and let the point µ =
x(−∞+ 0) be given, together with T > 0, t′ ∈ R such that

(−∞, t′] ⊂ Tx
µ, (4.4)

∀t ∈ Tx
µ ∩ [t′,∞), {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ (4.5)

hold. Then t0, a1, b1, a2, b2, ..., ak1 , bk1 ∈ R, k1 ≥ 1 exist such that

∀t < t0, x(t) = µ, (4.6)

x(t0) 6= µ, (4.7)

t0 < a1 < b1 < a2 < b2 < ... < ak1 < bk1 = t0 + T, (4.8)

[a1, b1) ∪ [a2, b2) ∪ ... ∪ [ak1 , bk1) = Tx
µ ∩ [t0, t0 + T ), (4.9)

Tx
µ =

(−∞, t0) ∪
⋃
k∈N

([a1 + kT, b1 + kT ) ∪ [a2 + kT, b2 + kT ) ∪ ...

... ∪ [ak1 + kT, bk1 + kT ))
(4.10)

hold.

Proof. A t0 like at (4.6), (4.7) exists because x is not constant and by comparing (4.4) with
(4.6), (4.7) we infer t′ < t0. We have from Lemma 2.4 that Tx

µ ∩ [t′,∞) 6= ∅, thus the fact
that Tx

µ ∩ [t0, t0 + T ) 6= ∅ follows from Lemma 3.1 b).
We have on one hand the existence of ε > 0 with

∀t ∈ [t0, t0 + ε), x(t) = x(t0)
(4.7)

6= µ, (4.11)

showing that a1 = min Tx
µ∩ [t0, t0 +T ) > t0. On the other hand we must show the existence

of bk1 like at (4.8), (4.9). Indeed, we suppose against all reason that such a bk1 does not
exist and consequently that ak1 < bk1 < t0 + T, [ak1 , bk1) ⊂ Tx

µ and [bk1 , t0 + T ) ∩Tx
µ = ∅.

Let then t ∈ [max{bk1 , t′ + T}, t0 + T ) arbitrary. We get

bk1 ≤ max{bk1 , t′ + T} ≤ t < t0 + T

i.e. t /∈ Tx
µ. We have also t > t− T ≥ t′ and t− T ∈ [t′, t0) ⊂ Tx

µ, thus

t ∈ {t− T + zT |z ∈ Z} ∩ [t′,∞)
(4.5)
⊂ Tx

µ,

contradiction. The existence of t0, a1, b1, a2, b2, ..., ak1 , bk1 like at (4.6),..., (4.9) is proved.

We prove Tx
µ ⊂ (−∞, t0)∪

⋃
k∈N

([a1+kT, b1+kT )∪[a2+kT, b2+kT )∪...∪[ak1+kT, bk1+kT ))

and let t ∈ Tx
µ arbitrary. If t < t0 the inclusion is obvious (from (4.6)), so we can suppose now

that t ≥ t0. We get from (4.5) the existence of a finite sequence t, t−T, ..., t−kT ∈ Tx
µ, k ≥ 0

with the property that t−kT ∈ [t0, t0+T ). We infer from (4.9) the existence of j ∈ {1, ..., k1}
with t − kT ∈ [aj , bj) and we conclude that t ∈ [aj + kT, bj + kT ) ∈ (−∞, t0) ∪

⋃
k∈N

([a1 +

kT, b1 + kT ) ∪ [a2 + kT, b2 + kT ) ∪ ... ∪ [ak1 + kT, bk1 + kT )).

We prove (−∞, t0) ∪
⋃
k∈N

([a1 + kT, b1 + kT ) ∪ [a2 + kT, b2 + kT ) ∪ ... ∪ [ak1 + kT, bk1 +

kT )) ⊂ Tx
µ. The fact that (−∞, t0) ⊂ Tx

µ coincides with (4.6) and we take an arbitrary

t ∈
⋃
k∈N

([a1+kT, b1+kT )∪[a2+kT, b2+kT )∪...∪[ak1 +kT, bk1 +kT )). Some k ∈ N and some

j ∈ {1, ..., k1} exist with t ∈ [aj + kT, bj + kT ), thus t− kT ∈ [aj , bj) ⊂ Tx
µ ∩ [t0, t0 + T ) ⊂

Tx
µ ∩ [t′,∞). In particular we can see that t ≥ t− kT ≥ t′. We have

t ∈ {t− kT + zT |z ∈ Z} ∩ [t′,∞)
(4.5)
⊂ Tx

µ.
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(4.10) is proved. �

Theorem 4.3. The signal x ∈ S(n) is not constant and let the point µ ∈ Or(x), µ 6=
x(−∞+ 0), as well as T > 0, t′ ∈ R with

(−∞, t′] ⊂ Tx
x(−∞+0), (4.12)

∀t ∈ Tx
µ ∩ [t′,∞), {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ. (4.13)

Then t0, a1, b1, a2, b2, ..., ak1 , bk1 ∈ R, k1 ≥ 1 exist such that

∀t < t0, x(t) = x(−∞+ 0), (4.14)

x(t0) 6= x(−∞+ 0), (4.15)

t0 ≤ a1 < b1 < a2 < b2 < ... < ak1 < bk1 < t0 + T, (4.16)

[a1, b1) ∪ [a2, b2) ∪ ... ∪ [ak1 , bk1) = Tx
µ ∩ [t0, t0 + T ), (4.17)

Tx
µ =

⋃
k∈N

([a1 + kT, b1 + kT ) ∪ [a2 + kT, b2 + kT ) ∪ ...

... ∪ [ak1 + kT, bk1 + kT ))
(4.18)

are fulfilled.

Proof. As x is not constant we get the existence of t0 like in (4.14), (4.15) and if we take in
consideration (4.12) also, we get t′ < t0.

We have from Lemma 2.4 that Tx
µ ∩ [t′,∞) 6= ∅, thus the fact that Tx

µ ∩ [t0, t0 + T ) 6= ∅
results from Lemma 3.1 b). We show that bk1 < t0 + T and for this we suppose against
all reason that bk1 = t0 + T. Let t ∈ [max{ak1 , t′ + T}, t0 + T ) arbitrary, fixed. We have
t > t− T ≥ t′ and t ∈ [ak1 , t0 + T ) ⊂ Tx

µ, thus we can apply (4.13):

t− T ∈ {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx
µ.

Since t− T ∈ [t′, t0), we have reached the contradiction

µ = x(t) = x(t− T ) = x(−∞+ 0).

The fact that a1, b1, a2, b2, ..., ak1 , bk1 exist making (4.16), (4.17) true is proved.
The proof of the equation (4.18) is made like in the proof of Theorem 4.2. �

Example 4.4. We take x ∈ S(1),

x(t) = χ(−∞,0)(t)⊕ χ[1,2)(t)⊕ χ[3,5)(t)⊕ χ[6,7)(t)⊕ χ[8,10)(t)⊕ χ[11,12)(t)⊕ ...
In this example, see Theorem 4.2, µ = 1, t0 = 0, k1 = 2, T = 5 and t′ ∈ [−2, 0).

5. Sufficiency conditions of periodicity

Theorem 5.1. Let x̂ ∈ Ŝ(n), µ ∈ Ôr(x̂), p ≥ 1 and n1, n2, ..., nk1 ∈ {−1, 0, ..., p − 2},
k1 ≥ 1, such that

T̂x̂
µ =

⋃
k∈N

{n1 + kp, n2 + kp, ..., nk1 + kp}. (5.1)

We have

∀k ∈ T̂x̂
µ, {k + zp|z ∈ Z} ∩N ⊂ T̂x̂

µ. (5.2)

Proof. We take an arbitrary k′ ∈ T̂x̂
µ, for which j ∈ {1, ..., k1} and k ∈ N exist with

k′ = nj + kp. We have

{nj + kp+ zp|z ∈ Z} ∩N = {nj , nj + p, nj + 2p, ...}
(5.1)
⊂ T̂x̂

µ.

�
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Theorem 5.2. The signal x ∈ S(n) is given with µ = x(−∞+0), T > 0 and the numbers
t0, a1, b1, a2, b2, ..., ak1 , bk1 ∈ R, k1 ≥ 1 that fulfill

t0 < a1 < b1 < ... < ak1 < bk1 = t0 + T, (5.3)

Tx
µ = (−∞, t0) ∪

⋃
k∈N

([a1 + kT, b1 + kT ) ∪ ... ∪ [ak1 + kT, bk1 + kT )). (5.4)

For any t′ ∈ [ak1 − T, t0), the properties

(−∞, t′] ⊂ Tx
µ, (5.5)

∀t ∈ Tx
µ ∩ [t′,∞), {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ (5.6)

hold.

Proof. Let t′ ∈ [ak1 − T, t0) arbitrary. From

(−∞, t′] ⊂ (−∞, t0) ⊂ Tx
µ

we infer (5.5).
We have

Tx
µ ∩ [t′,∞) = [t′, t0) ∪ [a1, b1) ∪ ... ∪ [ak1 , bk1) ∪ [a1 + T, b1 + T ) ∪ ...

and we take an arbitrary t ∈ Tx
µ ∩ [t′,∞). We have several possibilities.

a) Case t ∈ [t′, t0), when

{t+ zT |z ∈ Z} ∩ [t′,∞) = {t, t+ T, t+ 2T, ...} ⊂

⊂ [t′, t0) ∪ [t′ + T, bk1) ∪ [t′ + 2T, bk1 + T ) ∪ ... ⊂
⊂ (−∞, t0) ∪ [ak1 , bk1) ∪ [ak1 + T, bk1 + T ) ∪ ... ⊂ Tx

µ.

We have used the fact that

t− T < t0 − T < ak1 − T ≤ t′ ≤ t < t0,

thus the least term in {t+ zT |z ∈ Z} ∩ [t′,∞) is t indeed.
b) Case t ∈ [aj + kT, bj + kT ), k ≥ 0, j ∈ {1, 2, ..., k1 − 1},

{t+ zT |z ∈ Z} ∩ [t′,∞) = {t+ (−k)T, t+ (−k + 1)T, t+ (−k + 2)T, ...} ⊂

⊂ [aj , bj) ∪ [aj + T, bj + T ) ∪ [aj + 2T, bj + 2T ) ∪ ... ⊂ Tx
µ

and we have used

t+ (−k − 1)T < t′ < t0 < aj ≤ t+ (−k)T < bj < t′ + T.

c) Case t ∈ [ak1 + kT, bk1 + kT ), k ≥ 0 when there are two subcases,
c.1) Case t ∈ [t′ + (k + 1)T, bk1 + kT ),

{t+ zT |z ∈ Z} ∩ [t′,∞) = {t+ (−k − 1)T, t+ (−k)T, t+ (−k + 1)T, ...} ⊂

⊂ [t′, t0) ∪ [t′ + T, bk1) ∪ [t′ + 2T, bk1 + T ) ∪ ... ⊂
⊂ (−∞, t0) ∪ [ak1 , bk1) ∪ [ak1 + T, bk1 + T ) ∪ ... ⊂ Tx

µ

and we have used the fact that

t+ (−k − 2)T < t0 − T < ak1 − T ≤ t′ ≤ t+ (−k − 1)T < t0.

c.2) Case t ∈ [ak1 + kT, t′ + (k + 1)T ),

{t+ zT |z ∈ Z} ∩ [t′,∞) = {t+ (−k)T, t+ (−k + 1)T, t+ (−k + 2)T, ...} ⊂

⊂ [ak1 , t
′ + T ) ∪ [ak1 + T, t′ + 2T ) ∪ [ak1 + 2T, t′ + 3T ) ∪ ... ⊂

⊂ [ak1 , bk1) ∪ [ak1 + T, bk1 + T ) ∪ [ak1 + 2T, bk1 + 2T ) ∪ ... ⊂ Tx
µ
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and we have used

t+ (−k − 1)T < t′ < t0 < ak1 ≤ t+ (−k)T < t′ + T.

(5.6) holds. �

Theorem 5.3. Let x, µ ∈ Or(x), µ 6= x(−∞+0), T > 0 and the numbers t0, a1, b1, a2, b2,
..., ak1 , bk1 ∈ R, k1 ≥ 1, with the property that

∀t < t0, x(t) = x(−∞+ 0), (5.7)

x(t0) 6= x(−∞+ 0), (5.8)

bk1 − T < t0 ≤ a1 < b1 < ... < ak1 < bk1 , (5.9)

Tx
µ =

⋃
k∈N

([a1 + kT, b1 + kT ) ∪ ... ∪ [ak1 + kT, bk1 + kT )). (5.10)

For any t′ ∈ [bk1 − T, t0), we have

(−∞, t′] ⊂ Tx
x(−∞+0), (5.11)

∀t ∈ Tx
µ ∩ [t′,∞), {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ. (5.12)

Proof. Let t′ ∈ [bk1 − T, t0) be arbitrary, for which

(−∞, t′] ⊂ (−∞, t0) ⊂ Tx
x(−∞+0),

thus (5.11) is true.
We get Tx

µ ∩ [t′,∞) = Tx
µ and we take an arbitrary t ∈ Tx

µ ∩ [t′,∞). Then k ≥ 0 and
j ∈ {1, 2, ..., k1} exist such that t ∈ [aj + kT, bj + kT ). We have:

{t+ zT |z ∈ Z} ∩ [t′,∞) = {t+ (−k)T, t+ (−k + 1)T, t+ (−k + 2)T, ...} ⊂

⊂ [aj , bj) ∪ [aj + T, bj + T ) ∪ [aj + 2T, bj + 2T ) ∪ ... ⊂ Tx
µ,

where

t+ (−k − 1)T < t′ < t0 ≤ aj ≤ t+ (−k)T < bj ≤ t′ + T.

(5.12) holds. �

6. A special case

Theorem 6.1. Let x̂ ∈ Ŝ(n), µ ∈ Ôr(x̂), p ≥ 1 and n1 ∈ {−1, 0, ..., p− 2} such that

T̂x̂
µ = {n1, n1 + p, n1 + 2p, ...}. (6.1)

Then
a) µ is a periodic point of x̂ with the period p :

∀k ∈ T̂x̂
µ, {k + zp|z ∈ Z} ∩N ⊂ T̂x̂

µ; (6.2)

b) p is the prime period of µ : for any p′ ≥ 1 with

∀k ∈ T̂x̂
µ, {k + zp′|z ∈ Z} ∩N ⊂ T̂x̂

µ, (6.3)

we infer p′ ≥ p.

Proof. a) This is a special case of Theorem 5.1, written for k1 = 1.
b) We suppose against all reason that p′ ≥ 1 exists with p′ < p and (6.3) is true. As

n1 ∈ T̂x̂
µ, we obtain that n1 + p′ ∈ T̂x̂

µ, contradiction with (6.1). �
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Theorem 6.2. Let x ∈ S(n), µ = x(−∞+ 0), T > 0 and the points t0, a1, b1 ∈ R having
the property that

t0 < a1 < b1 = t0 + T, (6.4)

Tx
µ = (−∞, t0) ∪ [a1, b1) ∪ [a1 + T, b1 + T ) ∪ [a1 + 2T, b1 + 2T ) ∪ ... (6.5)

hold.
a) For any t′ ∈ [a1 − T, t0), the properties

(−∞, t′] ⊂ Tx
µ, (6.6)

∀t ∈ Tx
µ ∩ [t′,∞), {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ (6.7)

are fulfilled.
b) For any T ′ > 0, t′′ ∈ [a1 − T, t0) such that

(−∞, t′′] ⊂ Tx
µ, (6.8)

∀t ∈ Tx
µ ∩ [t′′,∞), {t+ zT ′|z ∈ Z} ∩ [t′′,∞) ⊂ Tx

µ, (6.9)

we have T ′ ≥ T.

Proof. a) This is a special case of Theorem 5.2, written for k1 = 1.
b) We suppose against all reason that T ′ < T. Let us note in the beginning that

max{a1, b1 − T ′} < min{b1, a1 + T − T ′}

is true, since all of a1 < b1, a1 < a1 + T − T ′, b1 − T ′ < b1, b1 − T ′ < a1 + T − T ′ hold. We
infer that any t ∈ [max{a1, b1 − T ′},min{b1, a1 + T − T ′}) fulfills t ∈ [a1, b1) ⊂ Tx

µ ∩ [t′′,∞)
and

t+ T ′ ∈ {t+ zT ′|z ∈ Z} ∩ [t′′,∞)
(6.9)
⊂ Tx

µ,

and on the other hand we have

b1 ≤ max{a1 + T ′, b1} ≤ t+ T ′ < min{b1 + T ′, a1 + T} ≤ a1 + T,

meaning that t+ T ′ /∈ Tx
µ, contradiction. We conclude that T ′ ≥ T. �

Theorem 6.3. Let x ∈ S(n), µ ∈ Or(x), µ 6= x(−∞+0), T > 0 and the points t0, a1, b1 ∈
R with the property that

∀t < t0, x(t) = x(−∞+ 0), (6.10)

x(t0) 6= x(−∞+ 0), (6.11)

b1 − T < t0 ≤ a1 < b1, (6.12)

Tx
µ = [a1, b1) ∪ [a1 + T, b1 + T ) ∪ [a1 + 2T, b1 + 2T ) ∪ ... (6.13)

hold.
a) For any t′ ∈ [b1 − T, t0), the following properties

(−∞, t′] ⊂ Tx
x(−∞+0), (6.14)

∀t ∈ Tx
µ ∩ [t′,∞), {t+ zT |z ∈ Z} ∩ [t′,∞) ⊂ Tx

µ (6.15)

are fulfilled.
b) For any T ′ > 0, t′′ ∈ [b1 − T, t0) such that

(−∞, t′′] ⊂ Tx
x(−∞+0), (6.16)

∀t ∈ Tx
µ ∩ [t′′,∞), {t+ zT ′|z ∈ Z} ∩ [t′′,∞) ⊂ Tx

µ, (6.17)

we have T ′ ≥ T.
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Proof. a) This is a special case of Theorem 5.3, written for k1 = 1.
b) We suppose against all reason now that T ′ < T. Let us notice the truth of

max{a1, b1 − T ′} < min{b1, a1 + T − T ′}.
We infer that t ∈ [max{a1, b1−T ′},min{b1, a1 +T −T ′}) satisfies t ∈ [a1, b1) ⊂ Tx

µ∩ [t′′,∞)
and

t+ T ′ ∈ {t+ zT ′|z ∈ Z} ∩ [t′′,∞)
(6.17)
⊂ Tx

µ,

thus t+ T ′ ∈ Tx
µ; on the other hand

b1 ≤ max{a1 + T ′, b1} ≤ t+ T ′ < min{b1 + T ′, a1 + T} ≤ a1 + T,

wherefrom t+ T ′ /∈ Tx
µ. We have obtained a contradiction proving that T ′ ≥ T. �

Remark 6.1. Theorems 6.2, 6.3 represent the same phenomenon and their proof is
formally the same: when Tx

µ has one of the forms (6.5), (6.13), the prime period of µ is T .
The difference between the Theorems is given by the fact that µ = x(−∞ + 0) in the first
case and µ 6= x(−∞+ 0) in the second case.
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