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Abstract

The paper introduces the concept of asynchronous pseudo-system. Its
purpose is to correct/generalize/continue the study of the asynchronous
systems (the models of the asynchronous circuits) that has been started
in [1], [2].
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1 Introduction
The study of the asynchronous systems [1], [2] was generated by the mathemat-
ical models of the asynchronous circuits from the digital electrical engineering.
What we have proposed there is that starting from the very general notion
of system (non-deterministic, in the input-output sense), by the addition of
de¯nitions=axioms to rediscover one by one the properties of the models of
the asynchronous circuits. Roughly speaking, the signals are the di®erentiable,
right continuous R ! f0; 1gn functions with initial values (i.e. with limit when
t ! ¡1) and an (asynchronous) system is a multi-valued function that asso-
ciates to a signal R ! f0; 1gm called (admissible) input, a non-empty set of
R ! f0; 1gn signals, called (possible) states.

The purpose of this work is that of correcting/improving/generalizing the
frame of these papers and the main concept is that of pseudo-system, represent-
ing a multi-valued function from di®erentiable right continuous R ! f0; 1gm

1



functions called inputs to (empty or non-empty) sets of di®erentiable right con-
tinuous R ! f0; 1gn functions, called states. In other words, we have relaxed
two conditions relative to the systems:

- the functions R ! f0; 1gn without limit when t ! ¡1 (without initial
values) are accepted

- to an input u : R ! f0; 1gm there may correspond an empty set of states,
i.e. we accept the existence of non-admissible inputs.

We prefer this approach in order to underline the duality between the initial
states and initial time on one hand and the ¯nal states and ¯nal time, on the
other hand. Besides, we must take into account the fact that very simple circuits
like the RS latch for example have non-admissible inputs (R ¢ S = 1).

We de¯ne and characterize the pseudo-systems, the initial and the ¯nal
states, the initial and the ¯nal time, the initial and the ¯nal state functions, the
pseudo-subsystems, the dual pseudo-systems, the inverse pseudo-systems, the
direct product, the parallel and the serial connection, the complement, the inter-
section and the reunion of the pseudo-systems. The conclusions are expressed in
the last section, where we de¯ne the systems as special cases of pseudo-systems
whose admissible inputs and possible states are signals and we also show how
the previous topics related with the pseudo-systems are particularized to the
case of the systems.

We have written in full details all the dual results. The proofs are generally
elementary and some of them have been omitted, some of them have been
included for the reason of making the exposure as readable as possible. The
dual proofs have been omitted.

2 Di®erentiable functions. Signals
We note with B = f0; 1g the Boole algebra with two elements and with ÂA :
R ! B the characteristic function of the set A ½ R. The di®erentiable functions
x : R ! Bn are by de¯nition of the form:

x(t) = ::: © x(t¡1) ¢ Âft¡1g(t) © x(
t¡1 + t0

2
) ¢ Â(t¡1;t0)(t)© (1)

©x(t0) ¢ Âft0g(t) © x(
t0 + t1

2
) ¢ Â(t0;t1)(t) © x(t1) ¢ Âft1g(t) © :::

where ::: < t¡1 < t0 < t1 < ::: is an upper and lower unbounded sequence and
R is the dense (8t 2 R;8t0 2 R; t < t0 =) 9t" 2 R; t < t" < t0) and linear
(i.e. totally ordered: 8t 2 R;8t0 2 R; t · t0 or t0 · t) time set. If in (1)
x(tk) = x( tk+tk+1

2 ); k 2 Z, then x is right continuous and it is of the form

x(t) = ::: © x(t¡1) ¢ Â[t¡1;t0)(t) © x(t0) ¢ Â[t0;t1)(t) © :::

The set of the (n-dimensional) di®erentiable, right continuous functions x is
noted with eS(n):1

1The di®erentiable left continuous functions

x(t) = :::© x(t0) ¢ Â(t¡1;t0](t)© x(t1) ¢ Â(t0;t1](t)© :::
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We consider the next properties of some x 2 eS(n) :

9¹ 2 Bn;9t0 2 R;8t < t0; x(t) = ¹ (2)

9¹0 2 Bn;9tf 2 R;8t > tf ; x(t) = ¹0 (3)

where in (2) 9¹ 2 Bn;9t0 2 R commute and in (3) 9¹0 2 Bn;9tf 2 R commute
also.

If (2) is ful¯lled:
- ¹ is unique and is called the initial value of x. We shall note it sometimes

with lim
t!¡1

x(t), x(¡1 + 0) or with x(t0 ¡ 0)

- t0 is not unique, since any t00 < t0 satis¯es (2) too. It is called the initial
time of x.

If (3) is ful¯lled:
- ¹0 is unique and is called the ¯nal value of x. The usual notations are

lim
t!1

x(t), x(tf ) and x(1 ¡ 0)
- tf is not unique, because any t0f > tf satis¯es (3) too. It is called the ¯nal

time of x.
We call (n¡dimensional) signal a function x 2 eS(n) with the property that

(2) is satis¯ed. The signals are represented under the form:

x(t) = x(t0 ¡ 0) ¢ Â(¡1;t0)(t) © x(t0) ¢ Â[t0;t1)(t) © x(t1) ¢ Â[t1;t2)(t) © :::

where t0 < t1 < t2 < ::: is unbounded. The set of the signals is noted with S(n).
Dually, we call (n¡dimensional) signal¤ a function x 2 eS(n) with the prop-

erty that (3) is true and such functions are represented under the form

x(t) = ::: © x(t¡2) ¢ Â[t¡2;t¡1)(t) © x(t¡1) ¢ Â[t¡1;t0)(t) © x(t0) ¢ Â[t0;1)(t)

where ::: < t¡2 < t¡1 < t0 is unbounded. The set of the signals¤ is noted with
S(n)¤.

We shall often write eS; S; S¤ instead of eS(1); S(1); S(1)¤.
We use the notations P (L) = fKjK ½ Lg and P ¤(L) = fKjK ½ L;K 6= ;g,

where L is any of Bn; eS(n); S(n); S(n)¤.

3 Pseudo-systems

De¯nition 3.1 The functions f : eS(m) ! P (eS(n)) are called (asynchronous)
pseudo-systems. The elements u 2 eS(m) are called inputs (in the pseudo-
system): admissible if f(u) 6= ; and non-admissible otherwise, while the ele-
ments x 2 f(u) are called (possible) states (of the pseudo-system), or (possible)
outputs (from the pseudo-system).

give an equivalent manner of writing this paper. In previous works we have associated non-
anticipation with right continuity and anticipation with left continuity.
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Remark 3.2 The pseudo-systems are multi-valued functions that associate to
each input u the set of the possible states f(u), the origin of the concept being
situated in the modeling of the asynchronous circuits from digital engineering.

A non-admissible input, i.e. an input for which f(u) = ;, is considered a
cause of no e®ect that can be expressed by f and the null pseudo-system that
is de¯ned by 8u 2 eS(m); f(u) = ; represents the limit situation when f does
not express a determination between the elements of eS(m) and the elements of
eS(n) (f models nothing). The other limit situation is represented by the total
pseudo-system, de¯ned by 8u 2 eS(m); f(u) = eS(n) (f models every circuit with
m-dimensional inputs and n-dimensional outputs); for this pseudo-system, all
the inputs are admissible.

The multi-valued character of the cause-e®ect association is due to statistical
°uctuations in the fabrication process, variations in ambient temperature, power
supply etc.

In applications, the pseudo-systems are de¯ned sometimes not explicitly, like
before, but implicitly, by a system of equations and inequalities where u is given,
t is the time variable, x is the unknown and the temporal logical connectors
depending on them are di®erentiable in general (they are not right continuous).

Example 3.3 The pseudo-system f : eS ! P (eS) is de¯ned by the double in-
equality \

»2[t¡d;t)

u(») · x(t) ·
[

»2[t¡d;t)

u(») (4)

where d > 0. When u; x 2 eS, the connectors
T

»2[t¡d;t)
u(») and

S
»2[t¡d;t)

u(») are

just di®erentiable, they are not right continuous.

4 Initial states and ¯nal states
Remark 4.1 We state the next properties of the pseudo-system f :

8u 2 eS(m);8x 2 f(u);9¹ 2 Bn;9t0 2 R;8t < t0; x(t) = ¹ (5)

8u 2 eS(m);9¹ 2 Bn;8x 2 f(u);9t0 2 R;8t < t0; x(t) = ¹ (6)

9¹ 2 Bn;8u 2 eS(m);8x 2 f(u);9t0 2 R;8t < t0; x(t) = ¹ (7)

8u 2 eS(m);8x 2 f(u);9¹ 2 Bn;9tf 2 R;8t > tf ; x(t) = ¹ (8)

8u 2 eS(m);9¹ 2 Bn;8x 2 f(u);9tf 2 R;8t > tf ; x(t) = ¹ (9)

9¹ 2 Bn;8u 2 eS(m);8x 2 f(u);9tf 2 R;8t > tf ; x(t) = ¹ (10)

where in (5) ¹ and t0 depend on x only, thus 9¹ 2 Bn;9t0 2 R commute and
similarly for ¹ and tf in (8). We observe the dualities between (5) and (8);
(6) and (9); (7) and (10) and on the other hand we remark the truth of the
implications

(7) =) (6) =) (5)
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(10) =) (9) =) (8)

If f is the null pseudo-system, it ful¯lls trivially all the properties (5),...,(10).
If (5) is true with f non-null, it de¯nes a partial function eS(n) ! Bn that
associates to each x 2 S

u2eS(m)

f(u) its initial value ¹. If (6) is true with f non-

null, it de¯nes a partial function eS(m) ! Bn that associates to each admissible
input u the common initial value ¹ of all x 2 f(u). Dually, if f is non-null and
(8), (9) are true, they de¯ne two partial functions eS(n) ! Bn and eS(m) ! Bn.

If f is null, any ¹ 2 Bn makes (7) and (10) true; otherwise, the value of ¹
is uniquely de¯ned by either of (7) and (10).

De¯nition 4.2 If f satis¯es (5), we say that it has initial states. The vectors
¹ are called in this case (the) initial states (of f), or (the) initial values of the
states (of f).

De¯nition 4.3 We suppose that f satis¯es (6). We say in this situation that
it has race-free, or delay-insensitive initial states and the initial states ¹ are
called race-free, or delay-insensitive themselves.

De¯nition 4.4 When f satis¯es (7), we use to say that it has a (constant)
initial state ¹. We say in this case that f is initialized and that ¹ is its (constant)
initial state.

De¯nition 4.5 If f satis¯es (8), it is called absolutely stable and we also say
that it has ¯nal states. The vectors ¹ have in this case the name of ¯nal states
(of f), or of ¯nal values of the states (of f), or of steady states (of f), or of
steady values of the states (of f).

De¯nition 4.6 If f ful¯lls the property (9), it is called absolutely race-free
stable, or absolutely delay-insensitive and we also say that it has race-free ¯nal
states. The ¯nal states ¹ are called in this case race-free, or delay-insensitive.

De¯nition 4.7 We suppose that the pseudo-system f satis¯es (10). Then it is
called absolutely constantly stable or equivalently we say that it has a (constant)
¯nal state. The vector ¹ is called in this situation (constant) ¯nal state.

Remark 4.8 The previous terminology is related with the dualities initial-¯nal,
initialized-absolutely stable as well as with hardware engineering. In hardware
engineering, 'race' means: 'which coordinate of x switches ¯rst is the winner' or
perhaps 'several ways to go' and in this case 'race-free' means 'one way to go';
and delay-insensitivity means (vaguely) 'for any °uctuations in the fabrication
process', see Remark 3.2.

5 Initial time and ¯nal time
Remark 5.1 We state the next properties on the pseudo-system f :

8u 2 eS(m);8x 2 f(u) \ S(n);9¹ 2 Bn;9t0 2 R;8t < t0; x(t) = ¹ (11)
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8u 2 eS(m);9t0 2 R;8x 2 f(u) \ S(n);9¹ 2 Bn;8t < t0; x(t) = ¹ (12)

9t0 2 R;8u 2 eS(m);8x 2 f(u) \ S(n);9¹ 2 Bn;8t < t0; x(t) = ¹ (13)

8u 2 eS(m);8x 2 f(u) \ S(n)¤;9¹ 2 Bn;9tf 2 R;8t > tf ; x(t) = ¹ (14)

8u 2 eS(m);9tf 2 R;8x 2 f(u) \ S(n)¤;9¹ 2 Bn;8t > tf ; x(t) = ¹ (15)

9tf 2 R;8u 2 eS(m);8x 2 f(u) \ S(n)¤;9¹ 2 Bn;8t > tf ; x(t) = ¹ (16)

where in (11) ¹ and t0 depend on x only, making 9¹ 2 Bn;9t0 2 R commute
and the situation is similar for ¹ and tf in (14).

The properties (11) and (14) are ful¯lled by all the pseudo-systems and they
are present here for the symmetry of the exposure only.

The dualities between (11) and (14); (12) and (15); (13) and (16) take place
and the next implications hold:

(13) =) (12) =) (11)

(16) =) (15) =) (14)

If f is the null pseudo-system or, more generally, if in one of (11),...,(13)
8u 2 eS(m); f(u)\S(n) = ;, that property is trivially ful¯lled. Here the similarity
with Remark 4.1 ends, since de¯ning a partial function eS(n) ! R for example
in the case of (11) associating to each state x 2 f(u) \ S(n) its initial time is
not quite natural. Reasoning is the same for the ¯nal time.

De¯nition 5.2 If f satis¯es (11), we say that it has unbounded initial time
and any t0 satisfying this property is called unbounded initial time (instant).

De¯nition 5.3 Let f ful¯lling the property (12). We say that it has bounded
initial time and any t0 making this property true is called bounded initial time
(instant).

De¯nition 5.4 When f satis¯es (13), we use to say that it has ¯x, or universal
initial time and any t0 ful¯lling (13) is called ¯x (or universal) initial time
(instant).

De¯nition 5.5 We suppose that f satis¯es (14). Then we say that it has un-
bounded ¯nal time and any tf satisfying this property is called unbounded ¯nal
time (instant).

De¯nition 5.6 If f ful¯lls the property (15), we say that it has bounded ¯nal
time. Any number tf satisfying (15) is called bounded ¯nal time (instant).

De¯nition 5.7 We suppose that the pseudo-system f satis¯es the property
(16). Then we say that it has ¯x, or universal ¯nal time and any number
tf satisfying (16) is called ¯x, or universal ¯nal time (instant).
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Theorem 5.8 If the pseudo-system f has initial states, then the next non-
exclusive possibilities exist:

a) f has initial states and unbounded initial time

8u 2 eS(m);8x 2 f(u);9¹ 2 Bn;9t0 2 R;8t < t0; x(t) = ¹

where ¹ and t0 depend on x only, thus 9¹ 2 Bn;9t0 2 R commute
b) f has initial states and bounded initial time

8u 2 eS(m);9t0 2 R;8x 2 f(u);9¹ 2 Bn;8t < t0; x(t) = ¹

c) f has initial states and ¯x initial time

9t0 2 R;8u 2 eS(m);8x 2 f(u);9¹ 2 Bn;8t < t0; x(t) = ¹

d) f has race-free initial states and unbounded initial time

8u 2 eS(m);9¹ 2 Bn;8x 2 f(u);9t0 2 R;8t < t0; x(t) = ¹

e) f has race-free initial states and bounded initial time

8u 2 eS(m);9¹ 2 Bn;9t0 2 R;8x 2 f(u);8t < t0; x(t) = ¹

where ¹ and t0 depend on u only, thus 9¹ 2 Bn;9t0 2 R commute
f) f has race-free initial states and ¯x initial time

9t0 2 R;8u 2 eS(m);9¹ 2 Bn;8x 2 f(u);8t < t0; x(t) = ¹

g) f has a constant initial state and unbounded initial time

9¹ 2 Bn;8u 2 eS(m);8x 2 f(u);9t0 2 R;8t < t0; x(t) = ¹

h) f has a constant initial state and bounded initial time

9¹ 2 Bn;8u 2 eS(m);9t0 2 R;8x 2 f(u);8t < t0; x(t) = ¹

i) f has a constant initial state and ¯x initial time

9¹ 2 Bn;9t0 2 R;8u 2 eS(m);8x 2 f(u);8t < t0; x(t) = ¹

where 9¹ 2 Bn;9t0 2 R commute.

Proof. e) We must show that the conjunction of (6) and (12) on one hand
and

8u 2 eS(m);9¹ 2 Bn;9t0 2 R;8x 2 f(u);8t < t0; x(t) = ¹ (17)

where ¹ and t0 depend on u only (making 9¹ 2 Bn;9t0 2 R commute) on the
other hand - are equivalent. This fact is obvious if f is null, thus we can suppose
that f is non null and it is su±cient to consider some admissible arbitrary ¯xed
u 2 eS(m).
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(6) and (12) =) (17)
From (6) we have the existence of a unique ¹ 2 Bn depending on u so that

8x 2 f(u); x(¡1 + 0) = ¹ from where f(u) ½ S(n) and f(u) \ S(n) = f(u).
From (12) we infer that

9t0 2 R;8x 2 f(u);8t < t0; x(t) = ¹

where t0 depends on u and the statements

9t0 2 R;9¹ 2 Bn;8x 2 f(u);8t < t0; x(t) = ¹

9¹ 2 Bn;9t0 2 R;8x 2 f(u);8t < t0; x(t) = ¹

are both true, as ¹ and t0 depend on u only. (17) is true.
(17) =) (6) and (12)
(17) =) (6) is obvious. On the other hand a unique ¹ 2 Bn exists so that

9t0 2 R;8x 2 f(u);8t < t0; x(t) = ¹

in particular the statement

9t0 2 R;8x 2 f(u) \ S(n);8t < t0; x(t) = ¹

is true, as well as

9t0 2 R;8x 2 f(u) \ S(n);9¹ 2 Bn;8t < t0; x(t) = ¹

i.e. (12).

Theorem 5.9 The next non-exclusive possibilities exist for the absolutely stable
pseudo-system f :

a) f is absolutely stable with unbounded ¯nal time:

8u 2 eS(m);8x 2 f(u);9¹ 2 Bn;9tf 2 R;8t > tf ; x(t) = ¹

where ¹ and tf depend on x only, thus 9¹ 2 Bn;9tf 2 R commute
b) f is absolutely stable with bounded ¯nal time:

8u 2 eS(m);9tf 2 R;8x 2 f(u);9¹ 2 Bn;8t > tf ; x(t) = ¹

c) f is absolutely stable with ¯x ¯nal time:

9tf 2 R;8u 2 eS(m);8x 2 f(u);9¹ 2 Bn;8t > tf ; x(t) = ¹

d) f is absolutely race-free stable with unbounded ¯nal time:

8u 2 eS(m);9¹ 2 Bn;8x 2 f(u);9tf 2 R;8t > tf ; x(t) = ¹

e) f is absolutely race-free stable with bounded ¯nal time:

8u 2 eS(m);9¹ 2 Bn;9tf 2 R;8x 2 f(u);8t > tf ; x(t) = ¹
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where ¹ and tf depend on u only, thus 9¹ 2 Bn;9tf 2 R commute
f) f is absolutely race-free stable with ¯x ¯nal time:

9tf 2 R;8u 2 eS(m);9¹ 2 Bn;8x 2 f(u);8t > tf ; x(t) = ¹

g) f is absolutely constantly stable with unbounded ¯nal time:

9¹ 2 Bn;8u 2 eS(m);8x 2 f(u);9tf 2 R;8t > tf ; x(t) = ¹

h) f is absolutely constantly stable with bounded ¯nal time:

9¹ 2 Bn;8u 2 eS(m);9tf 2 R;8x 2 f(u);8t > tf ; x(t) = ¹

i) f is absolutely constantly stable with ¯x ¯nal time:

9¹ 2 Bn;9tf 2 R;8u 2 eS(m);8x 2 f(u);8t > tf ; x(t) = ¹

where ¹ and tf are independent on each other, thus 9¹ 2 Bn;9tf 2 R commute.

Remark 5.10 All the pseudo-systems have unbounded initial (¯nal) time, the
problem is if they have initial (¯nal) states or not. On the other hand, at both
previous theorems, the next implications hold:

i) =) h) =) g)
+ + +
f) =) e) =) d)
+ + +
c) =) b) =) a)

6 Initial state function and ¯nal state function
De¯nition 6.1 Let the pseudo-system f : eS(m) ! P (eS(n)). If it has initial
states, the function Á0 : eS(m) ! P (Bn) that is de¯ned by

8u 2 eS(m); Á0(u) = fx(¡1 + 0)jx 2 f(u)g
is called the initial state function of f and the set

£0 =
[

u2eS(m)

Á0(u)

is called the set of the initial states of f .

De¯nition 6.2 Let the pseudo-system f . If it has ¯nal states, the function
Áf : eS(m) ! P (Bn) that is given by

8u 2 eS(m); Áf (u) = fx(1 ¡ 0)jx 2 f(u)g
is called the ¯nal state function of f and the set

£f =
[

u2eS(m)

Áf (u)

is called the set of the ¯nal states of f .
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Example 6.3 The constant function eS(m) ! P (eS(n)) equal with f¹g is a
pseudo-system with a constant initial state ¹ and ¯x initial time and it is also
absolutely constantly stable with ¯x ¯nal time. Á0;£0; Áf ;£f are all de¯ned and
equal with f¹g.

Theorem 6.4 Let f a pseudo-system with initial states.
a) If its initial states are race-free, then 8u 2 eS(m); Á0(u) has at most one

element.
b) If f has a constant initial state ¹, then Á0(u) = f¹g is true for any

admissible u; for f = ; we have £0 = ; and for f 6= ; we have £0 = f¹g.

Proof. a) We suppose that f has race-free initial states and let u 2 eS(m):
If f(u) = ;, then Á0(u) = ; and if f(u) 6= ;, then a unique ¹ 2 Bn exists,
depending on u so that Á0(u) = f¹g.

b) We suppose that f has a constant initial state ¹. If f is null then 8u 2
eS(m); Á0(u) = ; and £0 = ;, otherwise for all admissible u we have Á0(u) = f¹g,
the constant function thus £0 = f¹g.

Theorem 6.5 We consider the pseudo-system f with ¯nal states.
a) If its ¯nal states are race-free, then 8u 2 eS(m); Áf (u) has at most one

element.
b) If f has a constant ¯nal state ¹, then Áf (u) = f¹g is true for any admis-

sible u; if admissible inputs do not exist then £f = ; and if admissible inputs
exist then £f = f¹g.

7 Pseudo-subsystems

De¯nition 7.1 The pseudo-systems f; g : eS(m) ! P (eS(n)) are given. If

8u 2 eS(m); f(u) ½ g(u)

then f is called a pseudo-subsystem of g and the usual notation is f ½ g.

Remark 7.2 Intuitively, the fact that f is a pseudo-subsystem of g shows that
the modeling of a circuit is made more precisely by f than by g, by considering
a smaller set of admissible inputs, perhaps. ½ is a relation of partial order
between eS(m) ! P (eS(n)) pseudo-systems, where the ¯rst element is the null
pseudo-system and the last element is the total pseudo-system, see Remark 3.2.

Theorem 7.3 Let the pseudo-system g and f ½ g an arbitrary pseudo-subsystem.
If g has initial states (race-free initial states, constant initial state), then f has
initial states (race-free initial states, constant initial state).

Proof. If one of the previous properties is true for the states in g(u), then
it is true for the states in the subset f(u) ½ g(u) also, u 2 eS(m).
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Theorem 7.4 Let f ½ g. If g has ¯nal states (race-free ¯nal states, constant
¯nal state), then f has ¯nal states (race-free ¯nal states, constant ¯nal state).

Theorem 7.5 The pseudo-systems f ½ g are given. If g has unbounded initial
time (bounded initial time, universal initial time), then f has unbounded initial
time (bounded initial time, universal initial time).

Proof. Like previously, if one of the above properties is true for the states
in g(u); then it is true for the states in f(u) ½ g(u); u 2 eS(m).

Theorem 7.6 Let f be a pseudo-subsystem of g: If g has unbounded ¯nal time
(bounded ¯nal time, universal ¯nal time), then f has unbounded ¯nal time
(bounded ¯nal time, universal ¯nal time).

Theorem 7.7 If g has initial states and f ½ g, then we note with °0 : eS(m) !
P (Bn) the initial state function of g and with ¡0 ½ Bn the set of the initial
states of g. We have 8u 2 eS(m); Á0(u) ½ °0(u) and £0 ½ ¡0.

Proof. f has initial states from Theorem 7.3, thus '0 and £0 exist. More-
over, as 8u 2 eS(m); f(u) ½ g(u), the initial values of the states in f(u) are
contained between the initial values of the states in g(u), Á0(u) ½ °0(u) making
£0 ½ ¡0 true too.

Theorem 7.8 If g has ¯nal states and f ½ g, we note with °f : eS(m) ! P (Bn)
the ¯nal state function of g and with ¡f ½ Bn the set of the ¯nal states of g.
We have 8u 2 eS(m); Áf (u) ½ °f (u) and £f ½ ¡f .

8 Dual pseudo-systems

Notation 8.1 For any ¸ 2 Bm; u 2 eS(m) we note with ¸ 2 Bm; u 2 eS(m) the
complements of ¸; u made coordinatewise:

¸ = (¸1; :::; ¸m)

u(t) = (u1(t); :::; um(t))

De¯nition 8.2 Let the pseudo-system f : eS(m) ! P (eS(n)). The pseudo-system
f¤ : eS(m) ! P (eS(n)) that is de¯ned by

8u 2 eS(m); f¤(u) = fxjx 2 f(u)g

is called the dual pseudo-system of f .

Remark 8.3 We add to the types of duality that were previously presented the
duality between 0; 1 2 B that gives De¯nition 8.2. The dual pseudo-system f¤

has many properties that can be inferred from those of f .
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Theorem 8.4 (f¤)¤ = f .

Theorem 8.5 The next statements are equivalent for the pseudo-system f :
a) f has initial states (race-free initial states, constant initial state)
b) f¤ has initial states (race-free initial states, constant initial state).

Proof. We show that f has race-free initial states () f¤ has race-free
initial states:

8u 2 eS(m);9¹ 2 Bn;8x 2 f(u);9t0 2 R;8t < t0; x(t) = ¹ ()

8u 2 eS(m);9¹ 2 Bn;8x 2 f¤(u);9t0 2 R;8t < t0; x(t) = ¹ ()
8u 2 eS(m);9¹ 2 Bn;8x 2 f¤(u);9t0 2 R;8t < t0; x(t) = ¹ ()

8u 2 eS(m);9¹ 2 Bn;8x 2 f¤(u);9t0 2 R;8t < t0; x(t) = ¹

Theorem 8.6 For the pseudo-system f , the next statements are equivalent:
a) f has ¯nal states (race-free ¯nal states, constant ¯nal state)
b) f¤ has ¯nal states (race-free ¯nal states, constant ¯nal state).

Theorem 8.7 The next properties are equivalent for f :
a) f has unbounded initial time (bounded initial time, ¯x initial time)
b) f¤ has unbounded initial time (bounded initial time, ¯x initial time).

Theorem 8.8 Let the pseudo-system f . The next properties are equivalent:
a) f has unbounded ¯nal time (bounded ¯nal time, ¯x ¯nal time)
b) f¤ has unbounded ¯nal time (bounded ¯nal time, ¯x ¯nal time).

Theorem 8.9 If f has initial states, we note with Á¤
0 : eS(m) ! P (Bn) the

initial state function of f¤ and with £¤
0 the set of the initial states of f¤. We

have
8u 2 eS(m); Á¤

0(u) = f¹j¹ 2 Á0(u)g
£¤

0 = f¹j¹ 2 £0g

Proof. If f has initial states, then f¤ has initial states (Theorem 8.5) thus
Á¤

0 and £¤
0 exist. The statements of the theorem are obtained from the fact that

8u 2 eS(m); Á¤
0(u) = fx(¡1 + 0)jx 2 f¤(u)g =

= fx(¡1 + 0)jx 2 f¤(u)g = fx(¡1 + 0)jx 2 f(u)g = f¹j¹ 2 Á0(u)g

Theorem 8.10 If f has ¯nal states, we note with Á¤
f : eS(m) ! P (Bn) the ¯nal

state function of f¤ and with £¤
f the set of the ¯nal states of f¤. We have

8u 2 eS(m); Á¤
f (u) = f¹j¹ 2 Áf (u)g

£¤
f = f¹j¹ 2 £fg

12



Theorem 8.11 For the pseudo-systems f; g : eS(m) ! P (eS(n)) we have f ½
g () f¤ ½ g¤

Proof. We get the next sequence of equivalencies:

8u 2 eS(m); f(u) ½ g(u) () 8u 2 eS(m); fxjx 2 f(u)g ½ fxjx 2 g(u)g ()

() 8u 2 eS(m); fxjx 2 f(u)g ½ fxjx 2 g(u)g () 8u 2 eS(m); f¤(u) ½ g¤(u) ()
() 8u 2 eS(m); f¤(u) ½ g¤(u) () 8u 2 eS(m); f¤(u) ½ g¤(u)

9 Inverse pseudo-systems

De¯nition 9.1 Let f : eS(m) ! P (eS(n)). The pseudo-system f¡1 : eS(n) !
P (eS(m)), called the inverse of f , is de¯ned by

8x 2 eS(n); f¡1(x) = fuju 2 eS(m); x 2 f(u)g
Remark 9.2 The idea of construction of f¡1 is that of inverting the cause-
e®ect relation: it associates to each possible e®ect x these admissible inputs u
that could have caused it. We observe that u 2 f¡1(x) () x 2 f(u).

Example 9.3 The inverse of the null pseudo-system f is the null pseudo-
system and the inverse of the total pseudo-system is the total pseudo-system.

Theorem 9.4 For the pseudo-system f we have (f¡1)¡1 = f .

Proof. For any 8u 2 eS(m), we can write that

(f¡1)¡1(u) = fxju 2 f¡1(x)g = fxjx 2 f(u)g = f(u)

Theorem 9.5 If f¡1 has initial states, then the admissible inputs of f are
signals.

Proof. We suppose the contrary, i.e. some admissible input u0 of f exists
that is not a signal:

u0 2 eS(m) and f(u0) 6= ; and k(9¸ 2 Bm;9t0 2 R;8t < t0; u(t) = ¸)

We take some x0 2 f(u0), meaning that u0 2 f¡1(x0). In the statement relative
to the initial states of f¡1:

8x 2 eS(n);8u 2 f¡1(x);9¸ 2 Bm;9t0 2 R;8t < t0; u(t) = ¸

we have for x = x0 and u = u0:

x0 2 eS(n) =) (u0 2 f¡1(x0) =) 9¸ 2 Bm;9t0 2 R;8t < t0; u(t) = ¸)

The two prerequisites are true and the conclusion is false, contradiction.
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Theorem 9.6 We suppose that f¡1 has initial states and we note with Á¡1
0 :

eS(n) ! P (Bm); £¡1
0 its initial state function and respectively its set of initial

states. We have

8x 2 eS(n); Á¡1
0 (x) = fu(¡1 + 0)ju 2 eS(m); x 2 f(u)g

£¡1
0 = fu(¡1 + 0)ju 2 eS(m); f(u) 6= ;g

Theorem 9.7 We suppose that f¡1 has ¯nal states and we note with Á¡1
f :

eS(n) ! P (Bm); £¡1
f its ¯nal state function and respectively its set of ¯nal

states. We have

8x 2 eS(n); Á¡1
f (x) = fu(1 ¡ 0)ju 2 eS(m); x 2 f(u)g

£¡1
f = fu(1 ¡ 0)ju 2 eS(m); f(u) 6= ;g

Theorem 9.8 If f ½ g, then f¡1 ½ g¡1 and (f¤)¡1 ½ (g¤)¡1 take place.

Proof. 8u 2 eS(m); f(u) ½ g(u) implies

8u 2 eS(m);8x 2 eS(n); x 2 f(u) =) x 2 g(u)

8u 2 eS(m);8x 2 eS(n); u 2 f¡1(x) =) u 2 g¡1(x)

8x 2 eS(n);8u 2 eS(m); u 2 f¡1(x) =) u 2 g¡1(x)

8x 2 eS(n); f¡1(x) ½ g¡1(x)

On the other hand f ½ g implies f¤ ½ g¤ (see Theorem 8.11) and from the
previous item we get (f¤)¡1 ½ (g¤)¡1.

Theorem 9.9 (f¡1)¤ = (f¤)¡1.

Proof. We get for all x 2 eS(n) that

(f¡1)¤(x) = fuju 2 f¡1(x)g = fujx 2 f(u)g = fujx 2 f¤(u)g =

= fujx 2 f¤(u)g = fuju 2 (f¤)¡1(x)g = (f¤)¡1(x)

10 Direct product

De¯nition 10.1 We consider the pseudo-systems f : eS(m) ! P (eS(n)); f 0 :
eS(m0) ! P (eS(n0)). The direct product of f and f 0 is by de¯nition the pseudo-
system f £ f 0 : eS(m+m0) ! P (eS(n+n0)) that is de¯ned in the next manner:

8(u; u0) 2 eS(m+m0); (f£f 0)(u; u0) = f(x; x0)j(x; x0) 2 eS(n+n0); x 2 f(u); x0 2 f 0(u0)g

where u is the projection of the variable from eS(m+m0) on the ¯rst m coordinates
and u0 is the projection of the variable from eS(m+m0) on the last m0 coordinates.
Similarly, x is the projection of the variable from eS(n+n0) on the ¯rst n coordi-
nates and x0 is the projection of the same variable on the last n0 coordinates.
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Remark 10.2 f£f 0 is the pseudo-system representing f and f 0 acting indepen-
dently on each other. Some sort of problem arises here, from the fact that 'inde-
pendently on each other' refers to the function f £f 0 : eS(m)£ eS(m0) ! P (eS(n))£
P (eS(n0)) and we were forced to make the identi¯cations between eS(m) £ eS(m0)

and eS(m+m0) and respectively between P (eS(n)) £ P (eS(n0)) and P (eS(n+n0)), in
order that f £ f 0 be a pseudo-system. This means exactly one time axis (like
in eS(m+m0)and P (eS(n+n0))) instead of two (like in eS(m) £ eS(m0) and P (eS(n)) £
P (eS(n0))). But in this moment f and f 0 do not quite act 'independently on each
other'. Things look like claiming 'time is universal, the same for everybody'.

On the other hand, we can write

8(u; u0) 2 eS(m+m0); (f £ f 0)(u; u0) = f(u) £ f 0(u0)

if we accept that the elements of f(u) £ f 0(u0) belong to P (eS(n+n0)) (not to
P (eS(n)) £ P (eS(n0))).

Theorem 10.3 The pseudo-systems f and f 0 have initial states (race-free ini-
tial states, constant initial state) if and only if f £f 0 has initial states (race-free
initial states, constant initial state).

Proof. For example the conjunction of the statements

9¹ 2 Bn;8u 2 eS(m);8x 2 f(u);9t0 2 R;8t < t0; x(t) = ¹

9¹0 2 Bn0
;8u0 2 eS(m0);8x0 2 f 0(u0);9t

0
0 2 R;8t < t

0
0; x

0(t) = ¹0

is equivalent with

9(¹; ¹0) 2 Bn+n0
;8(u; u0) 2 eS(m+m0);8(x; x0) 2 (f £ f 0)(u; u0);

9t"0 2 R;8t < t"0; (x(t); x0(t)) = (¹; ¹0)

where we can take t"0 = min(t0; t00) each time.

Theorem 10.4 f and f 0 have ¯nal states (race-free ¯nal states, constant ¯nal
state) if and only if f £ f 0 has ¯nal states (race-free ¯nal states, constant ¯nal
state).

Theorem 10.5 Let the pseudo-systems f; f 0. The next statements are equiva-
lent:

a) f and f 0 have unbounded initial time (bounded initial time, ¯x initial
time)

b) f £ f 0 has unbounded initial time (bounded initial time, ¯x initial time).

Theorem 10.6 The pseudo-systems f and f 0 have unbounded ¯nal time (bounded
¯nal time, ¯x ¯nal time) if and only if f £f 0 has unbounded ¯nal time (bounded
¯nal time, ¯x ¯nal time).
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Theorem 10.7 Let the pseudo-systems f and f 0 de¯ned like before. If they
have initial states, we note with Á0; Á0

0 their initial state functions and with
(Á £ Á0)0 : eS(m+m0) ! P (Bn+n0

) the initial state function of f £ f 0. We also
note with £0;£

0
0 the sets of the initial states of f and f 0 and let (£ £ £0)0 the

set of the initial states of f £ f 0. We have

8(u; u0) 2 eS(m+m0); (Á £ Á0)0(u; u0) = Á0(u) £ Á0
0(u)

(£ £ £0)0 = £0 £ £
0
0

In the previous equations we have identi¯ed P (Bn) £ P (Bn0
) with P (Bn+n0

).

Proof. If f; f 0 have initial states, then f£f 0 has initial states from Theorem
10.3 thus (Á £ Á0)0 and (£ £ £0)0 exist. We obtain

8(u; u0) 2 eS(m+m0); (Á£Á0)0(u; u0) = f(x(¡1+0); x0(¡1+0))j(x; x0) 2 (f£f 0)(u; u0)g =

= f(x(¡1 + 0); x0(¡1 + 0))jx 2 f(u); x0 2 f 0(u0)g =
= fx(¡1 + 0)jx 2 f(u)g £ fx0(¡1 + 0)jx0 2 f 0(u0)g = Á0(u) £ Á0

0(u
0)

(£ £ £0)0 =
[

(u;u0)2eS(m+m0)

(Á £ Á0)0(u; u0) =
[

(u;u0)2eS(m+m0)

Á0(u) £ Á0
0(u

0) =

=
[

u2eS(m)

Á0(u) £
[

u02eS(m0)

Á0
0(u

0) = £0 £ £
0
0

Theorem 10.8 If f ,f 0 have ¯nal states, we note with Áf ; Á0
f their ¯nal state

functions and with (Á £ Á0)f : eS(m+m0) ! P (Bn+n0
) the ¯nal state function of

f £ f 0. We also note with £f ;£
0
f the sets of the ¯nal states of f and f 0 and

with (£ £ £0)f the set of the ¯nal states of f £ f 0. We have

8(u; u0) 2 eS(m+m0); (Á £ Á0)f (u; u0) = Áf (u) £ Á0
f (u0)

(£ £ £0)f = £f £ £
0
f

and the same identi¯cation between P (Bn) £ P (Bn0
) and P (Bn+n0

) like before
has been made.

Theorem 10.9 Let the pseudo-systems f; g : eS(m) ! P (eS(n)), f 0; g0 : eS(m0) !
P (eS(n0)). We have that f ½ g and f 0 ½ g0 if and only if f £ f 0 ½ g £ g0.

Theorem 10.10 For any pseudo-systems f; f 0 we have (f £ f 0)¤ = f¤ £ f 0¤.

Proof. For any (u; u0) 2 eS(m+m0) we can write

(f£f 0)¤(u; u0) = f(x; x0)j(x; x0) 2 (f£f 0)(u; u0)g = f(x; x0)jx 2 f(u); x0 2 f 0(u0)g =

= f(x; x0)jx 2 f¤(u); x0 2 f 0¤(u0)g = f(x; x0)jx 2 f¤(u); x0 2 f 0¤(u0)g =
= f(x; x0)j(x; x0) 2 (f¤ £ f 0¤)(u; u0)g = (f¤ £ f 0¤)(u; u0)

Theorem 10.11 Let f and f 0. We have that (f £ f 0)¡1 = f¡1 £ f 0¡1.
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11 Parallel connection
De¯nition 11.1 The pseudo-systems f : eS(m) ! P (eS(n)) and f 0 : eS(m) !
P (eS(n0)) are considered. The pseudo-system (f; f 0) : eS(m) ! P (S(n+n0)) that is
de¯ned in the next manner

8u 2 eS(m); (f; f 0)(u) = f(x; x0)j(x; x0) 2 eS(n+n0); x 2 f(u); x0 2 f 0(u)g

is called the parallel connection of the systems f and f 0.

Remark 11.2 The study of the parallel connection of the pseudo-systems is
made in quite similar terms with the study of the direct product of pseudo-
systems from the previous section.

The relation between the direct product and the parallel connection is ex-
pressed by the commutativity of the next diagram

eS(m) (f; f 0)¡¡¡¡¡¡¡! P (eS(n+n0))
¢ # j j
eS(2m) ¡¡¡¡¡¡¡!

f £ f 0 P (eS(n+n0))

where we have noted with ¢ the diagonal function

8u 2 eS(m);¢(u) = (u; u)

12 Serial connection
De¯nition 12.1 Let the pseudo-systems f : eS(m) ! P (eS(n)) and h : eS(n) !
P (eS(p)). The pseudo-system h ± f : eS(m) ! P (eS(p)) that is de¯ned in the next
way

8u 2 eS(m); (h ± f)(u) = fyj9x 2 f(u); y 2 h(x)g
is called the serial connection of the pseudo-systems h and f .

Theorem 12.2 Let the pseudo-systems f; h. If h has initial states (constant
initial state), then h ± f has initial states (constant initial state).

Proof. For example from

8u 2 eS(m);8y 2 (h ± f)(u);9x 2 f(u); y 2 h(x)

9º 2 Bp;8x 2 eS(n);8y 2 h(x);9t0 2 R;8t < t0; y(t) = º

we infer

9º 2 Bp;8u 2 eS(m);8y 2 (h ± f)(u);9t0 2 R;8t < t0; y(t) = º
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Theorem 12.3 If h has ¯nal states (constant ¯nal state), then h ± f has ¯nal
states (constant ¯nal state).

Theorem 12.4 Let the systems f and h. If h has unbounded initial time (¯x
initial time), then h ± f has unbounded initial time (¯x initial time).

Proof. For example from

8u 2 eS(m);8y 2 (h ± f)(u) \ S(p);9x 2 f(u); y 2 h(x) \ S(p)

9t0 2 R;8x 2 eS(n);8y 2 h(x) \ S(p);9º 2 Bp;8t < t0; y(t) = º

we get

9t0 2 R;8u 2 eS(m);8y 2 (h ± f)(u) \ S(p);9º 2 Bp;8t < t0; y(t) = º

Theorem 12.5 If h has unbounded ¯nal time (¯x ¯nal time), then h ± f has
unbounded ¯nal time (¯x ¯nal time).

Theorem 12.6 We consider the pseudo-systems f and h. If h has initial states,
we note with '0; ±0 on one hand and ¢0 on the other hand the initial state
functions of h; h ± f , respectively the set of initial states of h ± f . The next
formulas are true:

8u 2 eS(m); ±0(u) =
[

x2f(u)

'0(x)

¢0 =
[

u2eS(m)

[

x2f(u)

'0(x)

Theorem 12.7 Let the pseudo-systems f and h. We suppose that h has ¯nal
states and we use the notations 'f ; ±f on one hand and ¢f on the other hand
for the ¯nal state functions of h; h ± f , respectively for the set of ¯nal states of
h ± f . The next formulas are true:

8u 2 eS(m); ±f (u) =
[

x2f(u)

'f (x)

¢f =
[

u2eS(m)

[

x2f(u)

'f (x)

Proof. From the fact that h has ¯nal states we infer, see Theorem 12.3,
that h ± f has ¯nal states so that ±f ;¢f exist. We have:

8u 2 eS(m); ±f (u) = fy(1¡0)jy 2 (h±f)(u)g = fy(1¡0)j9x; x 2 f(u) and y 2 h(x)g =

=
[

x2f(u)

fy(1 ¡ 0)jy 2 h(x)g =
[

x2f(u)

'f (x)
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Theorem 12.8 Let's consider the pseudo-systems f; g : eS(m) ! P (eS(n)) and
h; h1 : eS(n) ! P (eS(p)). We have:

a) f ½ g =) h ± f ½ h ± g
b) h ½ h1 =) h ± f ½ h1 ± f

Proof. Let u 2 eS(m) arbitrary. Because f(u) ½ g(u) we infer that

(h ± f)(u) = fyj9x 2 f(u); y 2 h(x)g ½ fyj9x 2 g(u); y 2 h(x)g = (h ± g)(u)

Theorem 12.9 For the pseudo-systems f and h, we have (h ± f)¤ = h¤ ± f¤.

Proof. For any u 2 eS(m) we have

(h ± f)¤(u) = fyjy 2 (h ± f)(u)g = fyj9x 2 f(u); y 2 h(x)g =

= fyj9x 2 f(u); y 2 h(x)g = fyj9x 2 f¤(u); y 2 h¤(x)g = (h¤ ± f¤)(u)

Theorem 12.10 For any pseudo-system f we have

8u 2 eS(m); (f¡1 ± f)(u) = fvjv 2 eS(m); f(u) \ f(v) 6= ;g

8x 2 eS(n); (f ± f¡1)(x) = fzjz 2 eS(n); f¡1(x) \ f¡1(z) 6= ;g

Proof. We observe that

8u 2 eS(m); (f¡1 ± f)(u) = fvj9x 2 f(u); v 2 f¡1(x)g =

= fvj9x; x 2 f(u); x 2 f(v)g = fvjf(u) \ f(v) 6= ;g
and similarly for the other statement.

Theorem 12.11 Let f and h. We have (h ± f)¡1 = f¡1 ± h¡1.

Proof. For any y 2 eS(p) we have

(h ± f)¡1(y) = fujy 2 (h ± f)(u)g = fuj9x; x 2 f(u) and y 2 h(x)g =

= fuj9x; x 2 h¡1(y) and u 2 f¡1(x)g = (f¡1 ± h¡1)(y)

Theorem 12.12 We consider the pseudo-systems f : eS(m) ! P (eS(n)), f 0 :
eS(m0) ! P (eS(n0)), respectively h : eS(n) ! P (eS(p)), h0 : eS(n0) ! P (eS(p0)). The
next formula is true:

(h £ h0) ± (f £ f 0) = (h ± f) £ (h0 ± f 0)
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Theorem 12.13 If in the hypothesis of the previous theorem we have the special
case m = m0, then we can write

(h £ h0) ± (f; f 0) = (h ± f; h0 ± f 0)

Proof. For any u 2 eS(m) we have

((h£h0)±(f; f 0))(u) = f(y; y0)j9(x; x0); (x; x0) 2 (f; f 0)(u) and (y; y0) 2 (h£h0)(x; x0)g =

= f(y; y0)j9x; x 2 f(u) and y 2 h(x) and 9x0; x0 2 f 0(u) and y0 2 h0(x0)g =

= f(y; y0)jy 2 (h ± f)(u) and y0 2 (h0 ± f 0)(u)g = (h ± f; h0 ± f 0)(u)

13 Complement

De¯nition 13.1 Let f : eS(m) ! P (eS(n)). The pseudo-system Cf : eS(m) !
P (eS(n)) that is de¯ned by

8u 2 eS(m); Cf(u) = eS(n) n f(u)

is called the complement of f .

Remark 13.2 Intuitively, if x 2 f(u) are these states that model a circuit then
x 2 Cf(u) are the states that do not model that circuit.

Theorem 13.3 CCf = f

Theorem 13.4 If f; g : eS(m) ! P (eS(n)); then f ½ g if and only if Cg ½ Cf

Proof. We have

f ½ g () 8u 2 eS(m); f(u) ½ g(u) () 8u 2 eS(m); eS(n) ng(u) ½ eS(n) nf(u) ()

() 8u 2 eS(m); Cg(u) ½ Cf(u) () Cg ½ Cf

Theorem 13.5 (Cf)¤ = Cf¤

Proof. For any u 2 eS(m) we can write

(Cf)¤(u) = fxjx 2 (Cf)(u)g = fxjx 2 eS(n) n f(u)g = fxjx 2 eS(n) n f(u)g =

= fxjx 2 eS(n) n fzjz 2 f(u)gg = fxjx 2 eS(n) n fzjz 2 f(u)gg =

= fxjx 2 eS(n) n f¤(u)g = (Cf¤)(u)
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Theorem 13.6 (Cf)¡1 = Cf¡1

Proof. For all x 2 eS(n) we have

(Cf)¡1(x) = fuju 2 eS(m); x 2 Cf(u)g = fuju 2 eS(m); x 2 eS(n) n f(u)g =

= fuju 2 eS(m) n fvjx 2 f(v)gg = fuju 2 eS(m) n f¡1(x)g = (Cf¡1)(x)

Theorem 13.7 Let f : eS(m) ! P (eS(n)); f 0 : eS(m0) ! P (eS(n0)) two pseudo-
systems. We have Cf £ Cf 0 ½ C(f £ f 0).

Proof. 8(u; u0) 2 eS(m+m0);

(Cf £ Cf 0)(u; u0) = f(x; x0)jx 2 Cf(u); x0 2 Cf 0(u0)g =

= f(x; x0)jx 2 eS(n) and x =2 f(u) and x0 2 eS(n0) and x0 =2 f 0(u0)g =

= f(x; x0)j(x; x0) 2 eS(n+n0) and x =2 f(u) and x0 =2 f 0(u0)g ½
½ f(x; x0)j(x; x0) 2 eS(n+n0) and (x =2 f(u) or x0 =2 f 0(u0))g =

= f(x; x0)j(x; x0) 2 eS(n+n0) and (x; x0) =2 (f £ f 0)(u; u0)g = C(f £ f 0)(u; u0)

Theorem 13.8 For f : eS(m) ! P (eS(n)); f 0 : eS(m) ! P (eS(n0)) we can write
(Cf;Cf 0) ½ C(f; f 0).

14 Intersection and reunion
De¯nition 14.1 Let the pseudo-systems f; g : eS(m) ! P (eS(n)). The pseudo-
systems f \ g; f [ g : eS(m) ! P (eS(n)) are de¯ned by

8u 2 eS(m); (f \ g)(u) = f(u) \ g(u)

8u 2 eS(m); (f [ g)(u) = f(u) [ g(u)

Remark 14.2 The intersection of the pseudo-systems represents the gain of
information (of precission) in the modeling of a circuit by considering the va-
lidity of two models at the same time. The reunion of the pseudo-systems is the
dual concept representing the loss of information (of precission) in modeling as
a result of considering the validity of one of two models.

The set of the eS(m) ! P (eS(n)) pseudo-systems is a Boole algebra relative to
C;\;[. The zero and the one of this Boole algebra are the null and the total
pseudo-systems.
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Theorem 14.3 Let the pseudo-systems f and g. If f has initial states (race-
free initial states, constant initial state), then f \ g has initial states (race-free
initial states, constant initial state).

Proof. f \ g ½ f and the statement of the theorem follows from Theorem
7.3.

Theorem 14.4 If f has ¯nal states (race-free ¯nal states, constant ¯nal state),
then f \ g has ¯nal states (race-free ¯nal states, constant ¯nal state).

Theorem 14.5 If the pseudo-systems f; g have initial states (a common con-
stant initial state), then f [ g has initial states (constant initial state).

Theorem 14.6 If f; g have ¯nal states (a common constant ¯nal state), then
f [ g has ¯nal states (constant ¯nal state).

Remark 14.7 The statements of the previous two theorems are not true in gen-
eral for the pseudo-systems f; g with race-free initial states and for the pseudo-
systems f; g with constant initial states, because it is possible that the two par-
tial functions eS(m) ! Bn from Remark 4.1 corresponding to f and g di®er,
respectively that the two constant initial states corresponding to f and g di®er.
Similar reasoning for the ¯nal states. Such 'disappearances of the middle state-
ment', could be the race-free statement about the initial/¯nal states, could be
the boundness statement about the initial/¯nal time, have already occurred (for
di®erent reasons) at theorems 12.2,...,12.5.

Theorem 14.8 If f has unbounded initial time (bounded initial time, ¯x initial
time), then f \ g has unbounded initial time (bounded initial time, ¯x initial
time).

Proof. f \ g ½ f and the results follow from Theorem 7.5.

Theorem 14.9 If f has unbounded ¯nal time (bounded ¯nal time, ¯x ¯nal
time), then f \ g has unbounded ¯nal time (bounded ¯nal time, ¯x ¯nal time).

Theorem 14.10 If f; g have unbounded initial time (bounded initial time, ¯x
initial time), then f [ g has unbounded initial time (bounded initial time, ¯x
initial time).

Theorem 14.11 If f; g have unbounded ¯nal time (bounded ¯nal time, ¯x ¯nal
time), then f [ g has unbounded ¯nal time (bounded ¯nal time, ¯x ¯nal time).

Proof. We suppose for example that f and g satisfy (15), i.e. they have
bounded ¯nal time. For some arbitrary u 2 eS(m), let tf ; t0f the ¯nal time instants
of f , respectively of g. Then (15) is satis¯ed by f [g because we can choose for
u the ¯nal time instant t"f ¸ max(tf ; t0f ).

22



Theorem 14.12 We suppose that f; g have initial states. We have (Á\°)0; (Á[
°)0 : eS(m) ! P (Bn);

8u 2 eS(m); (Á \ °)0(u) = Á0(u) \ °0(u)

8u 2 eS(m); (Á [ °)0(u) = Á0(u) [ °0(u)

(£ \ ¡)0 =
[

u2eS(m)

Á0(u) \ °0(u)

(£ [ ¡)0 =
[

u2eS(m)

Á0(u) [ °0(u)

We have noted with Á0; °0; (Á\°)0; (Á[°)0 the initial state functions of f; g; f \
g; f [ g and with (£ \ ¡)0; (£ [ ¡)0 the sets of initial states of f \ g; f [ g.

Proof. f [g has initial states from Theorem 14.5, thus (Á[°)0 and (£[¡)0
exist. We can write that 8u 2 eS(m);

(Á [ °)0(u) = fx(¡1 + 0)jx 2 (f [ g)(u)g = fx(¡1 + 0)jx 2 f(u) [ g(u)g =

= fx(¡1 + 0)jx 2 f(u)g [ fx(¡1 + 0)jx 2 g(u)g = Á0(u) [ °0(u)

Theorem 14.13 If f; g have ¯nal states, then we have (Á \ °)f ; (Á [ °)f :
eS(m) ! P (Bn);

8u 2 eS(m); (Á \ °)f (u) = Áf (u) \ °f (u)

8u 2 eS(m); (Á [ °)f (u) = Áf (u) [ °f (u)

(£ \ ¡)f =
[

u2eS(m)

Áf (u) \ °f (u)

(£ [ ¡)f =
[

u2eS(m)

Áf (u) [ °f (u)

The notations are obvious and similar with those from the previous theorem.

Theorem 14.14 We have

(f \ g)¤ = f¤ \ g¤

(f [ g)¤ = f¤ [ g¤

Proof. 8u 2 eS(m);

(f [ g)¤(u) = fxjx 2 (f [ g)(u)g = fxjx 2 f(u) [ g(u)g =

= fxjx 2 f(u)g [ fxjx 2 g(u)g = f¤(u) [ g¤(u) = (f¤ [ g¤)(u)
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Theorem 14.15 The next formulas of inversion take place:

(f \ g)¡1 = f¡1 \ g¡1

(f [ g)¡1 = f¡1 [ g¡1

Proof. 8x 2 eS(n);

(f \ g)¡1(x) = fujx 2 (f \ g)(u)g = fujx 2 f(u) \ g(u)g =

= fujx 2 f(u)g \ fujx 2 g(u)g = f¡1(x) \ g¡1(x) = (f¡1 \ g¡1)(x)

Theorem 14.16 Let the pseudo-systems f; g : eS(m) ! P (eS(n)); f 0; g0 : eS(m0) !
P (eS(n0)). The next statements are true:

(f \ g) £ (f 0 \ g0) = (f £ f 0) \ (g £ g0)

(f [ g) £ (f 0 [ g0) = (f £ f 0) [ (g £ g0)

Proof. We have 8(u; u0) 2 eS(m+m0):

((f \ g) £ (f 0 \ g0))(u; u0) = f(x; x0)jx 2 (f \ g)(u) and x0 2 (f 0 \ g0)(u0)g =

= f(x; x0)jx 2 f(u) \ g(u) and x0 2 f 0(u0) \ g0(u0)g =

= f(x; x0)jx 2 f(u) and x 2 g(u) and x0 2 f 0(u0) and x0 2 g0(u0)g =

= f(x; x0)jx 2 f(u) and x0 2 f 0(u0) and x 2 g(u) and x0 2 g0(u0)g =

= f(x; x0)jx 2 f(u) and x0 2 f 0(u0)g\f(x; x0)jx 2 g(u) and x0 2 g0(u0)g =

= (f £ f 0)(u; u0) \ (g £ g0)(u; u0) = ((f £ f 0) \ (g £ g0))(u; u0)

Theorem 14.17 We consider the pseudo-systems f; g : eS(m) ! P (eS(n)); f 0; g0 :
eS(m) ! P (eS(n0)). We have:

(f \ g; f 0 \ g0) = (f; f 0) \ (g; g0)

(f [ g; f 0 [ g0) = (f; f 0) [ (g; g0)

Theorem 14.18 For the pseudo-systems f; g and h; h1 : eS(n) ! P (eS(p)) we
have:

h ± (f \ g) ½ (h ± f) \ (h ± g)

h ± (f [ g) ½ (h ± f) [ (h ± g)

(h \ h1) ± f ½ (h ± f) \ (h1 ± f)

(h [ h1) ± f ½ (h ± f) [ (h1 ± f)
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Proof. 8u 2 eS(m);

(h±(f\g))(u) = fyj9x; x 2 (f\g)(u); y 2 h(x)g = fyj9x; x 2 f(u)\g(u); y 2 h(x)g =

= fyj9x; x 2 f(u) and x 2 g(u) and y 2 h(x)g =

= fyj9x; x 2 f(u) and y 2 h(x) and x 2 g(u) and y 2 h(x)g ½
½ fyj9x; x 2 f(u) and y 2 h(x) and 9z; z 2 g(u) and y 2 h(z)g =

= fyj9x; x 2 f(u) and y 2 h(x)g \ fyj9z; z 2 g(u) and y 2 h(z)g =

= (h ± f)(u) \ (h ± g)(u) = ((h ± f) \ (h ± g))(u)

8u 2 eS(m);

((h [ h1) ± f)(u) = fyj9x; x 2 f(u); y 2 (h [ h1)(x)g =

= fyj9x; x 2 f(u) and y 2 h(x) [ h1(x)g =

= fyj9x; x 2 f(u) and y 2 h(x) or x 2 f(u) and y 2 h1(x)g ½
½ fyj9x; x 2 f(u) and y 2 h(x) or 9z; z 2 f(u) and y 2 h1(z)g =

= fyj9x; x 2 f(u) and y 2 h(x)g [ fyj9z; z 2 f(u) and y 2 h1(z)g =

= (h ± f)(u) [ (h1 ± f)(u) = ((h ± f) [ (h1 ± f))(u)

15 Systems

De¯nition 15.1 Let the pseudo-system f : eS(m) ! P (eS(n)). The set Uf of the
admissible inputs de¯ned by

Uf = fuju 2 eS(m); f(u) 6= ;g

is also called the support (set) of f .

De¯nition 15.2 The (asynchronous) pseudo-system f is called (asynchronous)
system if

a) Uf 6= ;
b) Uf ½ S(m)

c) 8u 2 Uf ; f(u) ½ S(n).

Remark 15.3 We shall identify the system f with the function f1 : U !
P ¤(S(n)), where U = Uf , that is de¯ned by 8u 2 U; f1(u) = f(u). We shall
also identify the initial state function Á0 : eS(m) ! P (Bn) with the function
Á10 : U ! P¤(Bn) de¯ned by 8u 2 U; Á10(u) = Á0(u).
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Notation 15.4 The systems are noted sometimes with f : U ! P ¤(S(n)),
where U ½ S(m) is non-empty. If 8u 2 U; f(u) has a single element, then we
have the usual notation f : U ! S(n) of the uni-valued functions. Similarly,
their initial state functions are noted sometimes with Á0 : U ! P ¤(Bn) or with
Á0 : U ! Bn when 8u 2 U; x(¡1 + 0) is unique.

Remark 15.5 The systems are those non-null pseudo-systems f for which the
admissible inputs and the possible states are signals (resulting that f has initial
states). The concept creates an asymmetry between the initial states and the
¯nal states because:

- it is natural that the inputs be considered commands, a deliberate manner
of acting on the circuit modeled by f with the purpose of producing a certain
e®ect. But this is made after choosing an initial time instant t0 from which we
order our actions in the increasing sense of the time axis (not in both senses)

- it is natural that we associate to the request U ½ S(m) a request (De¯nition
15.2 c)) that is dual to stability: the system orders its reactions in the increasing
sense of the time axis (not in both senses).

Example 15.6 The fact that (4) de¯nes a S ! P ¤(S) system is obvious if we
observe that

8u 2 S;8¿ 2 (0; d];
\

»2[t¡d;t)

u(») · u(t ¡ ¿) ·
[

»2[t¡d;t)

u(»)

thus x(t) = u(t ¡ ¿), which is a signal, satis¯es it whenever ¿ 2 (0; d]. This
system is called the symmetrical upper bounded, lower unbounded delay.

Notation 15.7 Let f : eS(m) ! P (eS(n)) a pseudo-system with the property that

9u 2 S(m); f(u) \ S(n) 6= ; (18)

We note with [f ] : U ! P ¤(S(n)) the function that is de¯ned by

U = fuju 2 S(m); f(u) \ S(n) 6= ;g (19)

8u 2 U; [f ](u) = f(u) \ S(n) (20)

Theorem 15.8 a) [f ] is a system
b) [f ] ½ f
c) Let g : eS(m) ! P (eS(n)) a system so that g ½ f . Then g ½ [f ], i.e. [f ] is

the greatest system that is included in f .

Proof. a) U 6= ; follows from (18) and (19), U ½ S(m) is a consequence of
(19) and 8u 2 U; [f ](u) ½ S(n) results from (20), thus [f ] is a system.

b) From (20)
c) Let g : eS(m) ! P (eS(n)) a system so that 8u 2 eS(m); g(u) ½ f(u), from

where 8u 2 eS(m); g(u) = g(u) \ S(n) ½ f(u) \ S(n) = [f ](u)
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De¯nition 15.9 When the pseudo-system f satis¯es the property (18), [f ] is
called the system that is induced by f .

Theorem 15.10 The pseudo-system f is a system if and only if f = [f ].

Proof. (= is obvious, since [f ] is a system.
=) Admissible inputs exist and let u such an input. Because f is a system,

u is signal. From f(u) ½ S(n), we have that f(u) = f(u) \ S(n) and as u was
arbitrarily chosen we infer that f = [f ].

Theorem 15.11 For any system f , the initial state function Á0 and the set of
the initial states £0 exist.

Theorem 15.12 Let the systems f : U ! P ¤(S(n)); g : V ! P ¤(S(n)); U; V 2
P ¤(S(m)). We have

f ½ g () U ½ V and 8u 2 U; f(u) ½ g(u)

Proof. f ½ g =) U ½ V and 8u 2 U; f(u) ½ g(u)
Each of the suppositions U n V 6= ; and respectively 9u 2 U;9x 2 f(u) so

that x 2 S(n) n g(u) gives a contradiction with the hypothesis f ½ g
U ½ V and 8u 2 U; f(u) ½ g(u) =) f ½ g
The implication is obvious.

Theorem 15.13 If f is a system, then its dual f¤ is a system too.

Theorem 15.14 For the system f , the function f¡1 : X ! P¤(S(m)) given by

X = fxj9u 2 U; x 2 f(u)g

8x 2 X; f¡1(x) = fuju 2 U; x 2 f(u)g
is a system that coincides with the inverse of f (as pseudo-system).

Proof. From the hypothesis, the support U of f is non-empty so that we
have X 6= ;. The fact that U ½ S(m) implies 8x 2 X; f¡1(x) ½ S(m) and
8u 2 U; f(u) ½ S(n) gives X ½ S(n), thus f¡1 is a system. f¡1 obviously
coincides with the inverse of f as pseudo-system.

Theorem 15.15 The direct product of two systems is a system.

Proof. We consider the systems f : U ! P ¤(S(n)); U 2 P ¤(S(m)) and
f 0 : U 0 ! P ¤(S(n0)); U 0 2 P ¤(S(m0)). We remark that U £ U 0 2 P ¤(S(m+m0))
and 8(u; u0) 2 U £ U 0; (f £ f 0)(u; u0) 2 P¤(S(n+n0)), thus f £ f 0 is a system.

Theorem 15.16 Let the systems f : U ! P ¤(S(n)); f 0 : U 0 ! P ¤(S(n0));
U; U 0 2 P¤(S(m)). Their parallel connection is a system if and only if U\U 0 6= ;.
In this case we have (f; f 0) : U \ U 0 ! P ¤(S(n+n0));

8u 2 U \ U 0; (f; f 0)(u) = f(x; x0)j(x; x0) 2 S(n+n0); x 2 f(u); x0 2 f 0(u)g
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Theorem 15.17 We consider the systems f : U ! P¤(S(n)); U 2 P ¤(S(m))
and h : X ! P ¤(S(p)); X 2 P ¤(S(n)). Their serial connection is a system if
and only if 9u 2 U; f(u) \ X 6= ;. In the case that this condition is ful¯lled, we
note

W = fuju 2 U; f(u) \ X 6= ;g
and we have h ± f : W ! P ¤(S(p)),

8u 2 W; (h ± f)(u) = fyj9x 2 f(u) \ X; y 2 h(x)g

Remark 15.18 Given the system f , its complement Cf is a pseudo-system
since

8u 2 eS(m); Cf(u) = eS(n) n f(u) ¾ eS(n) n S(n)

If f is a pseudo-system, then Cf can be a system or a pseudo-system.

Theorem 15.19 We consider the systems f : U ! P ¤(S(n)); g : V ! P ¤(S(n));
U; V 2 P ¤(S(m)). Their intersection is a system if and only if

9u 2 U \ V; f(u) \ g(u) 6= ;

In the case when this condition is ful¯lled, we have f \ g : W ! P ¤(S(n)),

W = fuju 2 U \ V; f(u) \ g(u) 6= ;g

8u 2 W; (f \ g)(u) = f(u) \ g(u)

Proof. W 6= ; is the support set of f \ g; we obtain W ½ U \ V ½ S(m)

and on the other hand we get 8u 2 W; (f \ g)(u) ½ f(u) ½ S(n), thus f \ g is a
system.

Theorem 15.20 The reunion of the systems f and g is the system f [ g :
U [ V ! P ¤(S(n)) that is de¯ned in the next manner

8u 2 U [ V; (f [ g)(u) = f(u) [ g(u)

Proof. U 6= ; and V 6= ; imply U [ V 6= ;; U ½ S(m) and V ½ S(m)

imply U [ V ½ S(m); and 8u 2 U; f(u) ½ S(n), 8u 2 V; g(u) ½ S(n) imply
8u 2 U [ V; f(u) [ g(u) ½ S(n), thus f [ g is a system
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