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Abstract

By making use of the notions and the notations from [12], we present
the bounded delays, the absolute inertia and the relative inertia.

1 Bounded Delays

Theorem 1.1 The next system

L
u() <x( < u(®) D

£2[t—dr;t—dr+my] §2[t—d¢;t—de+me]
where u;x 2 S and 0 < m; <d;;0 < mg < df defines a DC if and only if
erdf_mf;dedr_mr (2)

Proof The proof consists in showing that (2) implies for any u the existence of
a solution x of (1); any such x satisfies X 2 Solsc(u). If (2) is not fulfilled, it
is proved that u exists so that (1) has no solutions.

Definition 1.2 The system (1), when (2) is true, is called the bounded de-
lay condition (BDC). u;x are the input, respectively the state (or the output);
my; mg are the (rising, falling) memories (or thresholds for cancellation) and
dr;de , respectively dg — me;d, — m, are the (rising, falling) upper bounds,
respectively the (rising, falling) lower bounds of the transmission delay for tran-
sitions. We say that the tuple (u; m;dy; mg; de) satisfies BDC. We shall also

call bounded delay condition the function Solfsar ™% . 5 1 P*(S) defined by
SolFLar ™ (1) = fxj(u; my; dy; mg; df) satisfies BDCg

Definition 1.3 The inequalities (2) are called the consistency condition (CC)
of BDC.

Theorem 1.4 let0<m, <d;0<mg <dg and 0 < m°r < dor;O < mof < d:c
so that CC is fulfilled for each of them.
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a) We note d, = min(d,; dor);d'f' = min(ds; dof); m, = d'r'—max(dr—mr;dor—mor);
my = dy — max(de — M; d°f — mof). The next statements are equivalent:

0_ 0_ 0_ 0
ai) 8u; SolTodrimeidr () A goTridriMeide () g

a.ii) d; >dg —mg;dy >d; —m;
and if one of them is satisfied, then we have

0.0 0 0 o e
my;dr;me;ds N rnr;dr;mf;df — mr;dr;mf;df
Solgie Solg5c = Solgpe

b) We use the notations d; = max(dr;d,);d; = max(de;d); m; = d —
min(d, —my; dy —m,); m; = d; —min(ds —m¢; de —my). The inequalities
d; > df — mg;dy > d; —m; are satisfied and

0 0 0 0 IR oo
My;dr;me;ds rnr;dr;mf ;df mr;dr;mf ;df
Solgie _Solgh¢ C Solgpe

The previous inclusion becomes equality if and only if
0.0 0 0
8u; SolMeidrimeide () A 5o TridriMeidr )y g -
¢) The next statements are equivalent:
c.i) SolZrdrmeidr s deterministic
c.ii) The upper bounds and the lower bounds of the delays coincide:
dr =df —m¢g;de =dr — My
c.iii) The memories are null
m-=mg =0
c.iv) The bounded delay degenerates in a translation
ad > 0; Solfpdrimeidr — |, ®3)
d) The next statements are equivalent

0 0 0 0
i M ;dr;medr m,;dp;me;de
d.i) Solgic C Solgpe

dii) dy —m; <dr —m, <de <dg; dp —mp <dg —me <dr <d,
e) Solfrd ™ is time invariant
f) The next statements are equivalent

£i) Solfndrmridr is symmetrical

fii) dr =dg;mr = mg

0 0 0 0
me+m_;dr+d_;me+me;de+de .
g) Solgpe T T is a BDC and we have

0 0 0 0 0 0 0 0
Solmr;dr;mf;df o Solmr;dr;mf;df — S Imr+mr;dr+dr;mf+mf;df+df
BDC BDC - BDC
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2 Fixed and Inertial Delays
Definition 2.1 Let u;x 2 S and d > 0. The equation (see 1.4 (3))
X(t) =u(t—d)

is called the fixed delay condition (FDC). The delay defined by this equation
is also called pure, ideal or non-inertial. A delay different from FDC is called
inertial.

Corollary 2.2 FDC is deterministic, time invariant, constant and symmetri-
cal. The serial connection of the FDC's coincides with the composition of the
translations:

lgolg =lgolg = lgeq;d > 0;d" >0

Remark 2.3 At 2.1 inertia was defined to be the property of the DC's of being
not ideal. In particular the non-deterministic DC's, for example the non-trivial
BDC's (i.e. the BDC's with memory m, + mg m Q) are inertial.

3 Absolute Inertia

Definition 3.1 The property

- AN
x(t—0)-x(t) < x(§)
§2[tt+6r]

— N
X(t—0)-x(t) < x (&)

£2[t;t+5¢]

true for 6, > 0;6¢ > 0 is called the absolute inertial condition (AIC), or the
non-zenoness condition. &,; ¢ are called inertial parameters. If it is fulfilled, we
say that the tuple (6r; 6¢; X) satisfies AIC. We also call AIC the set Solif,;f:f (@)
defined by

Sol%[%F = Fxj(6r; 6¢; X) satisFies AlCg
Remark 3.2 AIC means that if x switches from 0 to 1, then it remains 1 at
least 6, > 0 time units + the dual property. To be remarked the trivial situation

Definition 3.3 Let i a DC satisfying 8u; i(u)~Sol%;2" & ;. The DC i~Solo

is called absolute inertial delay condition (AIDC). Solg5ar™r A gol0ridr js

called bounded absolute inertial delay condition (BAIDC).

Theorem 3.4 The numbers 0 < m, < dr;0 < mg¢ < d¢ with CC true and
or > 0;6¢ > 0 are given. The next statements are equivalent:

e med .
a) 8u;SolZd medr () A Sol% 6 ;
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b) 6r +6f <my+mg

0 0 0 0
Corollary 3.5 0 < my < dr;0 <mg < dge, 0 <m, <dp;0 < mge < dg
0 0 - 0
and 6y > 0;6¢ > 0;6, > 0;6¢ > 0 satisfy dr > df — m¢;d¢ > dr — my;d, >
0 0 0 0 0 0 0 0 0 -
de —mg;de > d—my; 6+ < Me+mg; 6, +6¢ < m+mg. In such conditions
me;de;me;de S5r6f m0 'do'mof'dof 60'61 m +mO d +d0'mf+m0f'df+d0f
r,Ur,ITf, rs r'vr» ’ re . r rYr re N
SoIE%DOC ASola e Solghe NSola, ¢ s Solgpe n
5,6 . .
Sol., & are BAIDC's and the next property of the serial connection holds:

0 0 0 0 00
mpdeimeide o o 6¢ me;de;me;de o bri6F
(Solgpc Solyc) o (Solgpc Solsic) C

0 0 0 0 00
Mr+mg;de+d me+me;de+de 6.-0¢
C Solgpc Soly ¢

4 Relative Inertia
Definition 4.1 0 < pur < 6r;0 < ug < 6¢ and u; x 2 S are given. The property

- AN
X(t—0)-x() < u(®)

E2[t—6r X—b6r+pr]
N\

x(t—0) - x(t) < u(é)
E2[t—b¢ t—b¢+pf]

is called the relative inertial condition (RIC). ur;dr; us; 6¢ are called inertial
parameters. If it is fulfilled, we say that the tuple (u; ur; Or; 1if; O0f; X) satisfies

RIC. We also call RIC the function Sol72 #7*f . 5 1 P*(S) defined by
Sol&yErHTT (1) = FXj(U; ur; 6 i 65, X) satisFies RICg

Theorem 4.2 Let 0 < pir < 6;,0 < p¢ < 6;U 2 S and x 2 Sol&2r#707 ()
Of —Or Fjur;6r —OfFuF

arbitrary. If 6y > 6¢ — pf; 6¢ > 6r — pir then X 2 Sol | ¢

Remark 4.3 RIC states that the inertial delays ‘model the fact that the prac-
tical circuits will not respond (at the output) to two transitions (at the input)
which are very close together' [1], [2]. Theorem 4.2 connecting AIC and RIC
makes use of the condition 6y > 6¢ — uf; 68 > 6r — pur that is very similar to
CC, but with a different meaning.

Definition 4.4 Let i a DC with 8u; i (u) ~ Sol 2 *#¥T (u) & ;. Then the DC
i A Solln2ritT (see Theorem 4.4 c) in [12]) is called relative inertial delay

ixi ; idr;me;d O OF
condition (RIDC). In particular Solggc " " A Solk e+ is called bounded

relative inertial delay condition (BRIDC).

Theorem 4.5 Let the numbers 0 < m, < d,;0 < mg < df . The next condi-
tions are equivalent
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a) 8u, Solgggr;mf;df (U) /\Solgrlgr;ﬂf;5f (u) & :
b) One of the next conditions is true
b.i) df —mg <6 <dr < 6r—pr+myp;dr —my < 6 < df < 6 —pr+mg
b.ii) dr—my+pr <6 <deg—mg < dp;de —Mg+pe < 6 < dr—mp < df
b.iii) dfg—m¢ <6 < dr—mp+pr < dr;de—my < 8¢ < dg—me+pr < df
b.iv) 6 <dg—mg < 6r+Mmp—pr < dp; e < dp—my < Sp+me—pr < df
Remark 4.6 The equivalent conditions from Theorem 4.5 are of consistency of

BRIDC, they are stronger than CC (of BDC) and weaker than (see the hypoth-
esis Oy > O0f — uf; 6 > Or — pr from Theorem 4.2)

df —mg < 6¢ — pr < 6r < dr
dr =My <6 — por < 6f < df

Theorem 4.7 Let 0 < m, < dy;0 <mg < df so that CC is fulfilled and u2 S
arbitrary. The next statements are equivalent:

a) x 2 Solfdrimeidr (yy A gl Trdrimedr ()

b)
- - AN
X(t—0) - x(t) = x(t—0) - u(®)
L fz[t*dr't\*dr"‘mr]_
X(t—0) - x(t) = x(t—0) - u(®)

£2[t—df;t—dg+m¢]

Theorem 4.8 Any of the previous equivalent conditions defines a determinis-
tic, time invariant, constant DC.

Remark 4.9 The deterministic situation 4.7 of BRIDC has as special case
lg, happening when my = m¢ = 0;dr = dg = d. On the other hand the
serial connection of the BRIDC's is no{-a BRIDC. We also gention the possi-
bility of replacing the functions u(®; u (&) with
s £2[t—dr;t—dr+my] £2ft—dg;t—de+myg]
u(®; u () in BDC, the functions X(8); x (&)
£2[t—dr;t £2[t—dr;t E2[tt+6r] E2[tt+6r]
with x(§); x (£) in AIC, the functions u (&) and
£2£|t;t+6r) £2[t;t+5¢) T T E2[t—brt—br+pur]
u (&) with u(®; u(€) in RIC etc. and some
E2[t—6f t—6¢+pr] E2[t—6r31) £2[t—6r51D)
variants of the previous definitions result. The last six functions are not sig-
nals.
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