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Abstract

By making use of the notions and the notations from [12], we present
the bounded delays, the absolute inertia and the relative inertia.

1 Bounded Delays

Theorem 1.1 The next system

\

±2[t¤ dr;t¤ dr+mr]

u (± ) ¸ x (t) ¸
[

± 2[t¤ df ;t¤ df +mf ]

u (± ) (1)

where u; x 2 S and 0 ¸ mr ¸ dr; 0 ¸ mf ¸ df de® nes a DC if and only if

dr ¡df ½ mf ; df ¡dr ½ mr (2)

Proof The proof consists in showing that (2) implies for any u the existence of
a solution x of (1); any such x satis® es x 2 SolSC(u). If (2) is not ful® lled, it
is proved that u exists so that (1) has no solutions.

De� nition 1.2 The system (1), when (2) is true, is called the bounded de-
lay condition (BDC). u; x are the input, respectively the state (or the output);
mr;mf are the (rising, falling) memories (or thresholds for cancellation) and
dr; df , respectively df ½ mf ; dr ½ mr are the (rising, falling) upper bounds,
respectively the (rising, falling) lower bounds of the transmission delay for tran-
sitions. We say that the tuple (u;mr; dr;mf ; df ) satis® es BDC. We shall also

call bounded delay condition the function Sol
mr;dr;mf ;df

BDC : S ! P�(S) de® ned by

Sol
mr;dr;mf ;df

BDC (u) = fxj(u;mr; dr;mf ; df ) satisfies BDCg

De� nition 1.3 The inequalities (2) are called the consistency condition (CC)
of BDC.

Theorem 1.4 Let 0 ¸ mr ¸ dr; 0 ¸ mf ¸ df and 0 ¸ m
0
r ¸ d

0
r; 0 ¸ m

0
f ¸ d

0
f

so that CC is ful® lled for each of them.
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a) We note d"
r = min(dr; d

0
r); d

"
f = min(df ; d

0
f );m"

r = d"
r½ max(dr½ mr; d

0
r½ m

0
r);

m"
f = d"

f ½ max(df ½ mf ; d
0
f ½ m

0
f ). The next statements are equivalent:

a.i) 8u;Sol
mr;dr;mf ;df

BDC (u) ^ Sol
m

0
r;d

0
r;m

0
f ;d

0
f

BDC (u) 6= ;
a.ii) d"

r ¡d"
f ½ m"

f ; d"
f ¡d"

r ½ m"
r

and if one of them is satis® ed, then we have

Sol
mr;dr;mf ;df

BDC ^ Sol
m

0
r;d

0
r;m

0
f ;d

0
f

BDC = Sol
m"

r;d"
r;m"

f ;d"
f

BDC

b) We use the notations d"
r = max(dr; d

0
r); d

"
f = max(df ; d

0
f ); m"

r = d"
r ½

min(dr ½ mr; d
0
r ½ m

0
r); m"

f = d"
f ½ min(df ½ mf ; d

0
f ½ m

0
f ). The inequalities

d"
r ¡d"

f ½ m"
f ; d"

f ¡d"
r ½ m"

r are satis® ed and

Sol
mr;dr;mf ;df

BDC _ Sol
m

0
r;d

0
r;m

0
f ;d

0
f

BDC ± Sol
m"

r;d"
r;m"

f ;d"
f

BDC

The previous inclusion becomes equality if and only if

8u; Sol
mr;dr;mf ;df

BDC (u) ^ Sol
m

0
r;d

0
r;m

0
f ;d

0
f

BDC (u) 6= ;

c) The next statements are equivalent:

c.i) Sol
mr;dr;mf ;df

BDC is deterministic

c.ii) The upper bounds and the lower bounds of the delays coincide:

dr = df ½ mf ; df = dr ½ mr

c.iii) The memories are null
mr = mf = 0

c.iv) The bounded delay degenerates in a translation

9d¡0; Sol
mr;dr;mf ;df

BDC = Id (3)

d) The next statements are equivalent

d.i) Sol
mr;dr;mf ;df

BDC ± Sol
m

0
r;d

0
r;m

0
f ;d

0
f

BDC

d.ii) d
0
r ½ m

0
r ¸ dr ½ mr ¸ df ¸ d

0
f ; d

0
f ½ m

0
f ¸ df ½ mf ¸ dr ¸ d

0
r

e) Sol
mr;dr;mf ;df

BDC is time invariant

f) The next statements are equivalent

f.i) Sol
mr;dr;mf ;df

BDC is symmetrical

f.ii) dr = df ;mr = mf

g) Sol
mr+m

0
r;dr+d

0
r;mf+m

0
f ;df+d

0
f

BDC is a BDC and we have

Sol
m

0
r;d

0
r;m

0
f ;d

0
f

BDC ¢Sol
mr;dr;mf ;df

BDC = Sol
mr+m

0
r;dr+d

0
r;mf +m

0
f ;df+d

0
f

BDC
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2 Fixed and Inertial Delays

De� nition 2.1 Let u; x 2 S and d¡0. The equation (see 1.4 (3))

x (t) = u(t ½ d)

is called the ® xed delay condition (FDC). The delay de® ned by this equation
is also called pure, ideal or non-inertial. A delay di� erent from FDC is called
inertial.

Corollary 2.2 FDC is deterministic, time invariant, constant and symmetri-
cal. The serial connection of the FDC's coincides with the composition of the
translations:

Id ¢Id0 = Id0 ¢Id = Id+d0 ; d¡0; d0 ¡0

Remark 2.3 At 2.1 inertia was de® ned to be the property of the DC's of being
not ideal. In particular the non-deterministic DC's, for example the non-trivial
BDC's (i.e. the BDC's with memory mr + mf m 0) are inertial.

3 Absolute Inertia

De� nition 3.1 The property

x(t ½ 0)�x(t) ¸
\

±2[t;t+¹r]

x (± )

x(t ½ 0)�x(t) ¸
\

±2[t;t+¹f ]

x (± )

true for ¹r ¡ 0;¹f ¡ 0 is called the absolute inertial condition (AIC), or the
non-zenoness condition. ¹r;¹f are called inertial parameters. If it is ful® lled, we

say that the tuple (¹r;¹f ; x) satis® es AIC. We also call AIC the set Sol
¹r;¹f

AIC ± S
de® ned by

Sol
¹r;¹f

AIC = fxj(¹r;¹f ; x) satisfies AICg

Remark 3.2 AIC means that if x switches from 0 to 1, then it remains 1 at
least ¹r ¡0 time units + the dual property. To be remarked the trivial situation
¹r = ¹f = 0.

De� nition 3.3 Let i a DC satisfying 8u; i(u)^Sol
¹r;¹f

AIC 6= ;. The DC i^Sol
¹r;¹f

AIC

is called absolute inertial delay condition (AIDC). Sol
mr;dr;mf ;df

BDC ^ Sol
¹r;¹f

AIC is
called bounded absolute inertial delay condition (BAIDC).

Theorem 3.4 The numbers 0 ¸ mr ¸ dr; 0 ¸ mf ¸ df with CC true and
¹r ¡0;¹f ¡0 are given. The next statements are equivalent:

a) 8u; Sol
mr;dr;mf ;df

BDC (u) ^ Sol
¹r;¹f

AIC 6= ;
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b) ¹r + ¹f ¸ mr + mf

Corollary 3.5 0 ¸ mr ¸ dr; 0 ¸ mf ¸ df , 0 ¸ m
0
r ¸ d

0
r; 0 ¸ m

0
f ¸ d

0
f

and ¹r ¡ 0;¹f ¡ 0;¹
0
r ¡ 0;¹

0
f ¡ 0 satisfy dr ¡df ½ mf ; df ¡dr ½ mr; d

0
r ¡

d
0
f ½ m

0
f ; d

0
f ¡d

0
r½ m

0
r; ¹r+¹f ¸ mr+mf ;¹

0
r+¹

0
f ¸ m

0
r+m

0
f . In such conditions

Sol
mr;dr;mf ;df

BDC ^Sol
¹r;¹f

AIC , Sol
m

0
r;d

0
r;m

0
f ;d

0
f

BDC ^Sol
¹

0
r;¹

0
f

AIC ; Sol
mr+m

0
r;dr+d

0
r;mf +m

0
f ;df +d

0
f

BDC ^
Sol

¹
0
r¹

0
f

AIC are BAIDC's and the next property of the serial connection holds:

(Sol
m

0
r;d

0
r;m

0
f ;d

0
f

BDC ^ Sol
¹

0
r¹

0
f

AIC)¢(Sol
mr;dr;mf ;df

BDC ^ Sol
¹r;¹f

AIC ) ±

± Sol
mr+m

0
r;dr+d

0
r;mf +m

0
f ;df +d

0
f

BDC ^ Sol
¹

0
r¹

0
f

AIC

4 Relative Inertia

De� nition 4.1 0 ¸ � r ¸ ¹r; 0 ¸ � f ¸ ¹f and u; x 2 S are given. The property

x(t ½ 0)�x(t) ¸
\

±2[t¤ ¹r;t¤ ¹r+� r]

u (± )

x(t ½ 0)�x(t) ¸
\

±2[t¤ ¹f ;t¤ ¹f+� f ]

u (± )

is called the relative inertial condition (RIC). � r;¹r; � f ;¹f are called inertial
parameters. If it is ful® lled, we say that the tuple (u; � r;¹r; � f ;¹f ; x) satis® es

RIC. We also call RIC the function Sol
�r;¹r;�f ;¹f

RIC : S ! P�(S) de® ned by

Sol
� r;¹r;� f ;¹f

RIC (u) = fxj(u; � r;¹r; � f ;¹f ; x) satisfies RICg

Theorem 4.2 Let 0 ¸ � r ¸ ¹r; 0 ¸ � f ¸ ¹f ; u 2 S and x 2 Sol
�r;¹r;�f ;¹f

RIC (u)

arbitrary. If ¹r ¡¹f ½ � f ;¹f ¡¹r ½ � r then x 2 Sol
¹f ¤ ¹r+�r;¹r¤ ¹f+� f

AIC .

Remark 4.3 RIC states that the inertial delays 'model the fact that the prac-
tical circuits will not respond (at the output) to two transitions (at the input)
which are very close together' [1], [2]. Theorem 4.2 connecting AIC and RIC
makes use of the condition ¹r ¡¹f ½ � f ;¹f ¡¹r ½ � r that is very similar to
CC, but with a di� erent meaning.

De� nition 4.4 Let i a DC with 8u; i (u) ^ Sol
�r;¹r;� f ;¹f

RIC (u) 6= ;. Then the DC

i ^ Sol
�r;¹r;�f ;¹f

RIC (see Theorem 4.4 c) in [12]) is called relative inertial delay

condition (RIDC). In particular Sol
mr;dr;mf ;df

BDC ^Sol
� r;¹r;� f ;¹f

RIC is called bounded
relative inertial delay condition (BRIDC).

Theorem 4.5 Let the numbers 0 ¸ mr ¸ dr; 0 ¸ mf ¸ df . The next condi-
tions are equivalent
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a) 8u; Sol
mr;dr;mf ;df

BDC (u) ^ Sol
�r;¹r;�f ;¹f

RIC (u) 6= ;

b) One of the next conditions is true

b.i) df ½ mf ¸ ¹r ¸ dr ¸ ¹r ½ � r +mr; dr ½ mr ¸ ¹f ¸ df ¸ ¹f ½ � f +mf

b.ii) dr½ mr+� r ¸ ¹r ¸ df ½ mf ¸ dr; df ½ mf +� f ¸ ¹f ¸ dr½ mr ¸ df

b.iii) df ½ mf ¸ ¹r ¸ dr½ mr+� r ¸ dr; dr½ mr ¸ ¹f ¸ df ½ mf +� f ¸ df

b.iv) ¹r ¸ df ½ mf ¸ ¹r+mr½ � r ¸ dr;¹f ¸ dr½ mr ¸ ¹f +mf ½ � f ¸ df

Remark 4.6 The equivalent conditions from Theorem 4.5 are of consistency of
BRIDC, they are stronger than CC (of BDC) and weaker than (see the hypoth-
esis ¹r ¡¹f ½ � f ;¹f ¡¹r ½ � r from Theorem 4.2)

df ½ mf ¸ ¹f ½ � f ¸ ¹r ¸ dr

dr ½ mr ¸ ¹r ½ � r ¸ ¹f ¸ df

Theorem 4.7 Let 0 ¸ mr ¸ dr; 0 ¸ mf ¸ df so that CC is ful® lled and u 2 S
arbitrary. The next statements are equivalent:

a) x 2 Sol
mr;dr;mf ;df

BDC (u) ^ Sol
mr;dr;mf ;df

RIC (u)

b)

x(t ½ 0)�x(t) = x(t ½ 0)�
\

±2[t¤ dr;t¤ dr+mr ]

u (± )

x(t ½ 0)�x(t) = x(t ½ 0)�
\

±2[t¤ df ;t¤ df +mf ]

u (± )

Theorem 4.8 Any of the previous equivalent conditions de® nes a determinis-
tic, time invariant, constant DC.

Remark 4.9 The deterministic situation 4.7 of BRIDC has as special case
Id, happening when mr = mf = 0; dr = df = d. On the other hand the
serial connection of the BRIDC's is not a BRIDC. We also mention the possi-
bility of replacing the functions

T
±2[t¤ dr;t¤ dr+mr]

u (± ) ;
S

±2[t¤ df ;t¤ df+mf ]

u (± ) with

T
±2[t¤ dr;t)

u (± ) ;
S

±2[t¤ df ;t)

u (± ) in BDC, the functions
T

±2[t;t+¹r]

x (± ) ;
T

±2[t;t+¹f ]

x (± )

with
T

±2[t;t+¹r)

x (± ) ;
T

±2[t;t+¹f )

x (± ) in AIC, the functions
T

± 2[t¤ ¹r;t¤ ¹r+�r ]

u (± ) and

T
±2[t¤ ¹f ;t¤ ¹f+� f ]

u (± ) with
T

±2[t¤ ¹r;t)

u (± ) ;
T

± 2[t¤ ¹f ;t)

u (± ) in RIC etc. and some

variants of the previous de® nitions result. The last six functions are not sig-
nals.

5

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


References

[1] Michael Liebelt, A Proposal for Research on the Testability of Asynchronous
Circuits, The University of Adelaide, Department of Electrical and Electric
Engineering, Internal Report HPCA-ECS-96/01, August 1998

[2] Michael Liebelt, Progress Report on Research on the Testing of Asyn-
chronous Circuits, The University of Adelaide, Department of Electrical and
Electric Engineering, internal report HPCA-ECS-95/03, 29 December 1995

[3] Al Davis, Steven Mark Nowick, An Introduction to Asynchronous Circuit
Design, UUCS-97-013, 1997

[4] O. Maler, A. Pnueli, Timing Analysis of Asynchronous Circuits Using Timed
Automata, in P. E. Camurati, H. Eveking (Eds), Proc. CHARME'95, 189-
205, LNCS 987, Springer, 1995

[5] William Kwei-Cheung Lam, Algebraic Methods for Timing Analysis and
Testing in the High Performance Designs, PhD Thesis, Univ. of California
at Berkeley, 1993

[6] Luciano Lavagno, Synthesis and Testing of Bounded Wire Delay Asyn-
chronous Circuits from Signal Transition Graphs, PhD Thesis, Electrical
Engineering and Computer Sciences, Univ. of California at Berkeley, 1992

[7] Supratik Chakraborty, Polynomial-Time Techniques for Approximate Tim-
ing Analysis of Asynchronous Systems, PhD Thesis, August, 1998

[8] J. A. Brzozowski, C-J. H. Seger, Advances in Asynchronous Circuit The-
ory, Part I: Gate and Unbounded Inertial Delay Models, Bulletin of the
European Association for Theoretical Computer Science, Number 42, pp.
198-249, February 1990

[9] J. A. Brzozowski, C-J. H. Seger, Advances in Asynchronous Circuit The-
ory, Part II: Bounded Inertial Delay Models, MOS Circuits, Design Tech-
niques, Bulletin of the European Association for Theoretical Computer Sci-
ence, Number 43, pp. 199-263, February 1991

[10] Serban E. Vlad, Towards a Mathematical Theory of the Delays of the Asyn-
chronous Circuits, Analele Universitatii din Oradea, Fascicola matematica,
Tom IX, 2002

[11] Serban E. Vlad, On Timed Automata: the Inertial Delay Bu� er, the 9-
th Symposium of Mathematics and Its Applications, Timisoara-Romania,
November 1-4, 2001

[12] Serban E. Vlad, De® ning the Delays of the Asynchronous Circuits, CAIM
2003, Oradea Romania, May 29-31,2003

6

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

