ANALELE UNIVERSITATII DIN ORADEA
FASCICOLA MATEMATICA, TOM VI, 1999

Selected Topicsin Asynchronous Automata

Serban E. Vlad
Oradea City Hall & The University of Oradea
str. Zimbrului, Nr.3, BI.PB68, Et.2, Ap.11, 3700
Oradea, Romania, serban_e vlad@yahoo.com

Abstract The paper is concerned with the modeling of the electrical signals and of the
asynchronous circuitsby R® {0,3} functions and asynchronous automata. The equations of the
asynchronous automata are written and solved; the stability, the fundamental mode of operation,
the technical condition of good running and some aspects of semantics of the propositional
temporal logic as seen from behind asynchronous automata are presented.

AMS Classification: primary: 94C10, secondary: 03B44

Keywor ds:. electrical signals, modeling, delays, asynchronous automata, transitions, stability, the
fundamental mode, the technical condition of good running, semantics of the propositional
temporal logic.

Contents
1 INtrodUCtiON . . . ... 1
2. Preliminaries . . ..o 1
3. The Modeling of the Electrical Signals. . ............ ... . o .. 5
4. SomeWordsontheDual NOtIONS. .. ...t 9
5. DAY S . .o 9
6. ASYNChroNOUS AULOMAIAL. . . . . oo vttt e e ettt et e e 15
7. Example: TheClock Generator . ... ...t e 18
8. Example TheR-SLatch....... ... .. e 19
0. The Modeling of the Asynchronous Circuits. . ............ .. ... ... 21
10.  The Solutions of the Equations of the Asynchronous Automata. .. ............ 23
11. Continuous Timeand Discrete Time . . .. .. ..ot 30
12.  Trangtions. The Interleaving Concurrency Model . ......................... 31
13. Points of Equilibrium. The Stability . ............ ... . o i 33
14.  TheFundamental Mode of Operation. .. ..., 37
15. Combinational AULOMELA. . . . ...ttt 38
16.  The Unbounded Delay Model: the technical condition of good running.
Synchronous-Like Autonomous Automata. . .. .....ovv i 40
17.  Synchronous-Like Control Automata. .. .........couviiiiiii .. 44

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

18.  Classical and Linear Time Tempora Logic of the Propositions. Semantics

19. Branching Time Temporal Logic of the Propositions: Semantics
20.  Conclusions

Bibliography . .. ...

1

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

1. Introduction

The asynchronous circuits, also called Boolean circuits or digital circuits, are formed of
logical gates and wires. Their models are called asynchronous automata. The asynchronous
circuits may be identified, from alogical point of view, with two families of input, respectively
output electrical signals + the relations of determinism between them. Similarly, the
asynchronous automata may be identified with two familiesof R® {0,} functions, called input

and state (or output) functions, that model the input and the output electrical signals + the
relations of determinism between them. We have called these relations the equations of the
asynchronous automata.

Our main purpose was that of giving amodel for the asynchronous circuits and this
research was made along many years of informational isolation, the first results being presented
in[Vlad, 1989] and [Vlad, 1992]. The terminology from thereis that of the fields theory, as
resulted by following analogies, in the first case, respectively that of the automata theory, asthis
theory was presented in the books of Grigore Moisil from the 50's and the 60's referring to the
schemata with contacts and relays, in the second case. It has become obvious that, independently
on the wish of modeling, the study of the R® {0,3} functionsisinteresting by itself and it has

lead to derivatives, integrals, measures and distributions and we have published some papers on
such topicsin the "Analele Universitatii din Oradea’, some time ago.

The new era of the Internet represents an informational blow-up: let us just mention
[Verhoeff, Peeters, 1999], where we have found about 1200 titles of papers concerning
asynchronous automata, many of these papers being available. When reading, we have
rediscovered the intuition that has come to us since the years of studentship from our professors,
that has been the main source of inspiration - Timisoara, electrical engineering - and we have put
order in the already existing results. The conclusion: there does not exist a mathematical theory
of the asynchronous automata.

These were the circumstances in which the present paper was written, with the desire of
giving intuition - we have often quoted due to this reason the bibliography - and of formalizing
afterwards, as much as possible. This type of connection to the bibliography should suggest the
distance, sometimes long, sometimes short, from between electrical engineering and
mathematics.

The main ideas that we deal with in the paper refer to modeling, writing and solving the
equations of the asynchronous automata, defining and characterizing the synchronous-like
automata, i.e. the automata satisfying the technical condition of good running and the
fundamental mode of operation and to presenting some aspects of semantics of the temporal
logic, as seen from behind systems theory.

We express our gratitude for the support and friendship shown by Prof. Dr. Luciano
Lavagno from Udine, that has had long debates on asynchronous topics with us in the period
when the paper was written.

2. Preliminaries

2.1 Definition The Boole algebra with two elements, or the Boolean ring with two elements B,
consistsinthe set {0,} together with

a) theorder O£1
b) the discrete topology (i.e. the open sets are the subsets of {0,1} )
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c) the laws: the logical complement -, the modulo 2 sum ' A ' and the product '

Alo 1 x| 0 1
-10 1
0(0 1 0|0 O
10
1/1 0 1/0 1
b) c)
table (1)
2.2 Remark It is obvious expressing the reunion 'E ' with A, > and proving that B, isaBoole

agebrarelativeto ,E, x B, isasoafield, in particular aring, relativeto A, .

2.3 Remark Inthe rest of this paragraph we shall consider that there are given afunction
X:R® B, andthesubset | | R;specid cases: | =R and | = &.

2.4 Definition ¢ : R® B, isthe characteristic function of the set | :
L tT |

c,|(t)= - 1
1 (1) Lot | (1)
2.5 Definition The support of x isthe set:
supp x ={t|tl R x(t) =3 (1)
2.6 Remark 2.4 and 2.5 give
suppc =1 Q)
X = C gupp x @)

2.7 Notation We shall note with |1 | the number of elements of the set | , supposing that it is
finite. If 1 isinfinite, |1 | isnot defined.

2.8 Definition The modulo 2 summation 'X ', thereunion 'U' and theintersection ' 1 ' of x on

| aregiven by:
iL|l U isodd
X x(t)= oS Sppxlisedd X (=0 ®
t 1 10,]1 Usupp x |iseven tl A&
iL1 Usupp xt A
Ux(ty=| o e xE A Ux(®) =0 %)
ti | 10,1 Usupp x =4 tl A
- -
1 xp=| o PPxEl 1 x(t=1 ©
th 1 70, supp x* | th &£
where ' U' isthe meet (or the intersection) of the setsand at (1), | U supp x is supposed to be
finite.

29Remark X x(t) isageneralized series; the seriesis convergent if 1 U supp x isfinite and
th |
divergent otherwise. U x(t) isthe maximum of the functionxonthesetl and 1 Xx(t) isthe

t1 1 t1 1

minimum of the function x on the set |.
We have considered that | £|=0 isan even number.

2
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2.10 Definition Theleft limit and theright limit x(t - 0), x(t + 0), respectively the left derivative

and theright derivative D™ x(t), D x(t) of x in t are binary numbers or binary functions, as t
isfixed or variable and they are defined like this:

$e>0," xI (t- et), x(xX) =x(t- 0) (1)
$e>0," x1 (t,t +€), x(x) = x(t +0) (2)
D x(t) = x(t - 0) A x(t) (3)
D x(t) = x(t + 0) A x(t) (4)
2.11 Definition A function x for which x(t - 0) and x(t + 0) existfor all t| R iscalled
differentiable.
2.12 Notations We note with Diff the set of the differentiable functions and with Diff (" the
set
Diff (W ={ (% (),.... x, (1)) [tT R, x 1 Diff i =1, n} (1)
2.13 Remark The relation between Diff " and Diff (" isthe following one. Let i : R® R"
defined by
R'tai(t)=(t,..,t)T R" (1)
Then
Diff ™ ={xoi|xI Diff "} (2)

2.14 Remar ks The previous notions (derivatives, differentiability) have formal similarities with
those of the real functions. These similarities justify the terminology.

On the other hand if D™ x(t) =0, then x isleft continuousin t andif D™ x(t) =1, then x
switches (from 0 to 1 or from 1 to 0): it isleft discontinuousin t.

2.15 Proposition Diff isaring relativeto thelaws A, > that are induced by those of B, and
Diff (" isa B,-linear space relative to the obvious laws A, .

2.16 Theorem (of representation of the differentiable functions). The following statements are

equivalent:
a) x| Diff
b) the real numbers t, 1 R and the binary numbers a,,b, T B,,z1 Z exist so that:
L<t.g<tp <t <.. (1)
"t R, (t,t") U{t, |zl Z} isfinite (2)

x(t) =... Aa 1°Ct g} (t) A b x (t.1.t0) (t) A ap o (t) A b xc (to.tn) ®) AL 3
2.17 Remarks From the proof - that is omitted - of the previous theorem, we just mention that for
any tl R:
X(t- 0)=b,, where z ischosen so that tl (t,.q,t,] (1)
x(t +0) =b,, where z ischosen so that t1 [t,.q,t;) 2
We also observe that, given x, the families (t,), (a,), (b,) arenot unique (in order to
seethis, we can take x to be the constant function).

3
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2.18 Remark The theorem 2.16 shows that the differentiable functions are compatible with the
electrical signals of theinertial digital circuits. The abstract model of such acircuit is called
asynchronous automaton and it makes use of differential equations written with differentiable
functions.

2.19 Definition Let thereal family (t,) . Itiscalled strictly increasing, if it fulfills the condition
2.16 (1); locally finite, if it fulfills 2.16 (2), respectively strictly increasing locally finite, shortly
SILF, if it fulfills 2.16 (1) and 2.16 (2).

2.20 Remark For x like at 2.16 (3), simple computations show that:

X(t - O) =.. A bo >‘C(t_ 1’t0] (t) A bl XC(tO!tl] (t) A (1)

D™ x(t) =...A (ag A bp) xCqygy () A (ag A by) xepyy (DA .= X DTX(G)opy () @

thus supp D™ x1 (t,). Thesituation is similar for the right statements.

2.21 Remark An interesting consequence of theseideasis: at the |eft of an arbitrary point t, the
derivative of x isnull:
D™ x(t- 0)=0=x((t- 0)- 0)A x(t- 0) (1)
from where
X((t- 0)- 0)=x(t- 0) @)

2.22 Remark There do not exist distinct lateral limits of the second order and distinct derivatives
of the second order. There does not exist a differentiability of the second order of the functions

R® B,.
2.23 Definition Theset Real | Diff of the realizable functionsis defined by:
supp X1 [0,¥) (1)
supp DT x=£ (i.e DT x(t)=0,tT R) 2)
and the set Real ™ 1 Diff ™ isgiven by:
Real ™ ={(x(t),... x,(®)) |tT R,x T Real,i =1 n} (3)

2.24 Proposition Real isasubring of Diff and Real (" isalinear subspace of Diff ().
2.25 Definition A real family (t,) satisfying

O:to <t1<... (1)
and 2.16 (2) is called strictly increasing non-negative locally finite, shortly SINLF.
2.26 Proposition (of representation of the realizable functions). The following statements are

equivalent:
a) x| Real
b) the SINLF family t,1 R, zl Z existsso that:
X(t) = X(t) >c[t0't1) (t) A x(t,) >C[t1’t2) A ... (1)

2.27 Remarks The differentiable functions are self-dual.
The realizable functions and respectively their right duals, the realizable* functions,
model the behavior of the deterministic (i.e. non-anticipative) circuits, where the present depends

4
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on the past but not on the future, respectively of the anticipative circuits, where the present
depends on the future but not on the past. The intuitive meaning of left and right is given, from a
systemic point of view, by the duality determinism - anticipativity.

The realizable functions point out the existence of the initial time moment O, whilst the
realizable* functions point out the existence of the final time 0.

2.28 Definition The set Diff, | Diff of the differentiable functions with a non-negative support

is defined by:
supp x1 [0,¥) «y
and the set Diff (" i Diff (" is given by:
Diff {™ ={ (x¢(t),..., X, (1)) |tT R, x; 1 Diff,,i =1 n} )

2.29 Proposition We have the next inclusions Real | Diff,., Real () ] Difffn) of rings,
respectively of linear spaces.

3. TheModeling of the Electrical Signals
3.1 Terminology Let us consider the next drawing

X
AT~~~ "~~~ —=—-—=—=—--— - - —

HIGH == 1
S e

where O<a<a'<b'<b and
a) t| R isthetemporal variable
b) the function X: R® [0,b] iscalled electrical signal

c) x: R® B, isthebinary model of X
d) theintervals [a,a") , [a',b'], (b',b] are called the ranges of values LOW,
UNCERTAINTY and HIGH.

3.2 Remark Infigure 3.1 (1) we observe the existence of the time interval [t;,t>] when x can
take any value, O or 1. This situation was noted with the sign ?.

5

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

3.3 Remarks The electrical signals completely characterize the asynchronous circuits. Such a
circuit S isidentified with afinite, non-empty set of electrical signals Xy ,..., X, + the relations of
determinism between them.

The R® B, functions completely characterize the behavior of the asynchronous
automata. Such an automaton S isidentified with afinite, non-empty set xq,..., X, of models of
the signals X,..., Xy + the relations of determinism between them. From this point of view, we
can say that S models S.

We havein fact the next levels of abstractization here:

a) the asynchronous circuit S - the lowest level of abstractization

b) the electrical signals Xi,..., X

C) Xq,.., Xk and S - the highest level of abstractization.

3.4 Our purposein this section isrelated to 3.3 a), b) c) in the following manner:

a) S cannot be defined, itisa physical object similar to the tables and the chairs from a
living room. What we can do isto call its constitutive elements and to show the way that they can
be connected to each other.

b) We shall define the electrical signals.

c) We shall show the meaning of the fact that x: R® B, modelsthe electrical signal X .

d) We shall show that any electrical signal can be modeled by arealizable function
€) We shall suppose that, when modeling is possible, the realizable functions are models
of some electrical signals.

3.5 Informal definition "An asynchronous circuit, informally, is an arbitrary interconnection of
logic gates, with the only restriction that no two gate outputs can be tied together” (cf. [Lavagno,
1992]).

3.6 Remarks By "logic gates' we understand these devices that implement the Boolean
functions. The most frequent such gates are related to simple Boolean functions and their
symbols have been written bellow:

|
I

a) delay element; it implements the identical function f(a) =a

4D07

b) the NOT gate; it implements the logical complement function f (a) = a
c) the AND gate; it implements the product function f (a,b)=a>b
d) the NAND gate; it implements the Scheffer function f (a,b) =a b

—_

o

6
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€) the OR gate; it implements the reunion function f(a,b)=aE b

3.7 Definition An electrical signal isafunction X: R® [0,b] that associates to each moment of
time tI R (thetimeismeasured in seconds) avalue X(t) tension (that is measured in volts). We
ask that:

i) X(t)=0,t<0

i) X()1 [a,b],t3 0

iii) X(t) iscontinuousinall t* 0;in0, X isright continuous

iv) "Lt R, (1) U{t | X()T {a',b}} isfinite.

3.8 Remarks We interpret the definition 3.7 in the following manner.

a) Therequestsi), ii) point out that O istheinitial time moment. This anticipates that the
asynchronous automata are constant (or time invariant) dynamical (i.e. determinist, or non-
anticipative) systems, cf. with [Kalman+, 1975], definition 1.2 stating roughly that for these
systems, the tranglations along the time axis of the inputs, of the states and of the outputs are
possible when they take place simultaneously, with the same t T R. Thus, choosing O as initial
time moment is possible without loss.

b) the requestsiii), iv) are of inertiality. To be compared 3.7 iv) with the request of local
finiteness 2.16 (2).

3.9 Definition The logical value function n:[a,a') U(b',b] ® B, isdefined by:

n(x):}O'XI [a,a)

b xi (bb] )

3.10 Definition Let x: R® B, and | | [0,¥) someset. x iscalled model, or model function, or
modeling function of the electricalﬂsignal X (ontheset |) if
"t30,X(t)1 [a,a) U(b,b] b n(X(t)) = x(t) (1)
("tT 1, X1 [a,a) U0, bl P n(X(1)) = x(t)) (2
We say that x modelsthesignal X (on I ).

3.11 Definition Let us note
I'={t|X(t)T [a,a) U(b',b]} Q)

and we have the next possibilities:

a) |'=/&; wesay that X isthetrivial electrical signal and that x models X in thetrivial
manner.

b) 1't £; wesaythat X isaproper (or non-trivial) electrical signal and that x models
X inaproper (or non-trivial) manner.

In the cases a), b) we can replace | with 1'Ul when the modeling is done on this set.
3.12 Definition We say that X has a switch from LOW-HIGH or that it switches from LOW-
HIGH if there exist the numbers 0£t'<t" with X(t')1 [a,a'), X(t")1 (b',b].

3.13 Proposition If X has a switch from LOW-HIGH then there exists an interval
[t1,to]1 (0,¥) with:

) "e>0,8x1 (t; - ety), X(x)1 [a,a")
i) X(ty) = a
7

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

ii) X([ty tp]) =[a', b’

iv) X(ty) =b'

V) "e>0,%x1 (tp,to +€),X(X)T (b',b]
Proof We have the next property: because X iscontinuouson [0,¥) then, for any 0£t'<t" with
X(t')<X(t") andforany | T (X(t"),X(t")), there exists at least a t1 (t',t") sothat X(t) =1 cf.
for example [***,1977], pg. 221.

3.14 Definition @) In the conditions of the Proposition 3.13, theinterval [t;,t,] iscalled the
switching interval of X from LOW-HIGH. We say that X has a switch or that it switches from
LOW-HIGH during the interval [t,t5].
b) The real positive number t, - t; iscalled the switching time of X from LOW-HIGH.
C) Let us supposethat x changesitsvaluein theinterval [t;,t,] exactly oncefrom O to
1. We say that x switchesfrom O to 1 (together with X).

3.15 Remar k From a physical point of view, the switching of the electrical signalsis equivalent
to the migration of acloud of electrons inside a semiconductor. The timeinterval [t;,t>] from fig
3.1 (1), Proposition 3.13 and Definition 3.14 isin fact the duration of this migration.

3.16 Remark Similar (dual) statements with the previous ones from 3.12, 3.13, 3.14 are obtained
by replacing LOW with HIGH and vice-versa, respectively by replacing O with 1 and vice-versa.

3.17 Remark We have defined in paragraph 2 the realizable functions and the SINLF families. In
order to point out what connection exists between the realizable functions and the electrical
signals, we observe that, given the signal X: R® [0,b], we have the next possibilities:

a) X does not switch (from LOW-HIGH, or from HIGH-LOW) at all

b) X switches (from LOW-HIGH, or from HIGH-LOW) a finite number of times. There
exist the numbers:

O<t0 <t <.. <t2p <t2p+1
with the property that the switching intervals are: [tg,t1],...,[t2p, top+1]

c) X switches (from LOW-HIGH, or from HIGH-LOW) countably many times, in the
sense that there exist the real numbers
O<t0 <t < ...<t2p <t2p+1 <..

so that the switching intervals of X are: [tg,t1],....[t2p, top1],--
3.18 Proposition Any electrical signal X hasarealizable model xI Real .

Proof We refer to the cases a), b), ¢) from 3.17 when X is modeled by the realizable function x
having the form:

x(t)=a XCro,¥) ®) 1)
X(t) =axc[oy) (t) A axcpy 1) (O A A b, o 1t2psn) ® )
X(t) = axc[og) (1) A axcpy 1 A A by, o-1t2ps0) ®) A.. (3)

where a,bl B,,tT R andin (3) it iseasily seen that the condition 3.7 iv) implies that
{t,|nT N} isSINLF.

8

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

3.19 Convention In this paper we shall suppose that the electrical signals are modeled by
realizable functions.

4. Some Words on the Dual Notions

4.1 Remarks Let us recall some of the dual concepts that have occured in the paper:
a) the Boolean intersection and reunion; the set intersection and reunion
b) the left [imit x(t- 0) and theright limit x(t +0) of x

c) the left derivative D™ x(t) and the right derivative D x(t) of x

d) Oand 1, LOW and HIGH

€) the realizable and the realizable* functions

f) the differentiable functions with a non-negative support and the differentiable functions
with anon-positive support

g) the past and the future

h) the dynamical, or the non-anticipative systems, respectively the anticipative systems

i) theinitial time moment and the final time moment
and there are also similar dual concepts that have not been presented explicitly, for example the
modulo 2 sum and the logical value function have dual concepts themselves.

Between the self-dual notions that have occured, we mention:

a) the logical complement

b") the differentiable functions

c) UNCERTAINTY

d’) the delay element and the identical Boolean function.
The Remark 2.27 shows the way that the dual concepts are related to each other.

The sources that generate dual concepts are, generaly:

- of algebraical nature

- related to the duality of the order relations< and > on B, and R.

Until now and from now also, understanding duality gives alogical symmetry to the
exposure.

5. Delays

5.1 Notation We consider a delay element whose input electrical signal U and output €l ectrical
signa X are modeled by the realizable functions u, x and the delay is the parameter t >0.

5.2 Terminology The functions u, x are called the input function, respectively the state (or the
output) function. t iscalled delay.
u, X refer tothedelay element and u, x,t refer to the delay model.

5.3 Informal definition

a) "A delay element ispureif it transmits each event on itsinput to its output, i.e. it
corresponds to a pure tranglation in time of the input waveform"”, cf. [Lavagno, 1992].

b) "A pure delay can delay the propagation of awaveform, but does not otherwise alter
it", cf. [Davis, Nowick, 1997].

5.4 Definition The delay model and the delay itself are called pureif
x(t) =u(t- t) 1)

9
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5.5 Informal definition

a) "Theinertial delay model means that if an element has a switching delay of t time
units, pulses generated by the logic evaluator with duration lessthan t are filtered out, while
pulses longer than t units appear at the output x shifted intime by t units®, cf. [Lavagno,
1992].

b) "Aninertial delay can alter the shape of awaveform by attenuating short glitches.
More formally, an inertial delay has a threshold period t . Pulses of duration lessthan t are
filtered out”, cf. [Davis, Nowick, 1997].

5.6 Definition The delay model and the delay itself areinertial if

D™ x(t) = (x(t- 0)A u(t- 0)x UD™u()>cyi ¥) (t)A x° 1 (1) «y
N (t-1t)

In the previous equation, the number x0T B, iscaled theinitial state.

5.7 Example of inertial delay model. We take x=0,t =2 and

u(t) = crza) () A cpeg) (1) (1)
We have:
D™ u(t) =cf346,9 (1) )
~UD u(x) = czguesuea (1) 3
Xl (t- 2,t)
andin (1), (2), (3) tT R.Weinfer that:
t<0 x(t) =0 (4)
because x1 Real . For t 3 0 we start using 5.6 (1) and we get:
tT [0,3) D™ x(t) =(0A 0) dxc o) (t) A0=0 (5)
X(t)=0 (6)
t=3 D™ x(3)=(0A0)xxA0=0 (7)
x(3) =0 (8)
tT (36) D x(t) = (0A u(t- 0))>03A0=0 (9)
x(t)=0 (10)
t=6 D™ x(6) =(0A0)xxA0=0 (11)
X(6) =0 (12)
tT (6,8) D™ x(t) =(0A1)>04A0=0 (13)
x(t)=0 (14)
t=8 D™ x(8)=(0ADxxA0=1 (15)
x(8) =1 (16)
tT (8,9] D™ x(t)=(1A1)xx4A0=0 (17)
x(t) =1 (18)
tT (911) D™ x(t) = (1A 0)>04A0=0 (19)
x(t) =1 (20)
10
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t=11 D™ x(11) = (1A 0)x¥xA0=1 (21)

x(11) =0 (22)
t>11 D™ x(t)=(0A0)44A0=0 (23)

x(t) =0 (24)
i.e. the solution of 5.6 (1) is:

X(t) =g () (25)

In this example, we have supposed that u isequal with O everywhere except two time intervals:
[34) and [6,9), the first of length lessthan t , the second of length 3 t . The conclusionis

concordant with 5.5 in the sense that:

a) the first perturbation, corresponding to the interval [3,4), was filtered out

b) the second perturbation, corresponding to the interval [6,9), was shifted in time with t
time units.

5.8 Definition The delay model of the delay element and the delay itself are said to be:

a) fixed, if t >0 isfixed (cf. [Davis, Nowick, 1997], [Lam, 1993])

b) bounded, if tT [m,M] isparameter and m, M are fixed (cf. [Lavagno, 1992], [Davis,
Nowick, 1997], [Lam, 1993])

) unbounded, if t >0 is parameter (cf. [Lavagno, 1992], [Davis, Nowick, 1997])

¢) unbounded, if tT [0,M], M fixed (cf. [Lam, 1993])

¢") unbounded, if tT (0,M], with M fixed

5.9 Remark The motivation of the classification 5.8 is given by the fact that t may be not
known and constant. It can depend on the technology, on the temperature and on the switching
sense, from LOW-HIGH, respectively from HIGH-LOW. The bounds m, M may refer to "all

possible chips, including even those fabricated on different wafers®, [Lam, 1993].

5.10 Remark We mention [Beerel, Meng, 1991] where the separation pure delay model-inertial
delay model is made under the next form:

a) transparent delay model, informally defined by : ...allows propagation of short
excitation pulses through gates and allows time varying delay elements’

b) inertia delay model, coinciding with the previous points of view.

In [Beerel, 1994] the pure chaos delay element pcde isinformally defined by: "the
function of apcde islike a queue of transitions in which a sequence of transitions can accumulate
before the first transition of the sequence emerges at the pcde's output”. "When a new transition is
pushed into a non-empty pcde, it may combine with the adjacent transition and the two
transitions may annihilate each other". "It models the inertia quality of real gatesin that real gates
cannot react to very short excitation pulses. In a pcde, the choice between passing through and
annihilating transitions is random, hence its chaotic nature". "For those transitions that do pass
through the pcde, the delay is arbitrary, but finite".

The ideas that were presented at 5.9 alow that the delay is afunction of time, generaly
unknown (perhaps it is bounded and the bounds are known). In fact, the transparent delay model
and pcde are the pure delay model and the inertial delay model, our definitions 5.4 and 5.6, when
t =t(t).

5.11 Definition We have the next classification of the delays:
a) wire delay model:

11
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x(t) = u(t- t) )

where u, x] Real arethe models of the electrical signals from the two ends of the wire
b) gate delay model; we note with f : Bgn ® B, thefunction that isimplemented by the
gate, with uy,...,uy, X1 Real the models of the inputs and of the state (of the output), with

t1,..t m,t >0 the delaysand with x°1 B, theinitia state and we have:

b.1)  x(t) = fug(t- ty),..um(t- tm))ox)(t) 2
b2)  X(t) = f(Ug(t- t),esUp(t- 1)) y) (DA XO5e[01) (1) (3)
b3) D x()=(x(t- 0)A f(Uy(t- 0),....um(t- 0))x (4)

x UD (U (), um () Xt ) (1) A X% ey (1)
X (t-tt)
These equations give
b.1) the input delay model
b.2), b.3) the output delay models, the pure, respectively theinertial one.

5.12 Informal definition The previous definition appears under some informal formin all the
cited works. Here is [Beerel, Meng, 1991]:

a) input delay model: "we assume instantaneous eval uation of the gate function with an
independent delay element at each input lead of the gate”

b) output delay model: "we assume instantaneous evaluation of the gate function with an
independent delay element at each output lead of the gate". Furthermore, a common form of
output delay model is the inertia delay model, where "the output delay element is fixed and the
gate does not react to excitation pulses shorter than the output delay”.

5.13 Remark We give intuition on the definition 5.11.

First of all, asthe asynchronous circuits consist in wires and gates, their delays appear on
wires and gates.

Second, inertiais given (see 3.15) by the migration of a cloud of electronsinside a semi-
conductor. The wire - implementing the identical Boolean function B, ® B, - isa conductor
with no inertial properties and the wire delay model is the pure delay model.

Third, the logical gates that implement the Bg‘ ® B, functions can have input delays (at
b.1)), or output delays (at b.2), b.3)), the lack of delays being a non-interesting idealization in the

present paper and the presence of the delays on inputs and outputs being reduced at b.1), b.2),
b.3). The case b.1) shows how f can be computed when itsinputs, for various reasons, arrive

with delays. Asthe computation of f only, made with a semi-conductor, can be made inertially
and the input delay model is not related to the computation of f , b.1) isapure delay model

(there are m pure delay models there). The situation differs when we refer in b.2), b.3) to the
computation of f : it can be approximated in two ways, the non-inertial and the inertial one.

5.14 Remark 5.11 b.3) can be analyzed by means of an example similar to 5.7, where we replace
u with fou.

12
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5.15 Remark The delays on wires and gates should be understood as primitive, atomic delays of
the asynchronous circuits. In fact, in [Davis, Nowick, 1997] it is given the next classification of
the delay models:

- simple gate (gate level) models

- complex gate models, where "an entire sub-network of gatesis modeled by asingle
delay”.

5.16 Example of complex gate model. Let the next circuit:

7 ) i DO &
=1 T=2
fig (1)
described in the output pure delay model by the equations:
X1 () = Uy (t- >ua(t- )€1y () A X7 01 (1) (1)
X (t) = X1 (t- 2)¢ 2y (1) A Xg *Cr0,2) (1) 2

We get:
Xa (1) =g (t- 3)up(t- 3)Cry) (t- A X7 gy (t- 232y (DA X2 (1) (3)

=uy(t- 3)Up(t- 3)czy) (M)A X X2z (1) Xcpay) (1) A X3 xcg.2) (1)

= (ug(t- ua(t- 3 gy (HA X_fm[z,s) (1) 2y (DA X3 x1o,2) (t)
If
xf = xg = %0 (4)
we have

X2 (t) =ug(t- 3)2up(t- 3xczy) (A x° C10,3) (1) ©)
i.e. instead of two gateslikein fig (1), we can take in consideration a circuit that

- implements the composed Boolean function
- has the delay given by the sum 3=1+2.

5.17 Remark In the previous example, the supposition (4) does not alter the quality of the model.
In the general case however, adiscussion is necessary on the values of the initial states.

On the other hand, the possibility of using two "simple gate models’ giving a"complex
gate model" is a consequence of the fact that both "simple gate models* are pure.

5.18 Remark If both gate models from 5.16 (1) are inertial, the complex gate model of the circuit
has a delay equal with 3=1+2, but it filters out pulses shorter than 2, instead of filtering out pulses
shorter than 3. The general rule hereis: thedelay isgiven by tq +...+t, and filtering out refers

5.19 Remar k One of the meanings of the inertial delay with t time units5.11 (4) isthe
following: if t3 t and

13
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D™ x(t) =1 (1)
then
~UD™ f(u (%), um(x)) =0 (2)
A (t-t.t)
thus f(Uy,...,um)[t-t 1) iSthe constant function, necessary condition for the switch (1) to
happen.
We have that for the inertial complex gate model of the asynchronous circuit from fig
5.16 (1), (up xup)t- 3t) constant istoo strong compared to (Ug Uy ) [t- 2ty Constant, necessary
condition for X, to switch.

We accept that the inertial delay model and as a specia case the complex gate inertial
delay model uses datain conditions probably stronger than necessary. From this point of view,
modeling 5.16 (1) by:

D™ xa(t) = (x(t- 0)Auy(t- 0)xup(t- 0)x  UD™ ug(x)»uz(x) gy (DA X3 g (1) (3
X (t-3t)

is reasonable.

5.20 Remark Let us quote [Liebelt, 1995] saying "A common form of the implementation of the
inertial delay model is the one in which the transmission delay for the transitions is the same with
the threshold for cancellation”.

The author accepts two parameters for the inertial delay model - that we have seento
govern the complex gate inertial delay model from 5.16 - that he calls transmission delay and
threshold for cancellation and he mentions that usually they are assumed to be equal. We give
the equation characterizing the case when the two delays differ:

D™ x(t) = (x(t- 0)A f(uy(t- d- 0),..,up(t- d- 0)))x 4
X UD™ (U0 Um(¥) X pr4ay) 0 A X0 g (1)
X (t-t-dt-d)
where t >0,d3 0, t isthe cancellation delay, t +d isthetransmissiondelayand t £t +d, like

at 5.16.
We shall not use this mode.

5.21 Remark Another source of approximation is given by the values that the model function x
has during the switching interval [t;,t,] of X, seefig 3.1 (1). We have adopted the binary logic
for algebraical reasons (B, isafield, but athree element set cannot be organized similarly) and it
isnot clear so far what values x must have when X crosses the UNCERTAINTY range of values.
We need the next
5.22 Convention We ask referring to fig 3.1 (1) again that

Xtto] = X(t - 0) D
i.e. during the switch, the model keepsits previous value.
5.23 Remark The condition 5.22 (1) isfulfilled if we take t big enough (in its own range of
acceptable values) so that when the switch of x happensi.e. when 5.19 (1) istrue, the

uncertainties are already ended. Weread 5.19 (1) like this: " x has surely switched at t" (or
previoudly).

14
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6. Asynchronous Automata
6.1 Notation We note with {4} the set formed by one single element.

6.2 Remark For the sake of a unitary exposure, we give {4} the next meaning: if the argument
of afunction has avariable running in { &} , then the function does not depend on that variable;
and if afunction hasthe valuesin the set { &}, then it is constant (it takes one value).

6.3 Definition We call asynchronous automaton, or asynchronous system, a mathematical
concept S given by the following data:

- thetime setis R

- tT R isthefreevariable, called the time moment, or the time instant

- to =01 R iscalled theinitial time (moment, or instant)

- nl N iscalled the dimension of the state space, or the dimension of S

- the state space X isgiven by
_H{A.n=0 "
+ Bl.n31

- x1 Real (" jscalled the state, or the state function, or the trajectory (of S). x isalso
called solution (of an equation), orbit or field line. Sometimes we speak about the states, or the
state variables of the automaton and this refers to the coordinate functions Xy ,..., X, . The first

m 1 {0,...,n} of them are called ideal (or pure, or non-inertial) states (or coordinates) and the
last n- ny of them are called inertial states (or coordinates). We consider that xI Real (0)
represents the null state function.

- x°T X iscaled theinitial state
- mi N iscalled the dimension of the input space
- U iscalled the input space

H{A,m=0
U_

= 2
'TI'Bm,m31 @)

- ul Real™ js called the input, or the input function, or the control (of S); sometimes
we speak about the inputs of the automaton and this refers to the coordinate functions ug,...,Up,.
We consider that ul Real (¥ represents the null input function.

- thefunction f:BJ ~ B'® B, iscalled the generator function (of S). If m=0 and
n3 1, we can consider that it is given a generator function noted g: BJ ® BJ andif n=0 -
whichever m might be- we can consider that no generator function is given

- the positive parameters t;,i =1,n are called the delay parameters, or the switching time
parameters (of the coordinate functions fy,..., f, of f , respectively of the coordinate functions

91,--09n Of g)
- let us suppose that n3 1; then the relation between the previous data is given by:

15
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case m3 1: the equation
X (1) = fi (x(t- t7),u(t- t;)) g, vy (O A X0 o)), =1y ©)
D™ x; () =(x (t- 0) A fi(x(t- 0),u(t- 0)))x 4
x D i (X(x),u(®) g; ) O A X7 gy (1), =y +1n

i (t-tj.t)
case m=0: the equation

X (1) = gi (X(t - 1)) e, 3y O A xVepg ) (0,1 =1y (5)
D% (1) = (% (t- 0)A g; (x(t- 0))) (6)

x  UD" g (X(x)) X, ¥y ®) A X0 xcygp (t),i =ng +1n
X (t-tjt)
In (3),...,(6) one of thesets {1,...,m},{m +1,...,n} can be empty and in this situation that equation

ismissing. In these equations t1 R; x? and, in case that it exists, u aregiven, tq,..,t, are
parameters and x is the unknown.
- if n=0, then none of (3),...,(6) exists.

6.4 Remark We consider that the words automaton and system are synonyms and they express
the abstractization of the notion of circuit, aswe have already said at 3.3. Sometimes, by the
word system we shall refer to one of the systems of equation 6.3 (3), (4), respectively 6.3 (5), (6)
but thiswill create no confusions.

6.5 Remark By asynchronous system, in the systems theory we usually understand real time
systems, where the variablesrunin B'z‘ spaces.
6.6 Definition An automaton for which m=0 iscalled autonomous; if m> 0, the automaton is

called non-autonomous, or controlled, or control automaton and an automaton for which n=0 is
caled trivial. If m=n =0, then the automaton is called empty, or void.

6.7 Remark A non-empty trivial automaton consistsin the input u and no relation (of
determinism). The empty automata are the automata with no content.

6.8 Definition The equations 6.3 (3), (4) are called the equations of the (hon-autonomous, or
controlled) asynchronous automata, shortly EAA. The equations 6.3 (5), (6) are called the
equations of the autonomous asynchronous automata, shortly EAAA.

6.9 Remark There exists arelation between the autonomous and the controlled automata, given
by the situation when m3 1 and in EAA u isthe constant function:

u(t) =u®cpoyy (1), u’1 BY (1)

Then the automaton S described by 6.3 (3), (4) behaves like the automaton S' described
by 6.3 (5), (6), the next equation being true:

g(%=f(xu) )
6.10 Definition The previous automaton S is called autonomous-like.
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6.11 Remark The supposition that EAA, respectively EAAA contain both types of coordinates,
non-inertial and inertial does not restrict the generality. This fact happens because if xio =0 and
f; =0, respectively g; =0, then x; =0 isasolution. Thus, in the situation when pure or inertial
coordinates do not exist, anull coordinate can be added.

On the other hand, if EAA, respectively EAAA contain coordinates where xio =0 and
f; =0, respectively g; =0, the equations can be rewritten eliminating these coordinates.

6.12 Definition In the special case when in EAA or in EAAA the generator function does not
depend on %, S iscalled combinational automaton, or automaton without feedback and otherwise
S iscalled sequential, or with feedback.

6.13 Definition Suppose that the Boolean function that isimplemented by acircuit satisfies the
property that it depends only on the input; then the circuit is called combinational (without
feedback) itself. In the case when the function depends on the state (or output) aso, the
asynchronous circuit is called sequential (with feedback)

6.14 Remark EAA and EAAA give an output delay model of the asynchronous circuits
characterized by:

- acombination of the pure delay model and the inertial delay model

- acombination of the simple gate model and the complex gate model

- any of the fixed, bounded and unbounded delay models from 5.8.

These equations do not match exactly the transparent delay model and the pure chaos
delay model of Beerel (see 5.10), but in the paragraph 19 of our work related to the branching
time temporal logic we shall make some comments on this topic too.

6.15 Remark We give the dual, anticipative version of EAA
X (1) = fi(x(t+t;),ut + 1))y . O A xC (. q; 0 (1,1 =1y «y
D (1) = (% (t+0) A f; (x(t +0),u(t +0))) x @)

x  UD™ i (x(),u()) € -y - ;10 A X xcqq (1), =y +1n
X (t,t+tj)
ul Real* (™ x7 Real* (™ and therest of the dataremain the same.

The solution x' of (1), (2) and the solution x of EAA, supposing that such solutions exist
and are unique (to be proved later) run the time set irl opposite senses.
x(t) =x'(-t),tl R 3

6.16 Remark There exist other similar ways of writing the equations of the asynchronous
automata, that bring nothing essentially new. It is possible to initialize the coordinates xq,..., Xp
not starting with the time instant tg =0 but ending with the time instant t; .

6.17 Remark In [Kaman+, 1975], when defining the (finite) automaton it is asked, unlike we do,
that thetime set isdiscrete: Z or N . The existing relation between the real and the discrete time

will be one of our concerns and as we shall see the two points of view, ours and theirs, do not
differ.
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7. Example: The Clock Generator
7.1 Example of autonomous asynchronous automaton. The next circuit:

nel

fig (1)
is called the clock generator. In the non-inertial, respectively in theinertial variant, using the
unbounded delay model 5.8 ¢") EAAA that model this circuit are, with the generator function

g:B, ® B, =thelogica complement and after simple computations:
X(®) = X(t - t)Cp v O A X xepo ©) @)
D x())= UD x(x) g x) () A x° gy (1) ©)
X (t-1,t)
with x°T B,,xT Real and tT (0,M].

7.2 Theorem The solutions of 7.1 (2), (3) are unique, they coincide and they are given by:
i
0o ,t<0
x(t) = ! x0 ot kAUN [2kt, (2k +Dt) =x%cpoy) () A X Cria ) © (1)
.I. | ! 31 !
T1A x0tT U [(2k +Dt, (2k +2)t)
T KN

Proof 7.1 (2) is solved easily, taking into account that:
i0 ,t<Obecause xisredlizable

A0 z%xo,ti [0,t) from7.1(2) @
and considering then t1 [t,2t),t1 [2t,3t),...
We solve 7.1 (3):
t<o0, x(t) =0 3)
t=0, D" x(0) = x° (4)
x(0) = x° (5)
tT (0,1), D™ x(t)=0 (6)
x(t) = x° (7)
t=t, D™ x(t) =1 (8)
x(t) =1A x° (9)
tT (t,2t), D x(t)=0 (10)
x(t) =1A x° (12)
t=2t, D™ x(2t)=1 (12)
x(2t) =1A 1A x%)=x° (13)

18

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

tT (2t,3t), D x(t)=0 (14)
x(t) = x° (15)

7.3 Remark There exists an ambiguity in the study of this automaton given by the next property,
see 7.2 (1):
"tT (0,¥),$tq,to1 (O,M],%kq,koT N,
tT [2kqt1,(2kg +Dtq) U[(2ko + Dt 5,(2ko +2)t 5)
This means that for no time instant t > 0, we can say whether x models the electrical signal X of
the clock generator.
The fulfillment of the previous property becomes obvious if we take

T t tIr 1 t t )
tql (2k1+1’2_k1]U(O'M]' tal (W’W]U(O’M]

and thisis possibleif, for some t, we choose kjq,k, 3 1 sufficiently great so that the meets are
non-empty.

7.4 Remark It isnot clear so far how do we characterize thg circuits that accept a model function
x of the electrical signal X, at least on an non-empty set | | [0,¥), or perhapson al of [0,¥),
sothat x isthe solution of EAA or of EAAA.

7.5 Remark Even in this situation when modeling is not possible, the formof x(t) from 7.2 (1),

switching on and on from 0 to 1 and from 1 to O resembles the form of the electrical signal X of
the clock generator, as X switches on and on from LOW-HIGH and from HIGH-LOW.

7.6 Remark The name clock generator of the circuit from 7.1 (1) isjustified by the fact that X
counts the discrete time when switching permanently from LOW-HIGH and from HIGH-LOW.

8. Example: The R-SLatch
8.1 Example of autonomous-like asynchronous automaton. The next drawing

iy
> .

fig (1)
refers to the asynchronous circuit called R-Slatch. We shall suppose that the inputs are:
uy(t) = Rxcigy)(t) 2
Up(t) =Sxcioy)(t) ©)
R,SI B, and the following equations result after some elementary computations
X1 (1) = Rxxa(t - t1) Xy vy (O A X7 o) () 4
X (t) = Sxxq (t- t2) X[, x) (DA X3 *XClot5) (1) (5)
19
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respectively

D™ x(t)=(a(t- AR (t- 0)Rx  UD Xp(x) e 4 O A X eqgp (O (6)
xT (t-tq,t)

D™ X2(t) = (Xa(t- O A Sxxq(t- 0)xSx D™ x(X)XCr,) (1) A X3 X (1) (7)
xT (t-to,t)

where x01 Bzz,xT Real(z),tlT (O,M,] and t,1 (0,M;]. We have used once again the
unbounded delay model 5.8 c").
To be solved the two systems of equations: (2), (3), (4), (5), respectively (2), (3), (6), (7)
by taking in consideration the next possibilities:
a)t1<t2 b) t1=t» C) t1>1-
)R=0,S=0 i) R=1,S=0 i) R=0,S=1 iv) R=1,S=1

DxP=x) )t X
8.2 Theorem By noting with xT Real (@ the solution of 8.1 (2), (3), (4), (5) and with

y1 Real @ the solution of 8.1 (2), (3), (), (7), we havethat x, y are unique and they are given,
With @),...,0), i),...,iV), j),..., jj) like & 8.1, by:

1xa(0) = y1(0) =X %€ foy) (A Roepey 0 (1)

) | _ (1)
FX2(1) = y2(t) = X3 XCg1,) (1) A Sxcpr, ) (1)
i) For @), b):
:, Xl(t) = Y1(t) = X]C.) XC[O,tl) (t) A Xg XC[tl,t]_"'t 2) (t) A ﬁm[t1+t2,¥) (t) (2)
| _
fxa(®) = y2(t) = X3 XCo15) (D A Sxepr, ) (1)
Inthe case c), X1, X2, Yo coincide with these from (2), while y; isgiven by:
- if j) istrue, then
y1(t) = X0 %oy (1) A Ry ) (1) (3)
- if Jj) istrue, then
y1(t) = Xf XCrot1+t2) () A RXC i 415%) (1) (4)
iii) issimilar with ii)
| )% 0= X X Cpprtpkrro)n OA X 3G Tkt (aiigrio) O -
iv) |

%Xz ()= kaN Xg XC[K(t1+ ) k(i 2)+t ) (D) A kaN Xf XCk(t1+t 2)+t 2,(k+1)(t1+t 2)) ()
If &) istrue, then

bya(0) = x0 0 O A X2 5 v (1) o
|
Fy2(t) = X3 oy (1)

If b) issatisfied, y;, yo coincidewith x4, X5 from (5) and
If ¢) istrue:
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I yp (1) =x? XCroy) (1)

! 0 ) (7)
fy2(t) =35 o5 (DA X X1, %) (1)
8.3 Remark If
R>S=0 (1)
then the next implications are true for both variants, pure delay and inertial delay model:
tsty+ty P (M) =y1() =R )
3ty +tp P Xp(1) = yp() =S )

These equations give the conclusion, see the definition 3.10, that x;, X, and vy, y»
model X;,X> on [Mq + M5, ¥). To be compared with the situation from paragraph 7.

When (1) isnot valid, (2) and (3) are not valid themselves. Then the possibility of having
amodel satisfying EAA at the same time, does not exist.

8.4 Remark The circuit from 8.1 (1) together with the inputs 8.1 (2), (3), if 8.3 (1) istrue and
taking into account the implications 8.3 (2), (3) - give the next complex gate model for the
R-Slatch in the pure delay case:

I X1 (1) = x7 XClot+t) (O A EXC[t1+t2,¥) (1) (1)

i _
fxa(t) = X3 XC[0t1+t2) (1) A SxCr 4, (1)
The advantages and the shortcomings of the model are obvious.

9. The Modeling of the Asynchronous Cir cuits

9.1 Remark In the paragraph 3 we have seen how arealizable function x models an electrical
signal X (onaset | 1 [0,¥)) and this was always possible, cf. with Proposition 3.18. The

examples from 7, 8 have shown however a different, systemic way of putting the modeling
problem, i.e. referring to an asynchronous circuit (and to aset | I [0,%)) and thisis not always

possible. Even if, in the last case, modeling is possible on some set |, it may happen that | is not
known.

9.2 The purpose of thissection isthat of discussing the modeling of the asynchronous circuits.
Because their definitionisinformal - asit is not very clear what isit a'wire', respectively a'logic
gate, all this section isinformal.

9.3 Informal defjnition There are given EAA and the asynchronous circuit S. We say that EAA
isassociated to S if

a) theinputsof S arethe signals iy ..., U, and theinputs uy ..., uy, T Real aretheir
models (on [0,¥))

b) there is given a decomposition §1,...,§n of S in sub-circuits (thelimit situation is
when §1,...,§n are all of them wires and logic gates), so that

- S;,...Sp, have exactly one output X ..., X,,, their inputs being some of

01,0y Urpys Xp--0 Xy (the limit situation iswhen for some S; , none of them isinput and then we
say that X; is'stuck at 0', or 'stuck at 1', i.e. it is constant from alogical point of view)
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o _1n(Xi(0)),if X (0)T LOW UHIGH
| _%arbitrary, else
function that was defined at 3.9
- f1,.. fn 1 BY 7 BJ'® B, arethe Boolean functionsthat Sy,..., S, implement
- t4,...,t , arethe delaysthat are introduced by §1,...,§n , thefirst ny of them
being pure and the last n - nq of them being inertial.

,i =1,n where n isthelogica value

9.4 Remark It is obvious the situation when, at 9.3, S has no inputs.

9.5 Informal definition If weidentify an automaton S with a system of~equations EAA or
EAAA - thiswas suggested at 6.4 - then we say that S isassociated to S.

9.6 Remark Because being given S and the sub-circuits Sy ..., Sy, :

- there are several ways of choosing uy,..., Uy, SO that they model Uy,..., Uy,

- there are several ways of giving arbitrary valuesto x° when n(X; (0))T LOW UHIGH ,
i=1Ln

- there are several ways of choosing t1,...,t
we conclude that we have several EAA (EAAA) and severa automata S that are associated to
S.

9.7 Notation We note with [§] the set of the automata S that are associated to S .

9.8 Remark The study of S consistsis characterizi ng the things that the automata S [§] have
in common. For example, in the case of the R-Slatch from 8.1 (1) we know that R>S =0 implies
t3 M{+M, b x(t) =R (1)
t3M;+M, b Xo(1) =S 2)
while the common property in the case of the clock generator from 7.1 (1) looks to be weaker,
because, in the unbounded delay model, it is a qualitative and not a quantitative one:
"B >t x(t) T ox(t) (3)
9.9 Informal definition Consider the fixed delay model, when t4,...,t ,, are known. If there
existsanon-empty set | 1 [0,¥), dependingon ty,....t ,, sothat for any ST [S] Xq,..., Xn
model Xj,...,X,; on | , we say that S acceptsamodel on | and in this situation any Si [§] is
called amodel of S on I . This definition usually refersto the greatest set | with the previous

property and ttlen | itself must not be mentioned. We useto say that S acceptsa model and S
iIsamodel of S.

9.10 Remark Similar definitions are given for the other delay models and here is an example. Let
the unbounded delay mode!, where t11 (0,M4],...t ,T (0,M] are parametersand My,..., M,

are known. If thereisanon-empty set 1 I [0,¥) dependingon My,.., M, sothat ... from here
the definition repeats 9.9.
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9.11 Remark Let the unbounded delay model, version 5.8 ¢"). The essential difference between
the clock generator and the R-Slatch is now expressed by: the first does not accept a modd,
whilst the second accepts amodel (on [M1 + M ,,¥)). The conditions in which acircuit accepts
amodel will be discussed in the next paragraphs (synchronous-likeness).

10. The Solutions of the Equations of the Asynchronous Automata

10.1 Problem To be solved the system of equations of the asynchronous automata EAA
X ()= fi (X(t - t)ult- 1)) ) O A X epor) O, =L (1)
D™ x; (t) = (% (t- O A fi (x(t- 0),u(t- 0)))x 2

x  UD" i (X(X),u(®) g; vy O A X7 gy (1), =y +1n
i (t-tj.t)

with f:B) "~ BY'® BJ and ti R; x°T BY, ty,...t, >0 and ul Real (™,

_ k
u(t) = kTXN U™ XCrny nyeaq) (0 (3)

are given - where uk 1 B", kT N and the family
0=ng<ny <np<.. (4)

isSINLF, see2.25; x1 Real (" isthe unknown,
We have supposed without lossthat 1£ n; <n, see 6.11.

10.2 Remark The Problem 10.1 refers to the fixed delay model, cf. 5.8 @) and thisis convenient
for the present stage of analysis of EAA. Later we shall suppose that

t11 (O,M1],....t T (0,M ], the unbounded delay model, cf. 5.8 ¢").

The main result of this paragraph is expressed by Theorem 10.9. Now we shall need some
preliminary results.
10.3Lemmalet z: R® B, beadifferentiable function with the property that supp z islocally
finite (see 2.19), h>0 and the function F : R® B, defined in the following way:

F) = Uzx (1)
X (t-hit)
Then F(t- 0) exists" tT R and
Ft-0)= Uz(x (2
X [t- hit)
Proof Let usnotewith W aSINLF family w1 R,sl Z satisfying:
2(t) = ... A Z(w. 1) Ty, g3 (1) A 2(wp) Xepgy (1) A Z(wy) X (D) A .. (3)
The fact that supp zI W has the next consequences:
Uzx)= Uzx) (4)
X (t-ht) A (t- ht)UW
Uzx= Uzx) (5)

X [t-ht) A [t- ht)UwW
Let t arbitrary, but fixed and we remark that for any € >0, the sets
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(t- h- gt- hYUW,[t- et) UW
arefinite; wefix € >0 sufficiently small in order that they are empty, this fact being always

possible. A
Let ussupposethat x'1 (t- €,t) isarbitrary. We infer:
t-e<x'<tb t- h-e<x-h<t-h (6)
P (x-ht-h)UWI (t- h- et- h)yUW
P (x-ht- h)UW=/Z
- Uz = Uzx=0 (7)
X (x-ht-h)UwW X A&
t- e<x'<tb [x,t)UWI [t- et) UW (8)
b [x',t)UW=/
Uz0= Uz(x)=0 ©

X [xHUW X E
and findly, if h>e,weget t- h<t- e and

"xT (t- et), F(x)= Uz(x) = (from (4)) (10)
X (x'- hx)UwW
= Uzx) B Uz= Uzx= (from (7))
X (x-ht-h)UW A [t- hx)UW X [t- hx)UW
= UzeE U= (from (9))
X [t- hx)UW X [x,t)UW
= U= Uzx (from (5))

X [t- ht)UW X [t- ht)
But the equality between the first and the last member of (10) showsthat F (t - 0) exists
and (2) takes place, i.e. the conclusion of the lemma.

10.4 Lemma Let us suppose that x isasolution of Problem 10.1 and for il {1,...,n},t3 t; we

have that
D™ x(t)=1 (1)
Then it istrue at least one of the next two possibilities:
a) $i1{L...n}, D" xj(t- t;)=Lt-t;3t; (2)
b) $k1 N,t- t; =ny ©)
Proof If t=t;, then (3) istrue under the form
t-t;=ng=0 (4)
thusin (1) we shall supposethat t >t; and we shall prove that
D™ fi(x(t- tj)u(t- tj))=1 (5)

Casel, il {1...,m}. (5) isobvious.
Case2, il {n +1...,n} . Wewrite EAA by taking in consideration (1):

X (t- 0A X ®=1=(x (- OA fi(xt- O,ut- 0)x UD" f(x(x),u(x)) (6)

X (t-tj.t)
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resulting that

X (t- 0)A f; (x(t- 0),u(t- 0))=1 (7)
UD™ fj (x(x),u(x)) =0 (8)
x (t-tj.t)

We write (6) at the left of t (take alook at 2.21):
X ((t- 0)- 0)A x (t- 0)=x (t- 0)A x; (t- 0)=0=

=(%((t- 0- OA fi(x((t- 0)- O)u((t- 0)- Q) x  UD" fj(x(x),u(x)) = ©)
X (t-tj-0t-0)
= (% (t- O)A fi(x(t- O),ut- 0)))x UD" f;(x(x),u(x))
Xl [t-tj,t)

from Lemma 10.3, because the support of D™ f; (x(t),u(t)) islocally finite and if we takein
consideration (7),(8), then
UD" fi(x(),u() =1 (10)
X [t-tj,t)
and (5) istruein this case too.
But f; isafunctionand (5) istrueif and only if

(X(t- t;),ut-t;))r (x(t-t; - 0),u(t-t; - 0) (11)
Thisinequality may be put under the form
$jT{L...,n},xj(t-ti)1xj(t-ti-O) (12)
or
$J'T {l...,m},uj-(t-ti)luj-(t-ti-O) (13)

that is equivalent to the conclusion of the lemmathat was expressed at @), b) (in (12), the
supposition t - tj >0 impliesfrom EAA that t- t; 3 t ;).
10.5 Notation We count the elements of the set
{nK + Pty +.t Py X [K, Ppoe P T NG

inastrictly increasing order

0=tg <ty <ty <.. Q)
and we note with F ={t, |kT N} this SINLF family.
10.6 Theorem Let us suppose that Problem 10.1 has solutions and let x be such a solution. Then
itistrue:

suppD” xq U...UsuppD ™ x, 1 F

Proof If the left hand set of the above inclusion is void, then the inclusion is true, so that we shall
suppose the contrary: there exist i T {1,...,n} and ti R so that

D™ % (1) =1 (1)

Astl (-¥,O)U(O,ti1) makes the equality (1) impossibleand t =0 belongsto F , we

shall takein (1) t3 tiy and this makes Lemma 10.4 possible to be applied under the next form: it
istrue at least one of
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8) $ipl {1...,n}, D™ xi, (t- tj) =Lt tj 3 t;, (2)

b) tT F

Because b) ends the proof, we shall take in consideration the possibility a). Thisfact
makes possible that Lemma 10.4 be applied again.

In afinite number of steps we reach the situation:

t-tg -t tip =tiny

i~ tipg = tig ©)
when tT F istruetoo.
10.7 Corollary @) Supposing that Problem 10.1 has solutions, any solution X is of the form

— k
x(t) = kTXN X" Xy i) (0 D)

where F ={t, |kl N} islikeat 10.5and x¥1 BZ, ki N areunknown.

b) The next statements are equivalent:
b.1) x isasolution of Problem 10.1
b.2) x satisfiesat thetime instants {t |kT N} the equations 10.1 (1), (2) the

input u being given by 10.1 (3).
10.8 Lemma Let zI Real of theform

_ k
z(t) = kTXN Z" Xy tyeaq) (0 D)
where zK1 B,.kl N and ti R.Thenforany t1 {tp.1,...,ty} and tl F,t3 t therearetrue
the formulas:
UD z(x) = u(z®A 2% (2)
Xl (t-t,1) ts.tql [t- t,t)UF

Proof Let t =t T F,t 3 t likein the hypothesis. We have:
1L8xT (ty - t,te), 2(X) A z(x- 0)=1_

g (tkL_J t?k)z(x) 10, dse ©)
iLStgT (t - it )UF, 2(tg) A z(t ;) =1
_%O,else -
it 10t - tt )UF, 25A 2z =1
_%O,else a
:}l$ts,tqi [t - t.t)UF, 22 A28 =1 LA
10,else ts:tql [tk - t,tk)UF

10.9 Theorem The Problem 10.1 has a unique solution x of the form 10.7 (1), where xK1 Bg
satisfy

3,0 _
i1 L., g}, < =_|l, X1t <ty _ 1)

T i (X(tag - 1) Utk - ) teag 3
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0

: X; JIf g <t

::: fi (X(tx ), u(t)) Jif tg41 2 tj and
il {n1+],...,n},xik+1:_|'_ "toitgl [tien - tistan) UF, fi (x(ts),uts)) = £ (X(tg) ultq)) (2)

i

!k :

X Af teyq 3ty and

} $ts’th [tien - tistiea) UF, £ (X(ts),u(ts)) * f; (X(tg).u(ty))
foral kT N .

Proof The proof of the theorem means checking the fact that x given by 10.7 (1), where

xKT BJ .kl N satisfy (1), (2) isasolution of Problem 10.1. Because thefirst ny coordinates of
x satisfy 10.1 (1), we shall refer to the coordinates i1 {ny +1,...,n} and let usfix such an i
arbitrarilx.

Casel, tl [0,t;). Obvious.

Case 2, t3 t;. Weremark, as a consequence of Corollary 10.7 that in this situation it is sufficient
to study what happensin an arbitrary t =t, .41 F . We have from (2):

= oK ut)) A U (i OSut) A £ (xuitg) A (3)
tsitgl [tk+1- titk+1)UF
A xf x u (f; S, ute) A £ (x%,u(ty))) =
ts,tql [tk+1- ti tk+1)UF
=xf A O A £ (XK u(t)) LA U (£ S, ulte) A £ (x%,u(ty)))

ts.tql [tk+1- tj tk+1)UF
Taking in consideration Lemma 10.8 written for
z(t) = fj (x(t), u(t)) xcpox) (), tI R (4)
we see that (3) isequivaent to 10.1 (2), i.e.
D™ X (tka1) = (X (tiaa - O) A i (X(tiaa - 0),U(tiag - 0))) X
1A UD" fi (x(x),u(x))) (5
X (tk+1- ttk+1)
This completes proving that x given by 10.7 (1), with x¥1 B,k N satisfying (1), (2)

isasolution of Problem 10.1.
The uniqueness of the solution x has already resulted from the previous reasoning, but

we can also prove it directly by supposing against all reason that y1 Real (") js another solution
of EAA. Because

$t1 R, x(t) * y(t) (6)

there exists aleast t with this property, let it be t'. Thus:
T, ] (¥,0),6 (1) =y (1) (7)
T Lo, xj (1) Ly () ®)

If jT{%...,ny}, the contradiction is obvious and we shall suppose now that jT {r +1...,n}. We
can write, taking in consideration that (8) implies t'3 t ;:
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Xj(t') =x;(t-0) A (Xj (t-0) A fj (x(t™- 0), u(t- 0))) x Ubo- fj (x(x),u(x)) = (9)
A (t-t.t)
=yj(t-0 A (y;(t-0)A fi(y(t-0),ut-0))x UD" fj(y(x),u(x) = y;(t)
X (t-t.t)
contradiction with (8), showing that x and y are equal.

10.10 Problem To be solved the system of equations EAAA
X (1) = i (Xt - 1)) %) O A X o) (0,1 =1y (1)
D™ x; (t) = (x (t- 0) A gj (x(t - 0))) % (2)
x UD" g (x(¥) < x) (0 A X xcg (1), i =y +1n
X (t-tjt)

with g:BS ® BY and tT R; x°T BY and ty,..,t, >0 aregivenand xi Real (" isthe
unknown.
It is supposed, without loss, that 1£n; <n.

10.11 Remark Solving the Problem 10.10 can be considered to be a special case of solving the
Problem 10.1, that is the case when the asynchronous automaton is autonomous-like and we have

uW=ul=u?=.. D
the SINLF family (ny) being arbitrary. Therelation between f and g isgiven by:
f(xu%)=g(% )

10.12 Notation We count the elements of the set { py X1 +...+ P, X p | Pr,- Pn1 N} ina
strictly increasing order:

0=ty <ty <t5 <... (1)
and we notewith F© ={t, |k N} this SINLF family.

10.13 Remark Of course that the set F © results from the wish of maki ng F assmall as possible
by asuitable choice of (ny), which isarbitrary. We have chosen

(M) T {pr Xy +.t Py Xy | Proes Pn T N}

10.14 Coroallary of Theorem 10.9. The Problem 10.10 has a unique solution x that may be put
under the form

X0 = X xK () (1)

XC + o
N [tk tk+1)
where xK1 BY satisfy
. i x? f traq <t
T L =T Lk 2
O (Xt - ti))IF e 3 4
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}. x0 i teeg <t

i gi (x(t)) Jif a1 3 tj and

T LT =T g T [t - ttken) U, 6 (X(Es)) = 91 (X(tg) (3)
| .
T Xik Jf 1 2t and

T Coa . R . :
FooStetql [ter- tiatien) UF 2, 0 (X(ts)) * G (X(tq))
foral ki N .
10.15 Remark There are three time periods that characterize the trgjectory of the automaton S
- 1 <0, when the automaton did not start yet
- t1 [0,t;), when the automaton gets initialized on the i - th coordinate

- t3 t;, the deterministic run, i1 {1...,n}.

10.16 Corollary of Theorem 10.9. Thetrgectory x of S satisfies the next properties:

D™ x (t)=1p D™ fi(x(t- tj),u(t- tj))=Lt>t;,i=1n (1)
UD™ fy(x(x),u(x)) =0b x (t) = f; (x(t- t;),ult- t;)t3tj,i=m+Ln (2)
i (t-tj.t)
(t<t'and D" x(t) =D x(t) =) P t-t3 t;,i=m+Ln 3
Proof The idea of showing the validity of (1) has appeared in the proof of 10.4 and (2) iseasily

proved.
We prove (3). If t =0, thenitisclear that t'3 t; and the conclusion of (3) istrue.

Wetake t,t'3 t;. From EAA it results that:

UD™ fi (x(x),u(x)) =0 (4)
X (t-tjt)
Let us suppose against al reason that we have

t-t<t; (5)

Because there are true
t-ti<t'-ti<t (6)
D™ i (x(t- t;),u(t- t;)) =1 (from (1)) (7)

we obtain that

UD™ fi (x(x),u(x))® D™ fj (x(t™- tj),u(t-t;)) =1 8

X (t-tjt)
and thisin contradiction with (4). We have that (5) isfalse.

10.17 Remark At 10.16, (1) and (2) are properties of determinism, interpreted like this:
- the effect D™ x; (t) =1 hasbeen caused by D™ f; (x(t- t;),u(t- t;)) =1
- if the cause fj (X(%),u( ) isconstant long enough at t, then it has the effect

xi (1) = fi (x(t- tj)u(t- t;))
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and (3) isaproperty of inertiality: x; cannot switch sooner than once at each t; time units. The
first statements of this nature were made at 5.5.

11. Continuous Time and Discrete Time

11.1 Remark The coexistence of the real time with the discrete time has appeared from the
beginning of thiswork. Thus, the differentiable functions that have been defined in paragraph 2
are real time functions but, as we can see from Theorem 2.16, we can choose for any x1 Diff a

new timeset {t, |zl Z}.
11.2 Definition Let x1 Diff . We call essential time set of x the set T, that is defined by:

T, =supp D™ x Usupp D x (1)
More general, the essential time set of x1 Diff () s defined by:
Ty =Ty U..UTy 2)

11.3 Remark If xI Diff isconstant, T, =/E; if x ismonotonous, i.e. if it has on the real axis

exactly one switch from 0 to 1 (increasingly monotonous) or one switch from 1 to O (decreasingly
monotonous) in tq, then T, ={tp} . Otherwise, T, can be finite, it can be of the form

T, ={t, |zl N} for some realizable (or realizable*) functions, or of theform T, ={t, |zl Z}

for some differentiable functions. Each time, we can substitute the time set R with the time set
T, or some other locally finite (see 2.16 (2)) set T E T, T itself can be identified with any

ordered finite set, with N or with Z .
We have started the analysis of EAA from the time set R and we have reached the time

set F . Similarly, the analysis of EAAA startsfrom R and getsto FO.

11.4 Remark The fact that the delays of the asynchronous automata are not known (except for
the fixed delay model) makes that the "sampling moments' {t, |k N} are not known

themselves and this gives another perspective on the discrete time.

11.5 Remark Therelation real time-discrete timeis arather complex one and some of the
remarkable mathematicians that have papersin thistopic are M. Vardi, T. Henzinger, A. Pnuelli,
R. Alur. We quote from the introduction of [Luca, Manna, 1995]:

"There are two common choices for the semantics of real-time systems. Thefirstisa
discrete semantics, in which the temporal evolution of the system is represented as an enumerable
sequence of snapshots, each describing the state of the system at a certain time. The second isa
continuous semantics, in which the system evolution is represented by a sequence of intervals of
time, together with a description of the system state during each interval”.

In order to relate the real time to the discrete time, the authors of the cited paper state the
hypothesis of finite variability FV of the formulas (that we do not define here) that is quite
similar to our condition of local finiteness. We just mention that FV isthought by Alfaro and
Manna so that the validity of aformulain the discrete semanticsimpliesits validity in the
continuous one. Our condition of local finiteness hasits origin in our desire of modeling the
electrical signals.
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12. Transitions. The Interleaving Concurrency Model

12.1 Remark This paragraph is dedicated to the discrete time systems and the previous
statements concerning the relation discrete time - continuous time are kept in mind. Some more
insight in branching time will be made in the paragraph 19.

12.2 Notation We notewith €' =(0,0,...,1,....0)1 BY"",i =1, m+n the vectors of the canonical
|

base of the linear space BJ™".

12.3 Remark If w,w1 BJ™" aretwo arbitrary vectors, the meaning of the sum:

wAw=el A AeP,i..iT {L.,m+n} (1)
isthat w and w' differ on the coordinates iy,...,ip.

12.4 Definition Let Al BJ™"~ BJ™" arelation. The domain of A is defined by:
dom A={w|wl BJ"" $wl BI"", (w,w)l A (1)

125 Definition Let u®,ut,..T B',x°T B), f:BJ'" B) ® B) and m? 0,n? 1. The set of
the transitions (or of thetransfers) GI B)™" * BJ™" is defined like this:
a) % x%)1 domG
b) we suppose that (uX,x)T dom G. If
Wk, ) A Uk f(xuk)) =ak et A LA &l ™" (1)
and ay,...,aqen | B, satisfy ag Ea'l‘,...,am+n £ak,,,, then
b1) (uk,x) A ag xet A . A apn ™" T domG
b.2) (UX, %), (U, x) A a; et A A ag., ™M1 G

b.3) (y,y').(y,y)T CP (y,y)I G
c) al theelements of C are given by a), b).

0

12.6 Remark We interpret Definition 12.5 in a systemic manner, u ot Bg‘ being the

sequence of the input values and x01 Bg respectively the initial state of an asynchronous
automaton S, like in paragraph 10 for example.

12.7 Definition Thetransition (y,y)T C iscaled trivial, the transition (y, y A €' )1 G iscalled
elementary and the transition (y, y')1 G from 12.5 b.3) is said to result by the composition of
thetransitions (y,y') and (y',y"), inthisorder.

12.8 Definition The elements yi dom G, aswell as the couples (input, output)
(u,x)7 Real (™™ are called the extended state, or the total state of S.

12.9 Notation An alternative notation for (y,y')T Cis y® y'.
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12.10 Definition In the equations 12.5 (1), the coordinates i T {1,...,m+ n} for which

ak =1 1)
are called excited and the rest of the coordinates are called stable, k =0,1,2,...
12.11 Notation It isusual to note with an asterisk ** the excited coordinates.

12.12 Definition We use to say about the non-trivial transitions y® y' that they are enabled

(meaning that they can happen) and about a certain non-trivia transition that just happens - could
it be elementary or not - that it fires.

12.13 Definition The hypothesis of interleaving concurrency states that any time a transition
fires, it is elementary.

12.14 Example In the next drawing

0*0*

0*1 < > 10 *

1
fig (1)

(called state transition diagram), the first coordinate is the input and the second is the state:

u(t) =cny)(t) 2

X(t) = Cpyy ¥y (1) ©)
with n,t; 3 0. We have:

f(0,00= (0D = f(10)=f(11) =1 (4)

and the hypothesis of interleaving concurrency statesthat n* ty, resulting:

y°=(00) 5

y? = (L)) (6)

If n<tq, then

y'=(10) @
andif n>tq, then

y'=(0)) ®

C hasfive elements:

¢={((0,0),(01)),((0,0),(10)), ((0,0), (1)), ((0.1), (1.1)), ((1.0), (1L.1))} 9)

At theinitia time moment three transitions are enabled and only two can fire.

12.15 Definition We call arace the situation when some transition (y,yA €' A ..A el)T G

fires without obeying the interleaving concurrency model, i.e. if several coordinates
i,y j1 {1...,n} switch at the same time. We say that the switching coordinates have won the

race (with the other enabled coordinates, that did not switch).
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12.16 Remark The excited coordinates show the direction towards which a system runs; the race
winner depends on the values of ty,...,t,,.

12.17 Remark The hypothesis of interleaving concurrency (giving the so called interleaving
concurrency model) is based on the fact that in nature, perfect ssmultaneity does not exist. It is
correct in some sense, but it refers to a special case that we shall not adopt with the exception of
the situations when we shall explicitly mention the contrary.

12.18 Remark Our “extended state” may be associated to the “state” of Lavagno, when the
condition of injectivity of the labeling function (from the set of the states to the “modeling space”
Bg ) isfulfilled. What we call “coordinate of the extended state y; “, he calls “signal” and his

demand isthat “asingle signal changes for every transition”. For him, interleaving concurrency
means “considering al possible alternative chain orderings compliant with the partial order
between possibly concurrent actions”.

For Kondratyev et al. “atransition between statesis atransition of exactly one signal.
There may be many signals enabled in a state, but exactly one signal transition isfired at atime.
This corresponds to the interleaving concurrency model”. What they mean by “state” and
“signal” is close enough to what we mean by “extended state” and " coordinate of the extended
state”.

13. Points of Equilibrium. The Stability

13.1 Notations We continue to refer to the generator function g from the definition 6.3; we note

with x, see 10.14 (1), the solution of the Problem 10.10 - the fixed delay model was used there -
and with S the appropriate autonomous automaton.

e =(00.,...1..,01 Bl,i =1 n arethe vectors of the canonical base.
|

13.2 Remark The next definition adapts 12.10 to the present requests. passing
- from the discrete time to the continuous time
- from the non-autonomous automata to the autonomous automata

13.3 Definition Let t3 0 givenand kI N sothat t1 [ty,t,4q) . Inthe equations
xK A g(x*) = a'l‘ e A A ak " (1)
the coordinates il {1,...,n} for which
ak =1 (2)
are called excited at t and the rest of the coordinates are called stable at t.
13.4 Theorem Let us consider EAAA. The next statements are equivalent:

8) g(x%) =x° (1)
b) Xj,i =1, n arestableat O
o) x(t) = x% gy (1) 2
d) gi (x°)=x,i =L (3)
D™ x;(tj)=0,i=ng +1n (4)
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Proof 8) U b)isobvious. @) b c) resultsfrom 10.14: at all time instants t('),t'l,tlz,... see 10.12

and for al i =1,n, we have

= xf (5)
c) P d) By replacing the form of x from (2) in 10.14 (1), we have that 10.14 (2) impliesthe
validity of (3); (2) b (4) isobvious.
dp at m+L- tn written without repetitions, in a strictly increasing order, are noted with

t|'(1 <.. <t|'(p . The equations

. b)) =x from(4)
L1 {n + 1.0kt :tkl},_i_ 0 (6)
Fx(t;)=g;(x"),from10.14 (3)

. Lt =x’ from(a)
LT g + 30ty =t b 0 (7
X (t;)=g(x"), from(6),...and from10.14 (3)
give the validity of a).
13.5 Remark One of the interpretations that we can give to the Theorem 13.4 is the following
one: if x;,i =1,n arestableat 0, then they arestableat any t3 0.

13.6 Definition If one of the conditions 13.4 a),...,d) is satisfied, we say that the autonomous
automaton S istrivially stable.

13.7 Remark Let us point out the situation when in 13.4
x°=0 (1)
Thisisthetrivia stability of the trivial autonomous automata.

13.8 Theorem In EAAA, let x1 Bg,t'3 max{t,...,t ,} and we suppose that

gi (X(1)) = i, t1 [t-t;,t'),i =1,n D)
The next statements are equivalent:
a) g(x')=x 2
b) x;,i =1Ln arestableat t'
C) x(t) =x",t3 t' 3
d) gi (X) =x,i =1 (4)
D™ xj(t')=0,i=n; +1n (5

Proof We can suppose without lossthat t'T F 0 (if not, we can replace t' with the smallest
t'T FO sothat t'<t").
a) P b)10.14 gives
x(t') =x'=g(x) = g(x(t')) (6)
Theimplicationsb) b ¢),c) P d),d) b a) areeasily proved.
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13.9 Remark Similarly to 13.5, the Theorem 13.8 may be interpreted like this. If 13.8 (1) istrue
(this hypothesisis analogue to the initializing of x; onthe [0,t;) interval from 13.4, that is

understood there and explicit here), then the stability of Xx;,i =1n a t' impliesthe stability at
any t3 t'.
13.10 Definition If x',t" exist so that the autonomous automaton S satisfies 13.8 (1) together

with one of the conditions a),...,d), then we say that it isstable. If S isnot stable, itiscalled
unstable.

13.11 Remark If S istrivially stable, itisstable. If it isnot trivially stable, then it is either stable
with t'> 0, or unstable.

13.12 Remark We use to identify the stability of the autonomous automata with the existence of
t' and of thefix point xT B} of g, sothat

"3t x(t) =X (1)
Then the instability can be interpreted like this:
"S>t x(t) T x(t) (2)

13.13 Definition The vector X' iscalled point of equilibrium, or stable state, or steady state (of
thetrajectory x, or of the automaton S).
A valuethat x takeswhich isnot apoint of equilibrium is called unstable, or transient.

13.14 Remark The notion of point of equilibrium belongs to the field theory, see for example
[Udriste, 1988] where the differential equations are written on real numbers. In this context, g is
called (Boolean) vector field and x is called (pseudoboolean) field line (of g).

The terminology of stable state appears is asynchronous automata theory and steady states
appear in the more genera frame given by the systems theory.

13.15 Notations We shall refer from this moment to the non-autonomous asynchronous
automaton S, withtheinput u given by 10.1 (3); f isitsgenerator function, x isthe solution

of the Problem 10.1 and y isthe extended state.

13.16 Definition (see 13.3) Let t 3 0 givenand ki N with the property that tT [ty ,t,41) . Inthe
equations
xK A f(xk,u(tk)):all‘ e A .. A ak xe" (1)
the coordinates i1 {1,...,n} for which
ak =1 )
are called excited at t. The coordinates that are not excited at t are called stable at t.

13.17 Theorem Let EAA - the fixed delay model - and we suppose that
Niaq - N 3 max{tq,....t ,}, kT N . The next statements are equivalent:

a) "k1 N, f(x°uk)=x° (1)

b) xi,i =1,n arestableat any ny,ki N

o) X(t) = X xc[g.y) (1) 2
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-t xo,uk =x0 i=1nm
d) " K] N,J|[ ¢ )= L 3)
fD xj(nk +tj)=0,i=ny +1Ln
13.18 Definition If one of the conditions 13.17 a),...,d) istrue, then we say that the non-
autonomous automaton S istrivially stable.

13.19 Remark The special case when

x’=0 ©
givesin 13.17 the trivial stability of the non-autonomous trivial automata.
13.20 T heor em We suppose the existence of x'T Bg and of t'3 max{tq,...,t 4} sothatin EAA
we have ny,q - Ny @ max{tq,..,t ,},kT N and:

fi (x(©),u() = X, t1 [t-t;,t),i=1n D)
The next statements are equivalent:
a) "k th f(x,uk)=x )
b) x;,i =1 n arestableat any n; 3 t'
C) x(t) =x",t3 t 3
d) ks th | iU =x i=lng @)

D™ (N +t;)=0,i=ng +1n
13.21 Definition If the non-autonomous automaton S satisfies 13.20 (1) and one of the
conditions 13.20 a),...,d) we say that it isstable. If S isnot stable, then it is called unstable.
13.22 Remark We identify the stability of the non-autonomous automaton with the existence of
t'3 0 and x1 Bg with the property that x' isafix point for al the functions f(><,uk) , Where
N 2 t' and we have

"3t x(t) = X (1)
The meaning of the instability is given by
LBt >t () L x(t) (2

13.23 Remark The vector x' may be called once more point of equilibrium, even if this
definition is more natura for the autonomous automata and for the autonomous-like automata,
when

u(t) =u’ xc o) (1) (1)
and f iscalled vector field with parameter (the parameter is uo).

13.24 Remark The previous requests related to the stability of the non-autonomous automata
refer to x; if wereplace the state x with the extended state vy, it will result a stronger concept of

stability, i.e.: we add to 13.22 (1) the request
"3t u(t)=u (1)
It will always result to which definition we refer.
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13.25 Examples The clock generator, the automaton from 7.1 (1) is unstable, 13.12 (2) being
satisfied and this has generated the situation when modeling was not possible using the
unbounded delay model.

The R-S latch, the autonomous-like automaton from 8.1 (1) is stable in all the situations
with the exceptions

iv) j) for the pure-delay model

iv) b) j) for theinertial delay model
For this automaton, the casesi), ii), iii) imply the stability and 8.3 (2), (3) show that modeling is
possible using the unbounded delay model.

14. The Fundamental M ode of Operation

14.1 Informal definition A non-autonomous asynchronous automaton S is considered. We say
that it operates in the fundamental mode, if

a) [Lavagno, 1992] "inputs are considered to change only when all the delay elements are
stable (i.e. they have the input value equal to the output value)”

b) [Kishinevsky+,1997] we have a"slow enough environment” " (inputs can change after
the system has settled into a stable state)".

14.2 Remark We make the following remarks on the previous informal definitions.

By stability identified with the situation when "input value is equal to the output value' is
understood the fact that at t', the tragjectory x hasreached avalue X' that isafix point of

f(>,u(t")): asargument of thisfunction x' is"input value" and as value of thisfunction x' is

"output value".

The environment is associated to the input and the authors identify them. This point of
view isrelated rather to modeling a circuit than to controlling a process, when the input may be
called control.

14.3 Definition Let us consider the fixed delay model and we suppose that the asynchronous
non-autonomous automaton S satisfies one of the next two conditions;

8 ut)=u®xcpngny (0 A Uty ) (A AU sep v (1) D)
where
0=ng<ng<..<ng (2
and the numbers tg,ty,...,t exist so that
Ng<tg£Mm <L Eny<..Eng <ty (3
and x,i =1,n arestableat tg,ty,..., ty
b u®)=u®xcgny O A Ut ey A AU ey 0y OA L (@)
where ny kT N is SINLF and the family t,,kT N exists so that
No<tgEMm<yLEny<..Eng <t £.. (5)

and x;,i =1n arestableat tg,ty,...,ti ...
Then we say that S operates in the fundamental mode.

14.4 Remark A situation of triviality is possible for the fundamental mode, when $k so that
x;,i =Ln arestableat ny . Thisisthe case for exampleif u® ! =uk.
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14.5 Remark A condition that we have not put at 14.3 is of the type ny4q - Ny 3 max{tq,...,.t },
seealso 13.17, 13.20.
14.6 Remark Any stable autonomous-like automaton operates in the fundamental mode (the

definition 14.3 @) for k =0). Such an example has been given at 8.1, the R-Slatch, in the
situationswhen it is stable.

14.7 Remark The fundamental mode represents a relation between the environment and the
system, more precisely between the speed of variation of the input and the speed of stabilization
of the system.

We are tempted to make an analogy here. The input is the professor that sends
information and the system is the group of students that receives the information. The students

understand what the professor teaches - x;,i =1,n arestableat tg,ty,...,ty - if the next two
conditions are fulfilled:

- the information is not contradictory, i.e. the stability of X;,i = 1n is possible

- the information is sent slowly enough so that the students have time to understand (to
stabilize).
14.8 Remark The definition 14.3 must be understood to be dependent on the delay model that we
use; for the unbounded delay model 5.8 c"), the definition item a@) becomes: "the numbers
to,ty,....tx existsothat forany t11 (O,Mq],...t 51 (0,M ] 14.3 (3)istrueand x;,i =1 n are
stableat tg,ty,..., ty "

The way that this definition must be given in the other casesis obvious now.

15. Combinational Automata

15.1 NotationsLet f: B~ BJ'® BJ,g:BJ ® BJ the generator functions of an
asynchronous automaton S, in the non-autonomous and the autonomous version. If S is
combinational, i.e. if the next properties are true:
"X X, (%)= f(X,?) D
"X X, 9(X) = g(X) @)
then the two functions are noted with f : BJ' ® BJ and ¢ BZ (the constant function,
identified with the constant).
15.2 Remark The equations of the combinational automata are of the form:
Xi (1) = fi (u(t - 7)) 3) O A X0 xCpo ;) (1)1 =1y (1)
D™ x; (t) =(xi (t- O) A fi(u(t- 0)))x @)
x  UD™ i (ux) xcp; x) ) A xP xcigp (1), =ng +1n
X (t-tjt)
for the non-autonomous case, respectively of the form

X; (1) = G X[, ) ) A X0 xcpo ) (1), =1ng )
D™ x; (t) = (x;i (t- 0)A ;) Xy, ) (DA X7 xc(gy (1),i =ng +1n 4)
38

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

for the autonomous case. Let us observe the formal coincidence between (3) and (4) meaning that
the autonomous combinational automata do not have the set of the state coordinates partitioned in
pure and inertial coordinates.

15.3 Theorem Let the combinational automaton S be associated to the combinational circuit S
(see 9.5). We suppose that itsinput u isgiven by 14.3 (1) and let the equations:

XA f(u0)=alxe A..Aaldx" o)
FUO)A fuh=alxe A .. Aal x" 2
PR A Fuk)=ak e AL A ak xe” 3)
where alj,...,arj]T B,,j =0,k.Wenote
i j =max{t; [i {L...n},a) =1, =0,k @
Q; =max{M; [iT {L...,n},a} =1, j =0,k )

M; being the superior estimates of t;,i = 1,n in the unbounded del ay model 5.8 c").
a) If, in the fixed delay model, we have

ni-ng3jo (6)
Np-ng3j, (7)
N - N1 k1 (8)

then the solution x of 15.2 (1), (2) satisfiesthat x;,i =1,n arestable at No +j 0,N1+]j 1,
Nk +j k, S operatesin the fundamental mode and moreover

11 [ng +] 0,ny], x(¥) = £ (u°) )
"t1 [ng+] 1,n2], x(t) = f(uh) (10)
1+ G¥) X)) = FU) (11)

i.e. x models X on [ng +j g,n]U[Ng +j 1,n5]U...U[Nn, +j ., ¥).

b) For the unbounded delay model, we have asimilar property satisfied with a), where we
replace j g,] 1,--) k With Qg,Qq,..., Q-
15.4 Remark A similar property with the one from 15.3 takes place if theinput u of Si [§] is
given by 14.3 (4).
15.5 Remark The solution of the equations 15.2 (3), (4) is given by:

X; (1) =X *Ciog) (1) A ¢ xcpe, yy (1), =1n D)

In the fixed delay model, for example X; ,i =1n arestableat ti,i =1,n and this automaton may
be considered, like in the Remark 14.6, to operate (by definition) in the fundamental mode.
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16. The Unbounded Delay Model: The Technical Condition of Good Running.
Synchronous-Like Autonomous Automata

16.1 Remark Thetechnical condition of good running TCGR is the property of an "expected”
transition to take place for any values t; >0,i =1,n - unbounded delay model, version 5.8 C) -

and it is also the property of asystem of having only such transitions. By "expected” transition it
isunderstood that if the trgjectory of the autonomous automaton S takes at some time instant
t3 0 thevalue x(t), then we expect that sometimeinstant t'>t exists, dependingon t4,...,t

so that
x(t') = g(x(1)) 1)
16.2 Remark The terminology TCGR isinspired by the pioneering works of Grigore Moisil.

16.3 Definition Let g: BJ ® BZ,n3 1 an arbitrary function. We define theiterates of g to be
the functions g~ : BY ® B, .kl N given by theformulas:
g%(x) = x (1)
9" (x) = 9(g*(x). x1 BJ 2

16.4 Notations We use from this moment the notations from Problem 10.10, where
t; £M;,i =1,n. F 9 isthe one from 10.12 and the solution x is of the form 10.14 (1).

16.5 Remark The property

"k, gt x0) 1 g (x0) (1)
under TCGR to be presented, is one of instability. Let us suppose the contrary, that
$k’gk+l(XO):gk(X0) (2)

istrue. Then TCGR being satisfied, this last property is one of stability of the system; the
sequence of vectors from Bg : X0, g(xo), g 2 (xo),... becomes constant starting with a certain
rank and the constant (= the limit of the sequence) is an equilibrium point of g.

16.6 Theorem Let the automaton S associated to the circuit S. The numbers a'l‘,...,ar'ﬁ B, are

defined by:
g" (%) A g*L(x%) =ak xe" A . A af " kT N (1)
I.e. the vectors gk(xo),gk+1(xo) differ on the coordinates i for which aik =1.
a) In the hypothesis of instability
"kT N,$iT {L...n},ak =1 (2)
we define the numbers
i =max{t; |iT {L...nt,ak =1,k N (3)
If
"k1 N," aj,..,an1 By, £a'1‘,...,an £ak,

g“1(x%) 2 g*(x%) A ay e A A a, e b
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-1 -n
b gk (x%) =g(gX(x®)A a; x A ..Aa,x") (4)
then the natural indexes exist:

O0=qp<qr<0z<.. 5
and the numbers {to, |KT N} from F© defined by
tgy =0 (6)
. k
loker = pEOJ p (7)
so that the trgjectory x satisfies:
X(tg.) =g (x%),kT N (8)
b) We suppose that the next condition of non-trivial stability istrue:
$N31," ki {0,...,N- T, $i1 {L...n},ak =1 (9)
a =..=a) =0 (10)
and we define
i =max{t; |il {L...n},ak =1,kT {0,..N- 1 (11)

If
"kl {0,..,N-1}," a1,...,a,1 By,aq £a1k,...,an £ak,

g*1(x% 1 g*(x®) A o e A . A a, xe b

b g1 (x%) =g(gk(x*) A a xe A .. A a, ") (12)
then the natural indexes exist:

0=qp<..<an (13)
and the numbers t;qo,...,t;qN from F© defined by
tgy =0 (14)
. K |
taca = 20 p (15)
so that x satisfies:
X(tq ) = g% (x%),kT {0....,N} (16)
"t [Q¥), x(t) = g" (x%) (17)
i.e. x models X on [Q,¥), where we have noted
N-1
Q= S max{M; |il {1...,n},a° =1 (18)
p=0

¢) We suppose that the next condition of trivial stability istrue:

af :...:aﬁ =0 (29)
Then x isgiven by 13.4 (2) and it models X on [0,¥).
Proof @) We show that for al kI N, the functions
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xi (1) =gf (x°) A af xc (t).i =1n (20)

[t ity
satisfy EAAA when t1 [ték ,t;]k +1] . Moreover, the next equalities are true:

"t [tg by g ) 9X(D) = X(tge,,) =9 (x°) A af e A .. A ak xe" = gkt L(x0) (21)

16.7 Definition Let t3 0 and the numbers ay ,...,a, 1 B, defined by:

x(t) A g(x(t)) =a; % A ... A a, xe" o)
and we suppose that x(t) * g(x(t)) . If for any binary numbers a; £ all,..., an £ a'n so that
g(x(t))t x(t) A a; e A A a, e we have

-1 -
g(x(1) =g(x() A agxe A Aa, ) )
then the transition x(t) ® g(x(t)) iscalled synchronous-like.
By definition, thetrivial transition x(t) ® g(x(t)) = x(t) is synchronous-like.

An autonomous automaton where the transitions gk (xo) ® g I“Ll(xo), ki N are
synchronous-like is called synchronous-like.

16.8 Remark The sense of Theorem 16.6 is of showing that a synchronous-like autonomous
asynchronous automaton has for any t; >0,i =1,n apredictable trajectory.

If the vectorial sequence g*(x%),k1 N isdivergent, then the time instants {t;qk |kT N}

from F O exigt, given by 16.6 (6), (7) for which 16.6 (8) is true and the automaton is unstable.

If the sequence g K (xo), kT N isconvergent (=constant from a certain rank), then the

trajectory x satisfiesasimilar property to the previous one expressed by the equations 16.6 (14),
(15), (16) and the automaton is stable. Moreover, a set of theform [Q,¥) existswhere x equals

I(Ié{)m gk(xo), being at the same time amodel of X.
¥

16.9 Remark The condition of synchronous-likenessis one of sufficiency. The transitions
gk(x0)® gk+1(xo),kT N may result by the composition of other transitions, possibly
elementary (this fact depends on thevaluesof t;,i = 1n ), but they always happen, for any values
of t; >0, =1n,in exactly thisorder: x runsthrough the values go(xo),gl(xo),... at some
time instants tao: tog -+
16.10 Example x = (xq, X2, X3)1 B3,

x% =(0,0,0) (1)
The generator function g: Bg’ ® BS and the trgjectory of the system are the following:
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X1 X2 X3 101 92 03
O 0 O0jO0 1 1
O 0 1/]0 1 1
0O 1 0|0 1 1
o 1 1}]1 1 1
1 0 0|0 O O
1 0 1|1 O O
1 1 0|1 0 O
1 1 1|1 0 O

table (2)

Li*1* 0*11

N PN

11*n o1+ o1o* oo*1

Sl ] 7

1*00 aop*o*

fig (3)
An asterisk notes, like before, the enabled coordinates. There are two races, so called non-
critical: 000® 011 and 111® 100, because these transitions are independent on the race winner

(they take place independently on thevaluesof tq,t,t 3).

16.11 Remark An autonomous synchronous-like asynchronous automaton enters aloop formed
by the vectors g¥ (x%), g¥*1(x°)...., g** P 1(x°) (because: BY isafinitesetand g isa
function):

xD = gD(ID)—:» gl(xu)—:»...e gk(xu)

TN

gk+p—1(x0) gk"']. (ID)
fig (1)

The hypothesis of instability demands that the loop contains more than one element, i.e.
that ps3 2. If theautomaton is stable, then p =1. If the stability istrivial, then k=0.

The situation k=0, p3 2 brings nothing new and the example 16.10 is of this type.
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17. Synchronous-Like Control Automata

17.1 Remark The synchronous-like control automata combine the synchronous-like transitions
with the fundamental mode of operation. These systems model the asynchronous circuits by
generalizing from autonomous to non-autonomous the ideas from the previous paragraph.

17.2 Definition Let the arbitrary function f : B}~ B)' ® Bj,n,m3 1. Theiteratesof f are
defined to be the functions f ¥ BY " BJ)'® BJ,ki N givenby:
fO(x,u) = x 1)
R uy = £(F % (xu),u),xT BY,ul BY (2)
17.3 Notations From this moment, the notations will be those from Problem 10.1 and we shall

supposein additionthat t; £ M;,i = 1,n in the unbounded delay model 5.8 c"). It was noted with

F the set from 10.5 and the trgjectory x of the non-autonomous automaton S results to be of
theform 10.7 (1).

17.4 Theorem S isassociated to S. The vectors z/ 1 Bg and the natural numbers N 3 1,
jT N aredefined so that the next conditions of non-trivial stability are fulfilled:

20 = %0 D
21 = £0zi uiyr £zl ulyr L e N uly = £ NI = 2
217 = ¢ Ni (2 uly 3)
whilst the family ay ..., a T By is defined like this:
1420 ul)A £5(2] ) =al e A A ak " 4)

kT {0,...,Nj - I}, jT N.Thereal numbers j Ii,Qj >0 are defined in the next manner:

i ) =max{t; |iT {L...n},ak =1 ©)
Nj-l
Q= sO max{M; |il {J,...,n},aif’ =1,kT {0,...,Nj - 1, jT N (6)
p:
If
"kI{0,..,Nj - ," a,..,an T By, a1£a'1‘j - £ar'§j, (7)

FK 0 ulye K0 ui)Aa e A Aa, % b

b Kz uly=f(FK@  ul)Aa e A .. Aa, %" ul)
and, moreover
Njs- Nj 2 Qj 8
aretrueforal jT N, thenforany t; >0,i =1 n the natural indexes exist
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O:q8<qf<...<q%0£qé<q%<...<q,1\ll£q§<,,, 9)

andthenumbers{tqj |kT {0,....,N;},jT N}from F defined by
k

t i =N (20)

%

k 1 ~ ~

tj =nj+ Sjhki{0.,N;-1,ji N (11)

qk+1 p:0

so that the trgjectory x satisfies
x(t j)=1%@ul) (12)
A

"ttt njalxt=2" (13)

qu

forall kT {0,...,N},jT N.Forany t; T (O,M;l,i =1,n, x models X on the set

Un; +Q;,niy].
TN[J QJ J+1]

J

17.5 Remark Theorem 17.4, whose proof is obvious, states that: in the unbounded delay model
(version 5.6 c")), if we have synchronous-like non-trivia transfers (17.4 (7)) and if the
fundamental modeistrue (17.4 (8)), then

a) fK@E,uh® %%zl ul) takeplaceforany t; >0,i =1,n,
kT {0...,Nj - 3,jT N
b) x isequa to z!*! on the sets [tqj MNjal, iT N
N.
J
c) x models X on U [nj +Qj,nj4].
jiiN
17.6 Remark Let us observe once again the manner in which the fundamental mode expresses a

relation of compatibility between the environment (the speed of variation of the input) and the
system'sinertia + its ability to stabilize.

17.7 Remark An important special case of the discussed problemsis the one when triviality

appears under the form:
$iT N,ul =ul*t=yi*2 = (1)
Theorem 17.4 may now be rewritten in two versions:
a) 2l =10z ulyr 3 ulyr L N = NG U=l (@

b) 2zl =10  ul)r Lzl ul)yr 1 1K@ uly k) ulye (3)
thefirst version being the one of a stable automaton and the second, respectively the one of an
unstable automaton.

17.8 Remark Theorem 17.4 gives the possibility of characterizing the asynchronous automaton
S by asynchronous (i.e. discrete time) automaton:

N- gMu o ] j+17 gpn
B By (z),u)az!™1 B}
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In the original version from 17.4, thetime setis N and in the version 17.7 a), thetime set is
finite.
17.9 Example of synchronous-like automaton. Let ustake n=3, m=1 and
u(t) = ¢ g (1) (1)
By putting
X(1) = (x1 (). x2 (1), x3 (D). t1 R @)
we take in consideration the automaton

100 111

1 1 1
1 1 /1\-1 1 /ID 0
011 — 001 — 000 —— 110 — 111 — 101 — 101

T
L oo
Ta T3 maE Ty, Ty Ty Ty

fig (3)
The numbers 0,1 put above the arrows show the value of the input that produces the

synchronous-like transfer. The conditions 17.4 (8) are given by the inequality:
ns3 M2+2M3+max{M1,M2} (4)

time

18. Classical and Linear Time Temporal Logic of the Propositions. Semantics

18.1 Definition The binary variables (or Boolean variables) Xq,..., X, 1 B will also be called the
atomic propositions of the classical logic of the propositions CLP.

18.2 Definition The Boolean functions h: BS ® B, areaso called formulas of CLP.

18.3 Remark Defining the formulas as Boolean functions identifies the logically equivalent
formulas and this is convenient in semantics.

18.4 Remark We observe, by following [Reghis, 1981] that no formal text, aslong asit can be,
needs an infinite number of signs and consequently it can be written even if the list of the binary
variables Xq,..., X,y isfinite and sufficiently large. This creates no |oss of generality.

18.5 Remark, theinformal definition of the CLP semantics. The semantic approach of CLP
answers the question: in the interpretation | that givesthe variable x = (xq,..., X,) the constant

value x° = (x?,..,x))T BY dowehave h(x%) =17
18.6 Definition If h(x®) =1, we say that h issatisfiedin | or that it holdsin x° and we note
thisfact with x° |zh.

18.7 Definition If h =1 (the constant function), we say that it is a tautology and we note this fact
by Eh.

18.8 Remark Now we shall passto the temporal computation of the Boolean functions, i.e. to the
temporal logic, in two variants: @) continuous time and b) discrete time. The coexistence of the
continuous time with the discrete time has been underlined many times in this work.
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18.9 Remark We shall suppose in this paragraph the validity of the fixed delay model, thus we
associate the fixed delay model to the linear time temporal logic.
18.10 Definition &) The functions Xy ,..., X, 1 Diff, arealso called the atomic propositions of the

linear time temporal logic of the propositions, LTL
b) Similarly, the functions X,..., X, : F ® B, are aso called the atomic propositions of

LTL, where F ={t, |kl N} isthe countable time set.

18.11 Remark We shall interpret xq,..., X, to be the coordinates of the state of an automaton S -

even if, in general, they are arbitrary - and then F isthe alternative time set that has been defined
at 10.5. Therelation from a systemic point of view between the real time and the discretetimeis
the one from 10.7.

18.12 Definition The set of the formulas of LTL is defined in the next manner.
a) In the continuous version, the formulas are functions Diffﬁ”) ® Diff,.
a.1) the Boolean functions h: Bg ® B, inducethe formulas
h(x)(t) = h(x(t)) xc[ox) (t) «y
These formulas have the same nameslike h: reunion, intersection etc.
a2) if h isaformula, then h™ isasoaformula, caled theleft limit of h, whichis

defined by:
h™ (X)(t) =h(x)(t - 0) 2
a3) if g,h areformulas, then hUg isaformula, called h until g. The definitionis:
(hug)(x)(t) = U g0(t') x I h(x)(x) ©)

t'3t X [tt)
a4) al the LTL formulas are defined by a.1),...,a.3), where x1 Diffﬁ”) and tT R.
b) in the discrete version, the formulas are functions that associate to a sequence of
vectors X(ty ) = (Xq(tk),.... X (tx)) , respectively abinary sequence h(x)(ty ), where
t T F, kT N.
b.1), b.3), b.4) aresmilar to a.l), a3), a4)

b.2) if h isaformula, then Xh isaformula (noted sometimeswith Oh), called next h.
The definition is:

Xh(X)(tk) = h(X)(tk+1) (4)
18.13 Example The modulo 2 sum and the intersection bring functions from Diff . to functions
from Diff, . The complement brings the null function to the function cpgy).

18.14 Remark Theinformal definition of the LTL semantics is made similarly to 18.5.

18.15 Remark It isinteresting that semantic approach of LTL answering the question: in the
interpretation that gives the argument x of h the constant value, noted with the same symbol,
representing the solution of EAA and fixesthetimeto t 3 0, do we havethat h(x)(t) =17?
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18.16 Definition If the answer to the previous question is positive, we say that h issatisfied at t
(x iskeptin mind), or that it holds at t and we note this fact with t |- h. In the discrete version,

the equation h(x)(ty) =1 isnoted with k |- h. In both versions, instead of O=h wewrite [=h.

18.17 Remark The semantics that we use hereis called floating and it differs from the anchored
semantics by the fact that the latter refers only to statements of the type |=h.

18.18 Remark In[Alfaro, Manna, 1995] it is mentioned the fact that in their theory the operator
X ismissing. The continuous semantics of this operator is rather given by the equation

h(x)(t- 0) =1, noted t|=h" , then by h(x)(t +0) =1, noted t|=h™, asit would seem to be
normal; the realizable functions are right continuous (see 2.23 (2), for example) and the operator
h* =h isof null effect in the non-anticipative reasoning. Dually, for the anticipative

asynchronous automata together with the appropriate reasoning, the operator h™ =h isof null
effect.

Itislikely that in the cited paper that relates the discrete time to the continuoustime X is
missing because reasoning there did not start from behind systems theory; when trying to make
the continuous analogue of X be the “right limit” operator, afailure results.

18.19 Remark U givesthe possibility of defining the unary connectors Always, Henceforth, or
Necessity G, respectively Sometimes, Eventually, or Possibility F . For exampleif in 18.12 (3)
h =1 (to be understood that h isequal to the unit of Diff,, whichis c[gy)) then:
(FO)(x)(t) = AUg)(x)(t) = U g(x)(t") (1)
t'3t
and |Jg(x)(t') =1 isnoted with t |= Fg, when x isthe solution of EAA. Weread: “itis
t8t
possible starting with t that S has the property g”. Thisis the connection with the modal logic.

18.20 Remark Alfaro and Manna mention in the syntax of their temporal logic the age function
C: "for aformula h, at any point in time, the term C(h) denotes for how long in the past h has

been continuoudly true”. Let us remark that such an idea occursin EAA in the term

UD"™ i (x(x),u(x)) : if f; (x(x),u(x)) isconstant ontheinterval (t- t;,t), itsderivativeis
A (t-tjt)
null on thisinterval, the reunion is null also and its complement is unitary; thisis a necessary
condition (of inertiality) to have D~ x; (t) =1. Thus the asynchronous automata make use of n
age functions G which replace in their definition ‘continuously true' with ‘continuously constant'
and limit coordinatewise the memory of the automaton to t; time units.

19. Branching Time Temporal L ogic of the Propositions. Semantics

19.1 Remark The solution x of EAA, expressed by Theorem 10.9 dependson t q,...,t ,; in both
temporal variants, real time and discrete time, in the sense that {t, |kT N} and the sequence

{xk |[kT N} both depend on these parameters, that are subject to the restrictions 5.8.
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19.2 Notation We notewith p: BJ™" ® BJ,m? 0,n3 1 the projection on thelast n
coordinates.

19.3 Proposition {xX |[kT N} p(dom@), where C (see 12.5) isthe set of the transitions,

19.4 Definition The delay model of the delay element and the delay itself are called pure chaos,
if the SINLF family {y j | jT N} and the positivenumbers t(y ;), jT N exist (see5.10) with

HO= S 1 ) jy 17 0 ®

19.5 Remark We notewith F ={t, |kl N} the SINLF family that is obtained by counting the
elements of the set

{n + pLXa(y j)+.. P Xn(y PDIY .Y j+1) Ul Nis1) * &K, , Proe P T N}
in astrictly increasing order, the way we did in the situations from 5.8, and we note with x, see
10.7 (1), the solution of EAA'. By definition, EAA' coincides with EAA, except for the fact that
tq,..,tn arenot constant, but piecewise constant, i.e. pure chaos.

The study of EAA' was not made, but we accept the fact that these equations have a
unigue solution, that is expressed by atheorem similar to 10.9 and that 19.3 istruein this
situation too.

19.6 Definition When t1,...,t , vary in one of the manners from 5.8, 19.4, the appropriate

solution x is called a path. In the continuous version of the time, a path is afunction xI Real (n)
and in the discrete version of the time, a path isa sequence (X(tk)) i N -

19.7 Remark Of course that the "branching time" resulting from the existence of several paths
does not mean the presence of x on several branches of the time set, but choosing one of them.

19.8 Notation We note with Path the set of the paths of S (the same notation for two sets, one
for the continuous time and one for the discrete time).

19.9 Remark The branching time temporal logics of the propositions, for example
BT,BT*,UB,UB™,CTL,CTL", CTL [Gupta 1991], " CTL,$CTL," CTL ,$CTL [Vardi,
1994] have common features. In their syntax appear like at the linear time temporal logic the

Boolean connectors, as well as the tempora connectors F,G, X,U regarded to betime
quantifiers. In addition we have the path quantifiers A and E.

19.10 Definition The set of the formulas of the branching time temporal logic of the propositions
is defined like this.

a) In the continuous version, the formulas are functions Diffﬁ”) ® Diff,

al) if h isan LTL formula, then it isaformula of the branching time temporal logic
a.2) if h isaformulaof the branching time temporal logic, then Ah and Eh are such
formulas, called for all paths h, respectively for some path h. The definitions are:

An(x)(t) = [ h(x)(t) (1)
X Path
Eh(x)(t) = Uh(x)(t) 2
Xl Path
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a.3) All the formulas of the branching time temporal logic are given by a.1), a.2).
b) In the discrete version, the situation is similar.

19.11 Remark The functions Ah, Eh depend on t, but they do not depend on x. From here we
get the manner in which the semantical notations t |= Ah,k |= Ah etc, written similarly to 18.16,
must be interpreted, see also 18.15.

20. Conclusions

The study of the asynchronous circuitsis based on intuition and on a bibliography which
is often insufficiently formalized. The paper gives amodel for these circuits. Some of the topics
that we have dealt with are: transitions, stability, the fundamental mode of operation, the special
case of the combinational automata, the technical condition of good running and synchronous-
like automata, connections with temporal logic, whose formulas present, in continuous or discrete
time, the properties of the system.
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