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Abstract

The asynchronous systems are the non-deterministic real time-
binary models of the asynchronous circuits from electrical engineering.
Autonomy means that the circuits and their models have no input.
Regularity means analogies with the dynamical systems, thus such sys-
tems may be considered to be the real time dynamical systems with a
’vector field’ Φ : {0, 1}n → {0, 1}n. Universality refers to the case when
the state space of the system is the greatest possible in the sense of the
inclusion. The purpose of this paper is that of defining, by analogy with
the dynamical systems theory, the ω−limit sets, the invariance and the
basins of attraction of the universal regular autonomous asynchronous
systems.
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1 Introduction

We denote by B = {0, 1} the binary Boole algebra, endowed with the discrete
topology and with the usual algebraical laws:

0 1
1 0

,
· 0 1
0 0 0
1 0 1

,
∪ 0 1
0 0 1
1 1 1

,
⊕ 0 1
0 0 1
1 1 0

Table 1

The real numbers set R is the time set and t ∈ R are the time instants.
The R → B functions give the deterministic1 real time-binary models

of the digital electrical signals and they are not studied in literature. An
asynchronous circuit without input, considered as a collection of n signals,
should be deterministically modelled by a function x : R→ Bn called state.
We have however several parameters related with the asynchronous circuit
that are either unknown, or perhaps variable or simply ignored in modeling
such as the temperature, the tension of the mains and the delays that occur
in the computation of the Boolean functions. For this reason, instead of a
function x we have in general a set X of functions x, called state space, or
non-deterministic2 autonomous asynchronous system, where each function x
represents a possibility of modeling the circuit. When X is constructed by
making use of a ’vector field’ Φ : Bn → Bn, the system X is called regular.
The universal regular autonomous asynchronous systems are the Boolean
dynamical systems and they can be identified with Φ.

We give in Figure 1 at a) the example of the NAND gate defined by
φ : B2 → B, ∀(µ1, µ2) ∈ B2, φ(µ1, µ2) = µ1µ2 and at b) the example of
an autonomous circuit made with two such devices and characterized by
Φ : B2 → B2, ∀(µ1, µ2) ∈ B2, (Φ1(µ1, µ2),Φ2(µ1, µ2)) = (µ2, µ1µ2).

The dynamics of these asynchronous systems3 is described by the so called
state portraits, see Figure 1 c) where the arrows show the increase of time.
For any i ∈ {1, 2}, the coordinate µi is underlined if Φi(µ1, µ2) 6= µi and
it is called unstable, or enabled, or excited in this case. The coordinates µi

1’Deterministic’ means that each signal is modeled by exactly one R → B function.
2’Non-deterministic’ means that each signal is modeled by several xi : R → B functions

or, equivalently, that each circuit is modeled by several functions x ∈ X.
3The systems are (vaguely) the models of the circuits.
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Figure 1: a) The NAND gate, b) Example of system using the NAND gate,
c) The state portrait of the system from b)

that are not underlined satisfy by definition Φi(µ1, µ2) = µi and are called
stable, or disabled, or not excited. Three arrows start from the point (0, 0)
where both coordinates are unstable, showing the fact that Φ1(0, 0) may
be computed first, Φ2(0, 0) may be computed first or Φ1(0, 0),Φ2(0, 0) may
be computed simultaneously and similarly for the point (1, 1). Note that
the two possibilities of defining the system, state portrait and formula, are
equivalent. Note also that the system was identified with the function Φ.

The existence of several possibilities of changing the state of the sys-
tem (three possibilities in (0, 0) and (1, 1), one possibility in (1, 0), no pos-
sibility in (0, 1)) is the key characteristic of asynchronicity, as opposed to
synchronicity where the coordinates Φi(µ) are always computed simultane-
ously, i ∈ {1, ..., n} for all µ ∈ Bn and the system’s run is: µ,Φ(µ), (Φ ◦
Φ)(µ), ..., (Φ ◦ ... ◦ Φ)(µ), ...

Our present aim is to show how the well-known concepts of ω−limit set,
invariance and basin of attraction from the dynamical systems theory, by
real to binary translation, may be integrated in the asynchronous systems
theory.
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2 Preliminaries

Notation 1. χA : R → B is the notation of the characteristic function of

the set A ⊂ R: ∀t ∈ R, χA(t) =
{

1, t ∈ A
0, t /∈ A .

Notation 2. We denote by Seq the set of the sequences t0 < t1 < ... < tk <
... of real numbers that are unbounded from above.

Definition 3. The sequence α : N → Bn,∀k ∈ N, αk = α(k) is called
progressive if the sets {k|k ∈ N, αki = 1} are infinite for all i ∈ {1, ..., n}.
We denote the set of the progressive sequences by Πn.

Definition 4. The functions ρ : R→ Bn of the form ∀t ∈ R,

ρ(t) = α0χ{t0}(t)⊕ α
1χ{t1}(t)⊕ ...⊕ α

kχ{tk}(t)⊕ ... (1)

where α ∈ Πn and (tk) ∈ Seq are called progressive and their set is denoted
by Pn.

Definition 5. Let be the function Φ : Bn → Bn. i) For ν ∈ Bn we define
Φν : Bn → Bn by ∀µ ∈ Bn, Φν(µ) = (ν1µ1 ⊕ ν1Φ1(µ), ..., νnµn ⊕ νnΦn(µ)).

ii) The functions Φα0...αk : Bn → Bn are defined for k ∈ N and α0, ..., αk ∈
Bn iteratively: ∀µ ∈ Bn, Φα0...αkαk+1

(µ) = Φαk+1
(Φα0...αk(µ)).

iii) The function Φρ : Bn × R → Bn that is defined in the following
way Φρ(µ, t) = µχ(−∞,t0)(t) ⊕ Φα0

(µ)χ[t0,t1)(t) ⊕ Φα0α1
(µ)χ[t1,t2)(t) ⊕ ... ⊕

Φα0...αk(µ)χ[tk,tk+1)(t)⊕ ...is called flow, motion or orbit (of µ ∈ Bn). We
have assumed that ρ ∈ Pn is like at (1).

iv) The set Orρ(µ) = {Φρ(µ, t)|t ∈ R} is also called orbit (of µ).

Remark 6. The function Φν shows how an asynchronous iteration of Φ
is made: for any i ∈ {1, ..., n}, if νi = 0 then Φi is not computed, since
Φν
i (µ) = µi and if νi = 1 then Φi is computed, since Φν

i (µ) = Φi(µ).
The definition of Φα0...αk generalizes this idea to an arbitrary number k+1

of asynchronous iterations, with the supplementary request that each coordi-
nate Φi is computed infinitely many times in the sequence µ,Φα0

(µ),Φα0α1
(µ),

...,Φα0...αk(µ), ... whenever α ∈ Πn.
The sequences (tk) ∈ Seq make the pass from the discrete time N to the

continuous time R and each ρ ∈ Pn shows, in addition to α ∈ Πn, the time
instants tk when Φ is computed (asynchronously). Thus Φρ(µ, t), t ∈ R is
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the continuous time computation of the sequence µ, Φα0
(µ), Φα0α1

(µ), ...,
Φα0...αk(µ), ... made in the following way: if t < t0 nothing is computed, if
t ∈ [t0, t1), Φα0

(µ) is computed, if t ∈ [t1, t2),Φα0α1
(µ) is computed, ..., if

t ∈ [tk, tk+1),Φα0...αk(µ) is computed, ...
When α runs in Πn and (tk) runs in Seq we get the ’unbounded de-

lay model’ of computation of the Boolean function Φ, represented in discrete
time by the sequences µ,Φα0

(µ),Φα0α1
(µ), ...,Φα0...αk(µ), ... and in continu-

ous time by the orbits Φρ(µ, t) respectively. We shall not insist on the non-
formalized way that the engineers describe this model; we just mention that
the ’unbounded delay model’ is a reasonable way of starting the analysis of
a circuit in which the delays occurring in the computation of the Boolean
functions Φ are arbitrary positive numbers. If we restrict suitably the ranges
of α and (tk) we get the ’bounded delay model’ of computation of Φ and if
both α, (tk) are fixed, then we obtain the ’fixed delay model’ of computation
of Φ, determinism.

Theorem 7. Let α ∈ Πn, (tk) ∈ Seq be arbitrary and the function ρ(t) =
α0χ{t0}(t)⊕α1χ{t1}(t)⊕...⊕αkχ{tk}(t)⊕..., ρ ∈ Pn. The following statements
are true:

a) {αk|k ≥ k1} ∈ Πn for any k1 ∈ N;
b) (tk) ∩ (t′,∞) ∈ Seq for any t′ ∈ R;
c) ρχ(t′,∞) ∈ Pn for any t′ ∈ R;
d) ∀µ ∈ Bn,∀µ′ ∈ Bn, ∀t′ ∈ R,Φρ(µ, t′) = µ′ =⇒ ∀t ≥ t′,Φρ(µ, t) =

Φρχ(t′,∞)(µ′, t).

Proof. a) If {k|k ∈ N, αki = 1} is infinite, then {k|k ≥ k1, α
k
i = 1} is also

infinite, ∀i ∈ {1, ..., n}.
b) If t0 < t1 < t2 < ... is unbounded from above, then any sequence of

the form tk1 < tk1+1 < tk1+2 < ... is unbounded from above, k1 ∈ N.
c) This is a consequence of a) and b).
d) We presume that t′ < t0. In this situation µ = µ′, ρ = ρχ(t′,∞) and the

statement is obvious, so that we may assume now that t′ ≥ t0. In this case,
some k1 ∈ N exists with t′ ∈ [tk1 , tk1+1) and µ′ = Φα0...αk1 (µ). Because

ρχ(t′,∞)(t) = αk1+1χ{tk1+1}(t)⊕ α
k1+2χ{tk1+2}(t)⊕ ...,

Φρχ(t′,∞)(µ′, t) = µ′χ(−∞,tk1+1)(t)⊕ Φαk1+1
(µ′)χ[tk1+1,tk1+2)(t)

⊕Φαk1+1αk1+2
(µ′)χ[tk1+2,tk1+3)(t)⊕ ...
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we get
∀t ∈ [t′, tk1+1),

Φρ(µ, t) = Φα0...αk1 (µ),

Φρχ(t′,∞)(µ′, t) = µ′ = Φα0...αk1 (µ);

∀t ∈ [tk1+1, tk1+2),

Φρ(µ, t) = Φα0...αk1αk1+1
(µ),

Φρχ(t′,∞)(µ′, t) = Φαk1+1
(µ′) = Φαk1+1

(Φα0...αk1 (µ)) = Φα0...αk1αk1+1
(µ);

...

The statement of the Theorem holds.

Theorem 8. Let be µ ∈ Bn, ρ ∈ Pn and τ ∈ R. The function ρ′(t) = ρ(t−τ)
is progressive and we have Φρ′(µ, t) = Φρ(µ, t− τ).

Proof. We put ρ under the form

ρ(t) = α0χ{t0}(t)⊕ ...⊕ α
kχ{tk}(t)⊕ ...,

α ∈ Πn, (tk) ∈ Seq and we note that

ρ′(t) = ρ(t− τ) = α0χ{t0+τ}(t)⊕ ...⊕ αkχ{tk+τ}(t)⊕ ...

where (tk + τ) ∈ Seq. We infer

Φρ′(µ, t) = µχ(−∞,t0+τ)(t)⊕ Φα0
(µ)χ[t0+τ,t1+τ)(t)⊕ ...

...⊕ Φα0...αk(µ)χ[tk+τ,tk+1+τ)(t)⊕ ... = Φρ(µ, t− τ).

Definition 9. The universal regular autonomous asynchronous sys-
tem that is generated by Φ : Bn → Bn is by definition ΞΦ = {Φρ(µ, ·)|µ ∈
Bn, ρ ∈ Pn}; any x(t) = Φρ(µ, t) is called state (of ΞΦ), µ is called initial
value (of x), or initial state (of ΞΦ) and Φ is called generator function
(of ΞΦ).
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Remark 10. The asynchronous systems are non-deterministic in general,
due to the uncertainties that occur in the modeling of the asynchronous cir-
cuits. Non-determinism is produced, in the case of ΞΦ, by the fact that the
initial state µ and the way ρ of iterating Φ are not known.

Definition 11. Let v : N → Bn, x : R → Bn be some functions. If ∃k′ ∈
N, ∀k ≥ k′, v(k) = v(k′), we say that the limit lim

k→∞
v(k) exists and we

use the notation lim
k→∞

v(k) = v(k′). Similarly, if ∃t′ ∈ R, ∀t ≥ t′, x(t) =

x(t′),we say that the limit lim
t→∞

x(t) exists and we denote lim
t→∞

x(t) = x(t′).

Sometimes lim
k→∞

v(k), lim
t→∞

x(t) are called the final values of v, x.

Theorem 12. [7] ∀µ ∈ Bn,∀µ′ ∈ Bn,∀ρ ∈ Pn, lim
t→∞

Φρ(µ, t) = µ′ =⇒
Φ(µ′) = µ′, if the final value of Φρ(µ, ·) exists, it is a fixed point of Φ.

Proof. Let µ ∈ Bn, µ′ ∈ Bn, ρ ∈ Pn be arbitrary and fixed. The hypothesis
states the existence of t′ ∈ R with

∀t ≥ t′,Φρ(µ, t) = µ′

thus, from Theorem 7 d),

∀t ≥ t′,Φρχ(t′,∞)(µ′, t) = µ′.

We infer that ∀i ∈ {1, ..., n}, ∃t′′ > t′ such that

ρi(t′′) = ρiχ(t′,∞)(t
′′) = 1,

Φ
ρχ(t′,∞)

i (µ′, t′′) = Φi(µ′) = µ′i.

Theorem 13. [7] ∀µ ∈ Bn,∀µ′ ∈ Bn, ∀ρ ∈ Pn, (Φ(µ′) = µ′ and ∃t′ ∈
R,Φρ(µ, t′) = µ′) =⇒ ∀t ≥ t′,Φρ(µ, t) = µ′,meaning that if the fixed point µ′

of Φ is accessible, then it is the final value of Φρ(µ, ·).

Proof. Let µ ∈ Bn, µ′ ∈ Bn, ρ ∈ Pn be arbitrary and fixed. From the
hypothesis and Theorem 7 d) we infer

∀t ≥ t′,Φρ(µ, t) = Φρχ(t′,∞)(µ′, t)
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Figure 2: ∃ρ ∈ P2, ωρ((1, 0)) = {(0, 0), (0, 1)} and ∃ρ′ ∈ P2, ωρ′((1, 0)) =
{(1, 1)}

thus ∀i ∈ {1, ..., n},∃ε > 0,∀t ∈ [t′, t′ + ε),Φ
ρχ(t′,∞)

i (µ′, t) can take one of
the values µ′i and Φi(µ′). But µ′i = Φi(µ′), wherefrom the previous property
takes place for arbitrary ε and

∀t ≥ t′,Φρ(µ, t) = µ′.

Corollary 14. ∀µ ∈ Bn, ∀ρ ∈ Pn,Φ(µ) = µ =⇒ ∀t ∈ R,Φρ(µ, t) = µ.

Proof. From Theorem 13, with µ = µ′, where t′ may be chosen such that
∀t < t′, ρ(t) = 0.

3 ω−limit sets

Definition 15. For µ ∈ Bn and ρ ∈ Pn, the set ωρ(µ) = {µ′|µ′ ∈ Bn,∃(tk) ∈
Seq, lim

k→∞
Φρ(µ, tk) = µ′} is called the ω−limit set of the orbit Φρ(µ, ·).

Remark 16. The previous definition agrees with the usual definitions of the
ω−limit sets of the real time or discrete time dynamical systems see [2] page
5, [5] page 26, [1] page 20.

Example 17. In Figure 2, we consider

ρ(t) = (1, 1)χ{0}(t)⊕ (0, 1)χ{1}(t)⊕ (1, 1)χ{2}(t)⊕ (0, 1)χ{3}(t)⊕ ...,

ρ′(t) = (1, 1)χ{0}(t)⊕ (1, 1)χ{1}(t)⊕ (1, 1)χ{2}(t)⊕ ...

and we have

Φρ((1, 0), t) = (1, 0)χ(−∞,0)(t)⊕ (0, 0)χ[0,1)(t)⊕ (0, 1)χ[1,2)(t)
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⊕(0, 0)χ[2,3)(t)⊕ (0, 1)χ[3,4)(t)⊕ ...,

Φρ′((1, 0), t) = (1, 0)χ(−∞,0)(t)⊕ (0, 0)χ[0,1)(t)⊕ (1, 1)χ[1,∞)(t),

thus ωρ((1, 0)) = {(0, 0), (0, 1)}, ωρ′((1, 0)) = {(1, 1)}.

Theorem 18. For any µ ∈ Bn and any ρ ∈ Pn, we have:
a) ωρ(µ) 6= ∅;
b) ∀t′ ∈ R, ωρ(µ) ⊂ {Φρ(µ, t)|t ≥ t′} ⊂ Orρ(µ);
c) ∃t′ ∈ R, ωρ(µ) = {Φρ(µ, t)|t ≥ t′} and any t′′ ≥ t′ fulfills ωρ(µ) =

{Φρ(µ, t)|t ≥ t′′};
d) ∀t′ ∈ R, ∀t′′ ≥ t′, {Φρ(µ, t)|t ≥ t′} = {Φρ(µ, t)|t ≥ t′′} implies ωρ(µ) =

{Φρ(µ, t)|t ≥ t′};
e) we presume that ωρ(µ) = {Φρ(µ, t)|t ≥ t′}, t′ ∈ R. Then ∀µ′ ∈

ωρ(µ), ∀t′′ ≥ t′, if Φρ(µ, t′′) = µ′ we get ωρ(µ) = {Φρχ(t′′,∞)(µ′, t)|t ≥ t′′} =
Orρχ(t′′,∞)

(µ′) = ωρχ(t′′,∞)
(µ′).

Proof. We put ρ ∈ Pn under the form

ρ(t) = α0χ{t0}(t)⊕ ...⊕ α
kχ{tk}(t)⊕ ...

where α ∈ Πn and (tk) ∈ Seq. We ask, without loosing the generality, that
α0 = (0, ..., 0) ∈ Bn, hence Φρ(µ, t0) = µ and Orρ(µ) = {Φρ(µ, tk)|k ∈ N}.

a) If Orρ(µ) = {µ1, ..., µp}, p ∈ {1, ..., 2n}, we denote with I1, ..., Ip ⊂ N
the sets

Ij = {k|k ∈ N,Φρ(µ, tk) = µj}, j = 1, p.

Because I1 ∪ ...∪ Ip = N, some of these sets are infinite, let them be without
loosing the generality I1, ..., Ip′ , p

′ ≤ p. We infer ωρ(µ) = {µ1, ..., µp
′}.

b) For t′ ∈ R, we define

k1 =
{

0, t′ < t0
k, t′ ∈ [tk, tk+1)

and we obtain

ωρ(µ) = {µ1, ..., µp
′} = {Φρ(µ, tk)|k ∈ I1 ∪ ... ∪ Ip′}

= {Φρ(µ, tk)|k ∈ (I1 ∪ ... ∪ Ip′) ∩ [k1,∞)}

⊂ {Φρ(µ, tk)|k ∈ (I1 ∪ ... ∪ Ip) ∩ [k1,∞)} = {Φρ(µ, t)|t ≥ t′}
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⊂ {Φρ(µ, tk)|k ∈ I1 ∪ ... ∪ Ip} = {µ1, ..., µp} = Orρ(µ).

c) If p′ = p, then ∀t′ ∈ R, ωρ(µ) = {Φρ(µ, t)|t ≥ t′} = Orρ(µ) from b)
and the property holds, thus we can assume that p′ < p. In this case we
define

k′′ = min{k|k ∈ N,∀k′ ≥ k, k′ ∈ I1 ∪ ... ∪ Ip′}
= 1 + max(Ip′+1 ∪ ... ∪ Ip)

for which we have
(Ip′+1 ∪ ... ∪ Ip) ∩ [k′′,∞) = ∅

and t′ = tk′′ fulfills

ωρ(µ) = {µ1, ..., µp
′} = {Φρ(µ, tk)|k ∈ I1 ∪ ... ∪ Ip′}

= {Φρ(µ, tk)|k ∈ (I1 ∪ ... ∪ Ip′) ∩ [k′′,∞)}

= {Φρ(µ, tk)|k ∈ (I1 ∪ ... ∪ Ip) ∩ [k′′,∞)} = {Φρ(µ, t)|t ≥ t′};

any t′′ ≥ t′ gives

ωρ(µ)
b)
⊂ {Φρ(µ, t)|t ≥ t′′} ⊂ {Φρ(µ, t)|t ≥ t′} = ωρ(µ).

d) Let be t′ ∈ R such that ∀t′′ ≥ t′,

{Φρ(µ, t)|t ≥ t′} = {Φρ(µ, t)|t ≥ t′′} (2)

and we claim that in this case we have

∀µ′ ∈ {Φρ(µ, t)|t ≥ t′}, ∃(t′k) ∈ Seq,∀k ∈ N,Φρ(µ, t′k) = µ′. (3)

We assume against all reason that (3) is false, meaning that

∃µ′ ∈ {Φρ(µ, t)|t ≥ t′}, the set {tk|k ∈ N,Φρ(µ, tk) = µ′} is finite.

Then ∃t′′ > max{max{tk|k ∈ N,Φρ(µ, tk) = µ′}, t′} that fulfills
µ′ ∈ {Φρ(µ, t)|t ≥ t′} \ {Φρ(µ, t)|t ≥ t′′}, contradiction with (2). The truth
of (3) shows that µ′ ∈ ωρ(µ), i.e. {Φρ(µ, t)|t ≥ t′} ⊂ ωρ(µ). For all t′′ ≥ t′

we have then

ωρ(µ)
b)
⊂ {Φρ(µ, t)|t ≥ t′′} = {Φρ(µ, t)|t ≥ t′} ⊂ ωρ(µ).



Universal regular autonomous asynchronous systems 259

e) We note that for t′′ ≥ t′ and Φρ(µ, t′′) = µ′ we can write

ωρ(µ) = {Φρ(µ, t)|t ≥ t′} c)= {Φρ(µ, t)|t ≥ t′′}
Theorem 7 d)

= {Φρχ(t′′,∞)(µ′, t)|t ≥ t′′} = {Φρχ(t′′,∞)(µ′, t)|t ∈ R}
= Orρχ(t′′,∞)

(µ′).

The fact that ∀t′′′ ≥ t′′,

{Φρχ(t′′,∞)(µ′, t)|t ≥ t′′} Theorem 7 d)
= {Φρ(µ, t)|t ≥ t′′} c)= {Φρ(µ, t)|t ≥ t′}

c)
= {Φρ(µ, t)|t ≥ t′′′} Theorem 7 d)

= {Φρχ(t′′,∞)(µ′, t)|t ≥ t′′′}
shows, by taking into account d), that

{Φρχ(t′′,∞)(µ′, t)|t ≥ t′′} = ωρχ(t′′,∞)
(µ′).

Remark 19. If in Theorem 18 e) we take t′′ ∈ R arbitrarily, the equation

ωρ(µ) = ωρχ(t′′,∞)
(Φρ(µ, t′′)) (4)

is still true. Indeed, for sufficiently great t′′′, the terms in (4) are equal with

{Φρ(µ, t)|t ≥ t′′′} = {Φρχ(t′′,∞)(Φρ(µ, t′′), t)|t ≥ t′′′}.

Theorem 20. For arbitrary µ ∈ Bn,ρ ∈ Pn the following statements are
true:

a) lim
t→∞

Φρ(µ, t) exists ⇐⇒ card(ωρ(µ)) = 1;

b) if ∃µ′ ∈ Bn, ωρ(µ) = {µ′}, then lim
t→∞

Φρ(µ, t) = µ′ and Φ(µ′) = µ′;

c) if ∃µ′ ∈ Bn,Φ(µ′) = µ′ and µ′ ∈ Orρ(µ), then ωρ(µ) = {µ′}.

Proof. a) Let µ ∈ Bn,ρ ∈ Pn be arbitrary. We get

lim
t→∞

Φρ(µ, t) exists⇐⇒ ∃µ′ ∈ Bn,∃t′ ∈ R,∀t ≥ t′,Φρ(µ, t) = µ′

⇐⇒ ∃µ′ ∈ Bn,∃t′ ∈ R, {Φρ(µ, t)|t ≥ t′} = {µ′}
⇐⇒ ∃µ′ ∈ Bn, ωρ(µ) = {µ′} ⇐⇒ card(ωρ(µ)) = 1.

b) We assume that ∃µ′ ∈ Bn, ωρ(µ) = {µ′}, i.e. ∃µ′ ∈ Bn, ∃t′ ∈
R, {Φρ(µ, t)|t ≥ t′} = {µ′} in other words lim

t→∞
Φρ(µ, t) = µ′. The fact that

Φ(µ′) = µ′ results from Theorem 12.
c) This is a consequence of Theorem 13.
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Theorem 21. Let be µ ∈ Bn, ρ ∈ Pn, τ ∈ R. The function ρ′ ∈ Pn, ρ′(t) =
ρ(t− τ) fulfills ωρ(µ) = ωρ′(µ).

Proof. We use Theorem 8 and we infer the existence of t′ ∈ R such that

ωρ(µ) = {Φρ(µ, t)|t ≥ t′} = {Φρ(µ, t− τ)|t− τ ≥ t′}

= {Φρ′(µ, t)|t ≥ t′ + τ} = ωρ′(µ).

4 P-invariant and n-invariant sets

Theorem 22. We consider the function Φ : Bn → Bn and let be the set
A ∈ P ∗(Bn). For any µ ∈ A, the following properties are equivalent

∃ρ ∈ Pn, Orρ(µ) ⊂ A, (5)

∃ρ ∈ Pn, ∀t ∈ R,Φρ(µ, t) ∈ A, (6)

∃α ∈ Πn, ∀k ∈ N,Φα0...αk(µ) ∈ A (7)

and the following properties are also equivalent

∀ρ ∈ Pn, Orρ(µ) ⊂ A, (8)

∀ρ ∈ Pn, ∀t ∈ R,Φρ(µ, t) ∈ A, (9)

∀α ∈ Πn, ∀k ∈ N,Φα0...αk(µ) ∈ A, (10)

∀λ ∈ Bn,Φλ(µ) ∈ A. (11)

Proof. (9)=⇒(11) Let µ ∈ A, λ ∈ Bn and the function ρ ∈ Pn be arbitrary,

ρ(t) = α0 · χ{t0}(t)⊕ ...⊕ α
k · χ{tk}(t)⊕ ... (12)

with α ∈ Πn and (tk) ∈ Seq. We define

ρ′(t) = λ · χ{t′}(t)⊕ α0 · χ{t′+t0}(t)⊕ ...⊕ α
k · χ{t′+tk}(t)⊕ ...

where t′ ∈ R is arbitrary and we can see that ρ′ ∈ Pn. (9) implies Φλ(µ) =
Φρ′(µ, t′) ∈ A.
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(11)=⇒(9) Let µ ∈ A and ρ ∈ Pn be arbitrary, given by (12), with
α ∈ Πn, (tk) ∈ Seq. We get by induction on k :

t < t0 : Φρ(µ, t) = µ ∈ A,
t ∈ [t0, t1) : Φρ(µ, t) = Φα0

(µ) ∈ A from (11),

...

t ∈ [tk−1, tk) : Φα0...αk−1
(µ) ∈ A due to the hypothesis of the induction,

t ∈ [tk, tk+1) : Φρ(µ, t) = Φαk(Φα0...αk−1
(µ)) ∈ A from (11),

...

The rest of the implications are obvious.

Definition 23. The set A ∈ P ∗(Bn) is called a p-invariant (or p-stable)
set of the system ΞΦ if it fulfills for any µ ∈ A one of (5),..., (7) and it is
called an n-invariant (or n-stable) set of ΞΦ if it fulfills ∀µ ∈ A one of
(8),..., (11).

Remark 24. In the previous terminology, the letter ’p’ comes from ’possibly’
and the letter ’n’ comes from ’necessarily’. Both ’p’ and ’n’ refer to the
quantification of ρ. Such kind of p-definitions and n-definitions recalling
logic are caused by the fact that we translate ’real’ concepts into ’binary’
concepts and the former have no ρ parameters, thus after translation ρ may
appear quantified in two ways. The obvious implication is n-invariance =⇒
p-invariance.

Example 25. Let Φ : B2 → B2 be defined by ∀µ ∈ B2,Φ(µ1, µ2) = (µ1, µ2)
and ρ(t) = (1, 1)·χ{0,1,2,...}(t). The set A = {(0, 1), (1, 0)} fulfills ∀µ ∈ A,∀t ∈
R,Φρ(µ, t) ∈ A i.e. it satisfies (6):

Φρ((0, 1), t) = (0, 1) · χ(−∞,0)(t)⊕ (1, 0) · χ[0,1)(t)⊕

⊕(0, 1) · χ[1,2)(t)⊕ (1, 0) · χ[2,3)(t)⊕ ...

Φρ((1, 0), t) = (1, 0) · χ(−∞,0)(t)⊕ (0, 1) · χ[0,1)(t)⊕

⊕(1, 0) · χ[1,2)(t)⊕ (0, 1) · χ[2,3)(t)⊕ ...

see Figure 3; A = {(0, 0), (1, 1)} satisfies the same invariance property.
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Figure 3: The sets {(0, 1), (1, 0)} and {(0, 0), (1, 1)} are p-invariant

Figure 4: The sets {(0, 0), (0, 1)} and {(1, 0), (1, 1)} are n-invariant

Example 26. We define the function Φ : B2 → B2 by ∀µ ∈ B2, Φ(µ1, µ2)
= (µ1, µ2), see Figure 4. We notice that the sets A = {(0, 0), (0, 1)} and A =
{(1, 0), (1, 1)} are n-invariant, as they fulfill ∀µ ∈ A,∀ρ ∈ P2, Orρ(µ) = A.

Theorem 27. Let be µ ∈ Bn and ρ′ ∈ Pn.
a) If Φ(µ) = µ, then {µ} is an n-invariant set and the set Eq of the fixed

points of Φ is also n-invariant;
b) the set Orρ′(µ) is p-invariant and

⋃
ρ∈Pn

Orρ(µ)4 is n-invariant;

c) the set ωρ′(µ) is p-invariant.

Proof. a) From Corollary 14 we have that

∀ρ ∈ Pn,∀t ∈ R,Φρ(µ, t) = µ ∈ {µ}.

Furthermore, we infer ∀µ′ ∈ Eq, ∀ρ ∈ Pn, ∀t ∈ R,

Φρ(µ′, t) = µ′ ∈ Eq.

4 S
ρ∈Pn

Orρ(µ) = {µ′|∃ρ ∈ Pn, µ′ ∈ Orρ(µ)}.
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b) Let be µ′ ∈ Orρ′(µ), thus t′ ∈ R exists such that µ′ = Φρ′(µ, t′). Then
∀t ∈ R,

Φρ′·χ(t′,∞)(µ′, t) =
{

Φρ′(µ, t), t > t′

µ′, t ≤ t′ ∈ Orρ′(µ).

We have proved that Orρ′(µ) is p-invariant.
We remark the equality⋃

ρ∈Pn

Orρ(µ) =
⋃
α∈Πn

{Φα0...αk(µ)|k ∈ N}

and let us take an arbitrary µ′ ∈
⋃

ρ∈Pn
Orρ(µ). If µ′ = µ then the statement

of the theorem is proved, thus we can assume that µ′ 6= µ, µ′ = Φα0...αk(µ),
α0, ..., αk ∈ Bn. For any ρ′′ ∈ Pn,

ρ′′ = β0 · χ{t′0} ⊕ ...⊕ β
k · χ{t′k} ⊕ ...

β ∈ Πn, (t′k) ∈ Seq and any t ∈ R, we have that Φρ′′(µ′, t) is an ele-
ment of the sequence Φα0...αk(µ), Φα0...αkβ0

(µ), ..., Φα0...αkβ0...βk
′
(µ), ... where

α0, ..., αk, β0, ..., βk
′
, ... ∈ Πn. The conclusion is that Φρ′′(µ′, t) ∈

⋃
ρ∈Pn

Orρ(µ).

c) This is a consequence of Theorem 18 e).

5 The basin of p-attraction and the basin of
n-attraction

Theorem 28. We consider the set A ∈ P ∗(Bn). For any µ ∈ Bn, the fol-
lowing statements are equivalent

∃ρ ∈ Pn, ωρ(µ) ⊂ A, (13)

∃ρ ∈ Pn, ∃t′ ∈ R,∀t ≥ t′,Φρ(µ, t) ∈ A, (14)

∃α ∈ Πn, ∃k′ ∈ N, ∀k ≥ k′,Φα0...αk(µ) ∈ A (15)

and the following statements are equivalent, too

∀ρ ∈ Pn, ωρ(µ) ⊂ A, (16)

∀ρ ∈ Pn, ∃t′ ∈ R,∀t ≥ t′,Φρ(µ, t) ∈ A, (17)

∀α ∈ Πn, ∃k′ ∈ N, ∀k ≥ k′,Φα0...αk(µ) ∈ A. (18)
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Proof. (13)=⇒(14) We presume that (13) is true. Some t′ exists with

ωρ(µ) = {Φρ(µ, t)|t ≥ t′}

and we conclude that ∀t ≥ t′,

Φρ(µ, t) ∈ ωρ(µ) ⊂ A.

(14)=⇒(13) As t′′ ∈ R exists with

ωρ(µ) = {Φρ(µ, t)|t ≥ t′′},

from the truth of (14) we have that

ωρ(µ) ⊂ {Φρ(µ, t)|t ≥ max{t′, t′′}} ⊂ A.

Definition 29. The basin (or kingdom, or domain) of p-attraction or
the p-stable set of the set A ∈ P ∗(Bn) is given by W (A) = {µ|µ ∈ Bn,∃ρ ∈
Pn, ωρ(µ) ⊂ A}; the basin (or kingdom, or domain) of n-attraction
or the n-stable set of the set A is given by W (A) = {µ|µ ∈ Bn,∀ρ ∈
Pn, ωρ(µ) ⊂ A}.

Remark 30. Definition 29 makes use of the properties (13) and (16). We
can make use also in this Definition of the other equivalent properties from
Theorem 28.

In Definition 29, one or both basins of attraction W (A),W (A) may be
empty.

Theorem 31. We have:
i) W (Bn) = W (Bn) = Bn;
ii) if A ⊂ A′, then W (A) ⊂W (A′) and W (A) ⊂W (A′) hold.

Definition 32. When W (A) 6= ∅, A is said to be p-attractive and for
any non-empty set B ⊂ W (A), we say that A is p-attractive for B and
that B is p-attracted by A; A is by definition partially p-attractive if
W (A) /∈ {∅,Bn} and totally p-attractive whenever W (A) = Bn.

The fact that W (A) 6= ∅ makes us say that A is n-attractive and in
this situation for any non-empty B ⊂W (A), A is called n-attractive for B
and B is called to be n-attracted by A; we use to say that A is partially
n-attractive if W (A) /∈ {∅,Bn} and totally n-attractive if W (A) = Bn.
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Figure 5: Invariant sets and basins of attraction

Example 33. We consider the system from Figure 5. The set A = {(0, 0, 0)}
is neither p-invariant, nor n-invariant: W (A) = W (A) = ∅.

The set A = {(0, 0, 0), (1, 1, 0), (1, 1, 1)} is p-invariant but not n-invariant:
W (A) = B3\{(0, 0, 1)}, W (A) = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.

We take A = {(1, 1, 0), (1, 1, 1), (0, 0, 1)} which is both p-invariant and
n-invariant. A is totally p-attractive, W (A) = B3 and it is not totally n-
attractive, since W (A) = B3 \ {(0, 1, 1), (1, 0, 1)}.

The set A = {(1, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1), (1, 0, 1)} is p-invariant,
n-invariant, totally p-attractive and totally n-attractive because W (A) =
W (A) = B3.

Example 34. The set Bn is totally p-attractive and totally n-attractive (The-
orem 31 i)).

Theorem 35. Let A ∈ P ∗(Bn) be some set. If A is p-invariant, then A ⊂
W (A) and A is also p-attractive; if A is n-invariant, then A ⊂W (A) and A
is also n-attractive.

Proof. Let µ ∈ A be arbitrary. The existence of ρ ∈ Pn such that Orρ(µ) ⊂ A
(from the p-invariance of A) and the inclusion ωρ(µ) ⊂ Orρ(µ) show that
ωρ(µ) ⊂ A, thus µ ∈W (A). As µ was arbitrary, we get that A ⊂W (A) and
finally that W (A) 6= ∅. A is p-attractive.

Remark 36. The previous Theorem shows the connection that exists between
invariance and attractiveness. If A is p-attractive, then W (A) is the greatest
set that is p-attracted by A and the point is that this really happens when A
is p-invariant. The other situation is dual.

Theorem 37. Let be A ∈ P ∗(Bn). If A is p-attractive, then W (A) is p-
invariant and if A is n-attractive, then W (A) is n-invariant.
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Proof. If A is p-attractive then W (A) 6= ∅ and we prove that W (A) is p-
invariant. Let µ ∈ W (A) be arbitrary and fixed. From the definition of
W (A) some ρ ∈ Pn exists with the property that ωρ(µ) ⊂ A. We show that

∀t′ ∈ R,Φρ(µ, t′) ∈W (A),

i.e.
∀t′ ∈ R, ∃ρ′ ∈ Pn, ωρ′(Φρ(µ, t′)) ⊂ A.

Indeed, we fix arbitrarily some t′ ∈ R. With

ρ′ = ρχ(t′,∞)

we can write, from Remark 19, equation (4) that

ωρ′(Φρ(µ, t′)) = ωρχ(t′,∞)
(Φρ(µ, t′)) = ωρ(µ) ⊂ A.

We prove now that W (A), which is non-empty from the n-attractiveness
of A, is also n-invariant. The property

∀µ′ ∈W (A), ∀ρ′ ∈ Pn, Orρ′(µ′) ⊂W (A),

that is equivalent with

∀µ′ ∈W (A),∀ρ′ ∈ Pn,∀µ′′ ∈ Orρ′(µ′), µ′′ ∈W (A)

and with
∀µ′ ∈ Bn, ∀ρ ∈ Pn, ωρ(µ′) ⊂ A =⇒

=⇒ ∀ρ′ ∈ Pn,∀µ′′ ∈ Orρ′(µ′), ∀ρ′′ ∈ Pn, ωρ′′(µ′′) ⊂ A,

means the following. Let µ′ ∈ Bn and ρ′′ ∈ Pn be arbitrary and fixed. The
hypothesis states that for any

ρ = α0 · χ{t0} ⊕ ...⊕ α
k · χ{tk} ⊕ ...

α ∈ Πn, (tk) ∈ Seq we have

∃k1 ∈ N, {Φα0...αk(µ′)|k ≥ k1}(= ωρ(µ′)) ⊂ A. (19)

We consider arbitrarily the function ρ′ ∈ Pn,

ρ′ = α′0 · χ{t′0} ⊕ ...⊕ α
′k · χ{t′k} ⊕ ...
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α′ ∈ Πn, (t′k) ∈ Seq and the point µ′′ ∈ Orρ′(µ′), thus k′ ∈ N exists with the
property

µ′′ = Φα′0...α′k
′
(µ′).

We put ρ′′ under the form

ρ′′ = α′′0 · χ{t′′0} ⊕ ...⊕ α
′′k · χ{t′′k} ⊕ ...

α′′ ∈ Πn, (t′′k) ∈ Seq. The sequence

Φα′′0...α′′k(µ′′) = Φα′′0...α′′k(Φα′0...α′k
′
(µ′)) = Φα′0...α′k

′
α′′0...α′′k(µ′),

k ∈ N fulfills the property (19), thus

∃k2 ∈ N, {Φα′′0...α′′k(µ′′)|k ≥ k2}(= ωρ′′(µ′′)) ⊂ A.

Corollary 38. If the set A ∈ P ∗(Bn) is p-invariant, then W (A) is p-
invariant and if A is n-invariant, then the basin of n-attraction W (A) is
n-invariant.

Proof. These result from Theorem 35 and Theorem 37.

6 Discussion

Some notes on the terminology:
- universality means the greatest in the sense of inclusion. Any X ⊂ ΞΦ

is a system, but we did not study such systems in the present paper;
- regularity means the existence of a generator function Φ, i.e. analogies

with the dynamical systems theory;
- autonomy means here that no input exists. We mention the fact that

autonomy has another non-equivalent definition also, a system is called au-
tonomous if its input set has exactly one element;

- asynchronicity refers (vaguely) to the fact that we work with real time
and binary values. Its antonym synchronicity means that ’discrete time’ (and
binary values) in which the iterates of Φ are: Φ,Φ ◦ Φ, ...,Φ ◦ ... ◦ Φ, ... i.e.
in the sequence Φα0

,Φα0α1
, ...,Φα0...αk , ... all αk are (1, ..., 1), k ∈ N. That is

the discrete time of the dynamical systems.
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Our concept of invariance from Definition 23 reproduces the point of view
expressed in [4], page 11, where the dynamical system S = (T,X,Φ) is given,
with T = R the time set, X the state space and Φ : T×X → X the flow: the
set A ⊂ X is said to be invariant for the system S if ∀x ∈ A, ∀t ∈ T,Φt(x) ∈
A. This idea coincides with the one from [5], page 27 where the state space
X is a differentiable manifold M.

In [3], page 92 the set A ⊂ X is called globally invariant via Φ if ∀t ∈
T,Φt(A) = A, recalling the situation of Example 26 and Figure 4. In [6],
page 3, the global invariance and the invariance of A ⊂ X are defined like at
[3] and [4].

We mention also the definition of invariance from [1], page 19. Let P =
(T,X,Φ) be a process, where T = R, X is the state space and Φ : T×X → X
is the flow of P ; we have denoted T = {(t′, t)|t′, t ∈ T, t ≤ t′}. Then A ⊂ X is
invariant relative to Φ if Φt′,t(A) ⊂ A for any (t′, t) ∈ T . This last definition
agrees itself with ours in the special case when t′ = 0 but it is more general
since it addresses systems which are not time invariant.

Stability is defined in [5], page 27 where M is a differentiable manifold
and the evolution operator Φt : M →M, t ∈ T is given. The subset A ⊂M is
stable for Φ if for any sufficiently small neighborhood U of A a neighborhood
V of A exists such that ∀x ∈ V,∀t ≥ 0,Φt(x) ∈ U. In our case when M = Bn

has the discrete topology, A ⊂ Bn and U = V = A, this comes to the
invariance of A.

In [4], page 16 the closed invariant set A ⊂ X is called stable for (T,X,Φ)
if i) for any sufficiently small neighborhood U ⊃ A there exists a neighbor-
hood V ⊃ A such that ∀t > 0,∀x ∈ V,Φt(x) ∈ U and ii) there exists a
neighborhood W ⊃ A such that ∀x ∈ W,Φt(x)→ A as t→∞. We see that
i) is the same request like at [5] and ii) brings nothing new (item i) means
Orρ(µ)⊂A, thus a stronger request than item ii) which is ωρ(µ)⊂A in our case).

In a series of works ([5], page 27), either the set A ⊂M is called asymp-
totically stable if it is stable and attractive, where M is a differentiable
manifold, or ([3], page 112, [6], page 5) the fixed point x0 ∈ X is called
asymptotically stable if it is stable and attractive. We interpret stability as
invariance and stating that A or x0 is stable and attractive means that it is
invariant and a weaker property than invariance takes place (see Theorem
35) and finally asymptotic stability means invariance too.

In [2], page 132 the statement is made that many times, in applications,
by stability is understood attractiveness. This would mean, in the conditions
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of Theorem 35, weakening of the invariance request and we cannot accept
this point of view.

In literature, [2] defines at page 6 the basin of attraction of a chaotic
attractor A ⊂ X as the set of the points whose ω−limit set is contained in
A. This was reproduced at (13) and (16), where A ∈ P ∗(Bn) was considered
however arbitrary.

The work [3] defines at page 124 the kingdom of attraction of an attractive
set A ⊂ X as the greatest set of points of X whose dynamic ends (for t→∞)
in A; when the kingdom of attraction is an open set, it is called basin of
attraction. For us, all the subsets A ⊂ Bn are open in the discrete topology
of Bn.

In [3], page 123 the invariant set A ⊂ X is called attractive set for
B ⊂ X if the distance between A and Φt(B) tends to 0 for t → ∞; a set A
is attractive if B 6= ∅ exists that is attracted by A. A slightly different idea
is expressed in [6], page 4 where the invariant set A is called attractive for B
if lim
t→∞

Φt(B) = A. Unlike these definitions, in Definition 32 the set A ⊂ Bn

is not required to be invariant and the statement B ⊂ W (A) showing that
B is p-attracted by A, i.e. ∀µ ∈ B, ∃ρ ∈ Pn, ωρ(µ) ⊂ A, reproduces the fact
that the distance between A and Φt(B) tends to 0 for t→∞.

In [5], page 27 M is a differentiable manifold and the subset A ⊂ M
is called attractive for Φ if a neighborhood U of A exists such that ∀x ∈
U, lim

t→∞
Φt(x) ∈ A; in this case we say that U is attracted by A. We have

reached (13), (16) and the requests of attractiveness W (A) 6= ∅,W (A) 6= ∅
from Definition 32.

In [2], page 5 a closed invariant set A ⊂ X is called attractive if a neigh-
borhood U of A exists such that ∀x ∈ U,∀t ≥ 0,Φt(x) ∈ U and Φt(x) → A

when t → ∞. Then the set
⋃
t≤0

Φt(U) is called the basin (the domain) of

attraction of the set A.
In [6], page 4 the open set W (A) ⊂ X representing the greatest set of

points of X which is attracted by the attractive set A is called basin of
attraction. This definition represents exactly W (A),W (A) from Definition
29 in the circumstances that (Definition 32) the attractiveness of A means
that the previous sets are non-empty.

We have the definition of the basin of attraction from [5], page 27: the
maximal set attracted by an attractor A ⊂ X (invariant set, attractive for
one of its neighborhoods) is called the kingdom of attraction of A; when the
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kingdom of attraction is an open set, it is called basin of attraction. We
conclude, related with the real to binary translation of this definition, that
if A ∈ P ∗(Bn) is p-invariant, then it is p-attractive for itself and thus an
’attractor’; its basin of attraction W (A) is non-empty in this case and it is
the maximal set attracted by A.

We note that the stable manifold of the equilibrium point x0 ∈ X is
defined in [6], page 4 and [3], page 93 for the dynamical system (T,X,Φ) by
W (x0) = {x ∈ X| lim

t→∞
Φt(x) = x0}. In [4], page 46 the terminology of stable

set is used for this concept and [6] mentions this terminology too. Thus, by
replacing x0 ∈ X with A ⊂ Bn and lim

t→∞
Φt(x) = x0 with ωρ(µ) ⊂ A we

get for W (A),W (A) the alternative terminology of stable sets (i.e. invariant
sets) of A.
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