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Abstract

The asynchronous flows are given by Boolean functions Φ : {0, 1}n −→ {0, 1}n that

iterate their coordinates Φ1, ..., Φn independently on each other. In the study of the

asynchronous sequential circuits, the situation when multiple coordinates of the state

can change at the same time in called a race. When the outcome of the race affects

critically the run of the circuit, for example its final state, the race is called critical.

To avoid the critical races that could occur, Φ is specified in general so that only one

coordinate of the state can change; such a circuit is called race-free and we also say that

Φ fulfills the technical condition of proper operation. We formalize in this framework

the technical condition of proper operation and give its generalization, consisting in

the situation when races exist, but they are not critical.
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1. Introduction

The asynchronous circuits from electronics are modelled by Boolean functions Φ :

B
n −→ B

n that iterate their coordinates Φ1, ..., Φn in arbitrary discrete time, indepen-

dently on each other. As in this paper there is no bound on the duration of an iteration, we

use the unbounded delay model of computation of the Boolean functions. The uncertainties

related to the behavior of the circuits and their models are generated by technology and also

by temperature variations and voltage supply variations.

In order to understand the dynamics of these systems we give the example of the func-

tion Φ from Table 1, whose state portrait was drawn in Figure 1 (we have adopted the

terminology of state portrait, by analogy with the phase portraits of the dynamical systems

theory; such drawings are usually called state transition graphs in engineering).

In Figure 1, the arrows show the increase of time. We have underlined in the tuples

(µ1, µ2, µ3) ∈ B
3 these coordinates, called unstable (or excited, or enabled), for which

µi 6= Φi(µ), i ∈ {1, 2, 3}; these are the coordinates that are about to switch, but the time

instant and the order in which these switches happen are not known.
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Table 1. An example

(µ1, µ2, µ3) Φ(µ1, µ2, µ3)

(0, 0, 0) (0, 1, 1)

(0, 0, 1) (0, 1, 1)

(0, 1, 0) (0, 1, 0)

(0, 1, 1) (1, 1, 1)

(1, 0, 0) (0, 0, 0)

(1, 0, 1) (1, 0, 1)

(1, 1, 0) (1, 0, 0)

(1, 1, 1) (1, 1, 0)

Figure 1. Dependence on the order in which Φ1, Φ2, Φ3 are computed.

(1, 0, 1) is an isolated fixed point (a fixed point is also called equilibrium point,

or rest position, or final state), where the system stays indefinitely long. The transi-

tion (0, 1, 1) −→ (1, 1, 1) consists in the computation of Φ1(0, 1, 1); even if we do not

know when it happens, we know that it happens and the system, if it is in (0, 1, 1) ,

surely gets to (1, 1, 1) sometime. And the transitions (1, 1, 1) −→ (1, 1, 0), (1, 1, 0) −→
(1, 0, 0), (1, 0, 0) −→ (0, 0, 0) are similar. The interesting behavior is in (0, 0, 0); since if

Φ3(0, 0, 0) is computed first, or if Φ2(0, 0, 0), Φ3(0, 0, 0) are computed at the same time,

the system gets to (0, 1, 1) sometime; but if Φ2(0, 0, 0) is computed first, then the state

(0, 1, 0) is reached and, as it is a fixed point of Φ, the system rests there indefinitely long.

The circuit suggests the problem of finding classes of Boolean functions Φ -identified

with the asynchronous systems- where, even if we do not know the time instants and the

order in which their coordinates are computed, we know that µ, Φ(µ), (Φ◦Φ)(µ), (Φ ◦Φ ◦
Φ)(µ), ... are computed sometime, in this order. Thus the behavior of the systems that we

are looking for reproduces in a certain way the behavior of the dynamical systems (in its
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discrete time, Boolean version), and this is considered to be ’nice’, in a framework with

many unknown parameters. The purpose of the paper is to define and characterize this

situation, called the generalized technical condition of proper operation.

The technical condition of proper operation was known for many years by the theoreti-

cians in switching circuits [6], perhaps with different names. We have also gathered useful

intuition in this direction from many engineering sources such like [2], [8]. Another biblio-

graphical direction is the one represented by the dynamical systems theory such as [1], [3],

[4], [5]. An introduction in asynchronous systems may be found in [7].

We denote in the following with B the Boolean algebra with two elements, i.e., the set

{0, 1} endowed with the complement ′ ′, the intersection ′ · ′, the union ′∪′, and the

modulo 2 sum ′ ⊕′ . These laws induce laws denoted with the same symbols on B
n where

they act coordinatewise.

2. Flows

Definition 1. For Φ : B
n −→ B

n and λ ∈ B
n, we define the function Φλ : B

n −→ B
n

by ∀µ ∈ B
n, ∀i ∈ {1, ..., n},

Φλ
i (µ) =

{
µi, if λi = 0,

Φi(µ), if λi = 1.

Definition 2. The sequence α : {0, 1, 2, ...} −→ B
n, whose terms are denoted in gen-

eral with αk (instead of α(k)), is called progressive if ∀i ∈ {1, ..., n}, the set {k|k ∈

{0, 1, 2, ...}, αk
i = 1} is infinite. The set of the progressive sequences is denoted by Π̂n.

Definition 3. The flow Φ̂α(µ, ·) : {−1, 0, 1, ...} −→ B
n is defined by Φ̂α(µ,−1) = µ, and

∀k ≥ −1, Φ̂α(µ, k + 1) = Φαk+1

(Φ̂α(µ, k)). Φ is called the generator function, and µ is

called the initial (value of the) state.

Remark 4. Here are the explanations related with the previous definitions. Unlike Φ that

is computed on all its coordinates (at the same time), Φλ is computed on these coordinates

only where λi = 1. Φ̂α(µ, ·) represents the evolution of a state function starting from µ, that

is given by the iterations of Φi, made independently on each other, at time instants and in an

order indicated by the terms of α. The fact that α is progressive shows that any coordinate i

is computed infinitely many times. And the fact that the processes that are modelled by these

flows are influenced by unspecified parameters (such as technology, temperature, voltage

supply) included indirectly in the model by α, is handled under the form: we are interested

in special classes of functions Φ so that we can study properties of Φ̂α(µ, ·) that hold for

all µ ∈ B
n and all α ∈ Π̂n.

3. The Technical Condition of Proper Operation

Notation 5. We denote by εi ∈ B
n the tuple εi = (0, ..., 1

i
, ..., 0), i ∈ {1, ..., n}.
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Figure 2. Function that fulfills the technical condition of proper operation.

Figure 3. Function that fulfills the technical condition of proper operation.

Remark 6. B
n is a linear space over the field B; the sum of the vectors is made coordi-

natewise ∀µ ∈ B
n, ∀µ′ ∈ B

n,

(µ1, ..., µn) ⊕ (µ′

1, ..., µ
′

n) = (µ1 ⊕ µ′

1, ..., µn ⊕ µ′

n)

and the multiplication with scalars from B is made coordinatewise too. εi are the vectors

of the canonical basis of B
n. Note that the sum µ ⊕ µ′ shows which are the coordinates

of µ, µ′ that differ (µi ⊕ µ′

i = 1) and which are the coordinates of µ, µ′ that are equal

(µi ⊕ µ′

i = 0).

Definition 7. The function Φ is said to fulfill the technical condition of proper operation

if ∀µ ∈ B
n, one of the following properties is true:

Φ(µ) = µ, (1)

∃i ∈ {1, ..., n}, Φ(µ) = µ ⊕ εi. (2)

Example 8. The identity 1Bn : B
n −→ B

n fulfills the technical condition of proper oper-

ation, since all µ ∈ B
n are fixed points of 1Bn .

Example 9. The function from Figure 2 fulfills the technical condition of proper operation.

Example 10. The function Φ from Figure 3 fulfills the technical condition of proper oper-

ation too.

Example 11. The function Φ from Figure 4 does not fulfill the technical condition of proper

operation, since Φ(1, 1) = (0, 0).
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Figure 4. Function that does not fulfill the technical condition of proper operation.

4. Dynamics under the Technical Condition

of Proper Operation

Theorem 12. Let α ∈ Π̂n, µ, µ′ ∈ B
n, k1 ∈ {−1, 0, 1, ...}. If Φ fulfills the technical

condition of proper operation and Φ̂α(µ, k1) = µ′, then one of the following possibilities is

true:

a) Φ(µ′) = µ′ and ∀k ≥ k1,

Φ̂α(µ, k) = µ′ = Φ(µ′);

b) i ∈ {1, ..., n} exists such that Φ(µ′) = µ′ ⊕ εi and either

Φ̂α(µ, k1 + 1) = µ′ ⊕ εi = Φ(µ′),

or k2 ≥ k1 + 2 exists with

Φ̂α(µ, k1 + 1) = ... = Φ̂α(µ, k2 − 1) = µ′,

Φ̂α(µ, k2) = µ′ ⊕ εi = Φ(µ′).

Proof. a) If Φ(µ′) = µ′, then for any λ ∈ B
n we have Φλ(µ′) = µ′, thus

Φ̂α(µ, k1 + 1) = Φαk1+1

(Φ̂α(µ, k1)) = Φαk1+1

(µ′) = µ′

and the required property is proved by induction on k ≥ k1.

b) For any λ ∈ B
n, j ∈ {1, ..., n} we have

Φλ
j (µ′) =






µ′

j, if λj = 0,

µ′

j, if λj = 1, j 6= i,

µ′

j ⊕ 1, if λj = 1, j = i,

thus Φλ(µ′) = µ′ ⊕ λi · ε
i. As α ∈ Π̂n implies {k|k ≥ k1 + 1, αk

i = 1} 6= ∅, we denote

k2 = min{k|k ≥ k1 + 1, αk
i = 1}

and we have the following possibilities.
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Case k2 = k1 + 1, when

Φ̂α(µ, k1 + 1) = Φαk1+1

(Φ̂α(µ, k1)) = Φαk1+1

(µ′) = µ′ ⊕ αk1+1
i · εi = µ′ ⊕ εi.

Case k2 ≥ k1 + 2, when

Φ̂α(µ, k1 + 1) = Φαk1+1

(Φ̂α(µ, k1)) = Φαk1+1

(µ′) = µ′ ⊕ αk1+1
i · εi = µ′,

...

Φ̂α(µ, k2 − 1) = Φαk2−1

(Φ̂α(µ, k2 − 2)) = Φαk2−1

(µ′) = µ′ ⊕ αk2−1
i · εi = µ′,

Φ̂α(µ, k2) = Φαk2
(Φ̂α(µ, k2 − 1)) = Φαk2

(µ′) = µ′ ⊕ αk2

i · εi = µ′ ⊕ εi.

Remark 13. The Theorem gives the meaning of the technical condition of proper opera-

tion. In the situation when we do not know the time instant and the order in which the co-

ordinate functions Φ1, ..., Φn are computed, what we surely know is that if Φ̂α(µ, k1) = µ′,

then, independently on the values αk ∈ B
n, k ≥ k1 + 1, some k2 ≥ k1 + 1 exists such that

Φ̂α(µ, k2) = Φ(µ′).

5. The Generalized Technical Condition of Proper Operation

Definition 14. We say that Φ fulfills the generalized technical condition of proper opera-

tion if ∀µ ∈ B
n,

∃p ≥ 2, ∃i1 ∈ {1, ..., n}, ..., ∃ip ∈ {1, ..., n}, Φ(µ) = µ ⊕ εi1 ⊕ ...⊕ εip =⇒
=⇒ ∀λ ∈ B

p
r {(1, ..., 1)},Φ(µ) = Φ(µ ⊕ λ1 · ε

i1 ⊕ ...⊕ λp · ε
ip).

(3)

Remark 15. For any µ, the generalized technical condition of proper operation refers to

the situation when µ and Φ(µ) differ on p ≥ 2 coordinates, i1, ..., ip; then the value Φ(µ)
is asked to be equal with the value of Φ in any intermediate state µ⊕λ1 · ε

i1 ⊕ ...⊕λp · ε
ip,

λ 6= (1, ..., 1) that might result by the computation of ≤ p−1 unstable coordinate functions

Φi, i ∈ {i1, ..., ip}.

Remark 16. The technical condition of proper operation is indeed a special case of the

generalized technical condition of proper operation. This happens since, if µ and Φ(µ)
differ on 0 or 1 coordinates, then the hypothesis of (3) is false and the generalized technical

condition of proper operation is fulfilled.

Example 17. We give in Figure 5 an example of function Φ that fulfills the generalized

technical condition of proper operation. Note that in each point µ′ of the trajectory where

Φ̂α(µ, k1) might be, a subsequent time instant k2 ≥ k + 1 exists such that Φ̂α(µ, k2) =
Φ(µ′), i.e., Φ is eventually iterated, in an asynchronous way. The most interesting transfer

here is from (0, 0, 0) to (0, 1, 1), which can take place in three different ways, as Φ3(0, 0, 0)
is computed first, Φ2(0, 0, 0) is computed first, or Φ2(0, 0, 0),Φ3(0, 0, 0) are computed at

the same time. All the other transfers take place in similar conditions with the technical

condition of proper operation. To be compared with the Example from Figure 1.
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Figure 5. Function Φ that fulfills the generalized technical condition of proper operation.

Figure 6. Function that fulfills the generalized technical condition of proper operation.

Example 18. The function from Figure 6 fulfills also the generalized technical condition of

proper operation.

Example 19. In Figure 7 we give the example of the function Φ : B2 −→ B
2, ∀µ ∈ B

2,

Φ(µ1, µ2) = (µ1, µ2)

that does not fulfill the generalized technical condition of proper operation. This is seen

from the counterexample: Φ(0, 0) = (1, 1), but Φ(0, 1) = (1, 0).

6. Dynamics under the Generalized Technical Condition

of Proper Operation

Lemma 20. Let µ′ ∈ B
n, p ≥ 2, i1 ∈ {1, ..., n}, ..., ip ∈ {1, ..., n} and we suppose that

Φ(µ′) = µ′ ⊕ εi1 ⊕ ...⊕ εip , (4)

∀λi1 ∈ B, ..., ∀λip ∈ B, λi1 · ... · λip = 0 =⇒
=⇒ Φ(µ′) = Φ(µ′ ⊕ λi1 · ε

i1 ⊕ ...⊕ λip · ε
ip)

(5)
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Figure 7. Function that does not fulfill the generalized technical condition of proper opera-

tion.

are true. Then ∀λ ∈ B
n, ∀ν ∈ B

n, λi1 · ... · λip = 0 implies

Φν(µ′ ⊕ λi1 · ε
i1 ⊕ ...⊕ λip · ε

ip) = µ′ ⊕ (λi1 ∪ νi1) · ε
i1 ⊕ ...⊕ (λip ∪ νip) · εip .

Proof. Let λ ∈ B
n arbitrary such that λi1 · ... · λip = 0 and we consider ν ∈ B

n, j ∈

{1, ..., n} arbitrary also. We have:

Φν
j (µ′ ⊕ λi1 · ε

i1 ⊕ ...⊕ λip · ε
ip) =






µ′

j, if νj = 0, j /∈ {i1, ..., ip},

µ′

j , if νj = 0, j ∈ {i1, ..., ip}, λj = 0,

µ′

j ⊕ 1, if νj = 0, j ∈ {i1, ..., ip}, λj = 1,

Φj(µ
′ ⊕ λi1 · ε

i1 ⊕ ...⊕ λip · ε
ip), if νj = 1

(5)
=






µ′

j , if νj = 0, j /∈ {i1, ..., ip},

µ′

j , if νj = 0, j ∈ {i1, ..., ip}, λj = 0,

µ′

j ⊕ 1, if νj = 0, j ∈ {i1, ..., ip}, λj = 1,

Φj(µ
′), if νj = 1

(4)
=






µ′

j , if νj = 0, j /∈ {i1, ..., ip},

µ′

j , if νj = 0, j ∈ {i1, ..., ip}, λj = 0,

µ′

j ⊕ 1, if νj = 0, j ∈ {i1, ..., ip}, λj = 1,

µ′

j , if νj = 1, j /∈ {i1, ..., ip},

µ′

j ⊕ 1, if νj = 1, j ∈ {i1, ..., ip}

=






µ′

j , if (νj = 0, j /∈ {i1, ..., ip}) or (νj = 0, j ∈ {i1, ..., ip}, λj = 0)

or (νj = 1, j /∈ {i1, ..., ip}),

µ′

j ⊕ 1, if (νj = 0, j ∈ {i1, ..., ip}, λj = 1) or (νj = 1, j ∈ {i1, ..., ip})

thus

Φν(µ′ ⊕ λi1 · ε
i1 ⊕ ...⊕ λip · ε

ip) = µ′ ⊕ (νi1 · λi1 ∪ νi1) · ε
i1 ⊕ ...⊕ (νip · λip ∪ νip) · ε

ip

= µ′ ⊕ (λi1 ∪ νi1) · ε
i1 ⊕ ...⊕ (λip ∪ νip) · εip .
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Theorem 21. Let α ∈ Π̂n, µ, µ′ ∈ B
n, k1 ∈ {−1, 0, 1, ...}. We suppose that Φ fulfills the

generalized technical condition of proper operation and Φ̂α(µ, k1) = µ′. Then one of the

following situations holds:

a) Φ(µ′) = µ′ and ∀k ≥ k1,

Φ̂α(µ, k) = µ′ = Φ(µ′);

b) i ∈ {1, ..., n} exists such that Φ(µ′) = µ′ ⊕ εi and either

Φ̂α(µ, k1 + 1) = µ′ ⊕ εi = Φ(µ′),

or k2 ≥ k1 + 2 exists with

Φ̂α(µ, k1 + 1) = ... = Φ̂α(µ, k2 − 1) = µ′,

Φ̂α(µ, k2) = µ′ ⊕ εi = Φ(µ′);

c) i1, ..., ip ∈ {1, ..., n} exist, p ≥ 2 such that Φ(µ′) = µ′ ⊕ εi1 ⊕ ...⊕ εip and either

Φ̂α(µ, k1 + 1) = µ′ ⊕ εi1 ⊕ ...⊕ εip = Φ(µ′),

or k2 ≥ k1 + 2 exists with

∀k ∈ {k1 + 1, ..., k2− 1}, Φ̂α(µ, k) 6= Φ(µ′),

∀k ∈ {k1 + 1, ..., k2}, ∀i ∈ {1, ..., n}, Φ̂α
i (µ, k) are monotonous,

Φ̂α(µ, k2) = µ′ ⊕ εi1 ⊕ ...⊕ εip = Φ(µ′).

Proof. The items a), b) have already been proved at Theorem 12., we prove c). For λ ∈ B
n

we have ∀j ∈ {1, ..., n},

Φλ
j (µ′) =






µ′

j, if λj = 0,

µ′

j, if λj = 1, j /∈ {i1, ..., ip},

µ′

j ⊕ 1, if λj = 1, j ∈ {i1, ..., ip}

thus we can write

Φλ(µ′) = µ′ ⊕ λi1 · ε
i1 ⊕ ...⊕ λip · ε

ip .

We denote

k2 =






k1 + 1, if αk1+1
i1

= ... = αk1+1
ip

= 1,

min{k|k ≥ k1 + 1, αk1+1
i1

∪ ... ∪ αk
i1

= 1 and ...

and αk1+1
ip

∪ ... ∪ αk
ip

= 1}, else

(6)

and we have the following possibilities.

Case k2 = k1 + 1, when

Φ̂α(µ, k1 + 1) = Φαk1+1

(Φ̂α(µ, k1)) = Φαk1+1

(µ′) = µ′ ⊕ αk1+1
i1

· εi1 ⊕ ...⊕ αk1+1
ip

· εip
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= µ′ ⊕ εi1 ⊕ ...⊕ εip ;

Case k2 ≥ k1 + 2, when

Φ̂α(µ, k1 + 1) = Φαk1+1

(Φ̂α(µ, k1)) = Φαk1+1

(µ′) = µ′ ⊕ αk1+1
i1

· εi1 ⊕ ...⊕ αk1+1
ip

· εip ,

Φ̂α(µ, k1 + 2) = Φαk1+2

(Φ̂α(µ, k1 + 1)) = Φαk1+2

(µ′ ⊕ αk1+1
i1

· εi1 ⊕ ...⊕ αk1+1
ip

· εip)

Lemma 20.
= µ′ ⊕ (αk1+1

i1
∪ αk1+2

i1
) · εi1 ⊕ ...⊕ (αk1+1

ip
∪ αk1+2

ip
) · εip ,

...

Φ̂α(µ, k2 − 1) = Φαk2−1

(Φ̂α(µ, k2 − 2))

= Φαk2−1

(µ′ ⊕ (αk1+1
i1

∪ ... ∪ αk2−2
i1

) · εi1 ⊕ ...⊕ (αk1+1
ip

∪ ... ∪ αk2−2
ip

) · εip)

Lemma 20.
= µ′ ⊕ (αk1+1

i1
∪ ... ∪ αk2−1

i1
) · εi1 ⊕ ...⊕ (αk1+1

ip
∪ ... ∪ αk2−1

ip
) · εip ,

Φ̂α(µ, k2) = Φαk2
(Φ̂α(µ, k2 − 1))

= Φαk2
(µ′ ⊕ (αk1+1

i1
∪ ... ∪ αk2−1

i1
) · εi1 ⊕ ...⊕ (αk1+1

ip
∪ ... ∪ αk2−1

ip
) · εip)

Lemma 20.
= µ′ ⊕ (αk1+1

i1
∪ ... ∪ αk2

i1
) · εi1 ⊕ ...⊕ (αk1+1

ip
∪ ... ∪ αk2

ip
) · εip

(6)
= µ′ ⊕ εi1 ⊕ ...⊕ εip .

Moreover, ∀k ∈ {k1 + 1, ..., k2}, ∀i ∈ {1, ..., n}, the functions αk1+1
i ∪ ... ∪ αk

i are

increasing, thus Φ̂α
i (µ, k) are monotonous.

Remark 22. The meaning of the generalized technical condition of proper operation as

shown by the previous Theorem is the following. Let us suppose that Φ̂α(µ, k1) = µ′. Then,

for any αk1+1, αk1+2, ... ∈ B
n (we do not know the time instants when the coordinate

functions Φi are computed), some k2 ≥ k1 + 1 exists with the property that Φ̂α(µ, k2) =

Φ(µ′).

References

[1] D. K. Arrowsmith, C. M. Place, An introduction to dynamical systems, Cambridge

University Press, 1990.

[2] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, Alexan-

dre Yakovlev, A Region-Based Theory for State Assignment in Speed-Independent

Circuits, IEEE Transactions on Computer-aided Design of Integrated Circuits and

Systems, Vol. 16, No. 8, August 1997, 793-812.

[3] A. Georgescu, M. Moroianu, I. Oprea. Teoria Bifurcaţiei, Principii şi Aplicaţii. Edi-
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